CN113370844A - 一种增程式电动汽车的增程器起停控制系统及控制方法 - Google Patents

一种增程式电动汽车的增程器起停控制系统及控制方法 Download PDF

Info

Publication number
CN113370844A
CN113370844A CN202110830437.8A CN202110830437A CN113370844A CN 113370844 A CN113370844 A CN 113370844A CN 202110830437 A CN202110830437 A CN 202110830437A CN 113370844 A CN113370844 A CN 113370844A
Authority
CN
China
Prior art keywords
soc
range extender
battery
control module
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110830437.8A
Other languages
English (en)
Other versions
CN113370844B (zh
Inventor
杨金龙
翟钧
肖波
刘杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deep Blue Automotive Technology Co ltd
Original Assignee
Chongqing Changan New Energy Automobile Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Changan New Energy Automobile Technology Co Ltd filed Critical Chongqing Changan New Energy Automobile Technology Co Ltd
Priority to CN202110830437.8A priority Critical patent/CN113370844B/zh
Publication of CN113370844A publication Critical patent/CN113370844A/zh
Application granted granted Critical
Publication of CN113370844B publication Critical patent/CN113370844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种增程式电动汽车的增程器起停控制系统及控制方法,所述控制系统,包括控制模块、车速获取模块和电池状态获取模块,还包括踏板需求功率确定模块、地图导航获取模块和电量维持点确定模块;控制模块与踏板需求功率确定模块、车速获取模块、地图导航获取模块、电池状态获取模块、电量维持点确定模块连接,控制模块根据获取的踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0综合判断增程器起停需求,再根据增程器起停状态,控制增程器起动或停机。本发明中增程器起停控制更合理,能避免整车能量浪费,提升驾驶体验。

Description

一种增程式电动汽车的增程器起停控制系统及控制方法
技术领域
本发明属于电动汽车控制技术领域,具体涉及一种增程式电动汽车的增程器起停控制系统及控制方法。
背景技术
随着汽车保有量逐年升高,汽车排放问题日益严重,同时石油资源日渐减少,节能环保的新能源汽车应运而生,而新能源车中的纯电动汽车,因续航低、售价贵、充电慢等问题一直为大众所诟病,因此兼顾二者优点的增程式电动汽车逐渐为大众所青睐。
目前一般增程式电动汽车的增程器起停维度较为单一,相关技术中的增程器起停控制策略存在如下问题:(1)仅考虑电池电量和/或车速维度,未充分考虑整车运行工况,在低车速段不能拥有较好的NVH体验,制动滑行回收工况可能会限制部分能量回收,造成整车能量浪费;(2)未考虑各维度控制增程器起停优先级及切换逻辑,易造成增程器反复起停;(3)电量维持点(即SOC维持点)固定,未考虑环境温度,用户也不可设置,用户体验较差。
发明内容
本发明的目的是提供一种增程式电动汽车的增程器起停控制系统及控制方法,以使增程器起停控制更合理,避免整车能量浪费,提升驾驶体验。
本发明所述的增程式电动汽车的增程器起停控制系统,包括控制模块、用于获取车速V的车速获取模块和用于获取电池SOC及电池放电功率Wf的电池状态获取模块,还包括用于解析输出踏板需求功率W的踏板需求功率确定模块、用于获取地图导航信息的地图导航获取模块和用于解析输出SOC维持点SOC0的电量维持点确定模块。控制模块与所述踏板需求功率确定模块、车速获取模块、地图导航获取模块、电池状态获取模块、电量维持点确定模块连接,控制模块根据获取的踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0综合判断增程器起停需求,再根据增程器起停状态,控制增程器起动或停机。
本发明所述的增程式电动汽车的增程器起停控制方法,采用上述增程器起停控制系统,其特征在于,该控制方法为:
步骤一、控制模块获取踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0,然后执行步骤二;
步骤二、控制模块判断是否有增程器二级起动需求,如果是,则执行步骤五,否则执行步骤三;
步骤三、控制模块判断是否有增程器二级停机需求,如果是,则执行步骤八,否则执行步骤四;
步骤四、控制模块判断是否有增程器一级起动需求,如果是,则执行步骤五,否则执行步骤八;
步骤五、控制模块判断增程器是否已起动,如果是,则执行步骤六,否则执行步骤七;
步骤六、控制模块控制增程器维持起动状态,然后结束;
步骤七、控制模块控制增程器起动,然后结束;
步骤八、控制模块判断增程器是否已停机,如果是,则执行步骤九,否则执行步骤十;
步骤九、控制模块控制增程器维持停机状态,然后结束;
步骤十、控制模块控制增程器停机,然后结束。
优选的,增程器二级起动需求标志位的初始值为0;当电池SOC小于SOC维持点SOC0,或者踏板需求功率W大于电池放电功率Wf与预设的第一功率偏移量W1之差时,控制模块使增程器二级起动需求标志位为1;当电池SOC大于预设的第一SOC阈值SOC1,且踏板需求功率W小于电池放电功率Wf与预设的第二功率偏移量W2之差时,控制模块使增程器二级起动需求标志位为0;其中,SOC0< SOC1,W1< W2
如果增程器二级起动需求标志位为1,则控制模块判定有增程器二级起动需求;如果增程器二级起动需求标志位为0,则控制模块判定无增程器二级起动需求。
优选的,如果地图导航信息提示当前路况为长下坡,则控制模块判定有增程器二级停机需求;如果地图导航信息提示当前路况不为长下坡,则控制模块判定无增程器二级停机需求。
优选的,增程器一级起动需求标志位的初始值为0。
当满足条件1a和条件1b中的任意一个条件时,控制模块使增程器一级起动需求标志位为1;其中,
条件1a为:在电池充电状态下,电池SOC大于或等于预设的第一SOC阈值SOC1,且小于预设的第三SOC阈值SOC3,且车速V大于预设的第二车速阈值V2
条件1b为:在电池放电状态下,电池SOC大于或等于SOC维持点SOC0,且小于预设的第二SOC阈值SOC2,且车速V大于预设的第二车速阈值V2
当满足条件2a至条件2c中的任意一个条件时,控制模块使增程器一级起动需求标志位为0;其中,
条件2a为:电池SOC大于或等于预设的第三SOC阈值SOC3
条件2b为:在电池放电状态下,电池SOC大于或等于预设的第二SOC阈值SOC2,且小于预设的第三SOC阈值SOC3
条件2c为:车速V小于预设的第一车速阈值V1
其中,SOC0< SOC1< SOC2< SOC3,V1< V2
如果增程器一级起动需求标志位为1,则控制模块判定有增程器一级起动需求;如果增程器一级起动需求标志位为0,则控制模块判定无增程器一级起动需求。
优选的,所述电量维持点确定模块解析输出SOC维持点SOC0的具体方式为:
S1、判断是否收到用户设置的SOC维持值,如果是,则执行S3,否则执行S2;
S2、根据获取的环境温度,查询通过标定方式得到的环境温度与SOC维持值的对应关系表,获得与环境温度对应的SOC维持值,然后执行S4;
S3、将用户设置的SOC维持值作为所述SOC维持点SOC0,并输出,然后结束;
S4、将与环境温度对应的SOC维持值作为所述SOC维持点SOC0,并输出,然后结束。
SOC维持点SOC0综合考虑了环境温度及用户意图,能有效提升低温环境的整车表现,可按照用户意图修改SOC维持点,提升了用户参与感;增程器的起停控制更加符合车辆使用场景及驾驶员需求,提升了驾驶体验。
本发明具有如下效果:
(1)根据踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0综合判断增程器起停需求,多元化增程器起停考虑维度,使增程器起停更贴近各种工况下的整车及驾驶员需求,优化了整车表现。
(2)根据整车动力性、NVH、排放、能耗、体验考虑,将踏板需求功率维度和SOC维持点(即电量维持点)维度归为增程器二级起动需求,将地图导航信息维度归为增程器二级停机需求,将一定SOC区间内车速维度归为增程器一级起动需求,默认需求为增程器一级停机需求。控制模块控制增压器起停的优先等级为:增程器二级起动需求>增程器二级停机需求>增程器一级起动需求>增程器一级停机需求,解决了整车各维度起停增程器需求相冲突的情况,解决了现有技术中车辆低速NVH体验较差、各维度起停需求导致增程器频繁起停、电量维持点固定以及整车能量回收工况能量容易造成浪费的问题。
附图说明
图1为本实施例中增程式电动汽车的增程器起停控制系统原理框图。
图2为本实施例中增程式电动汽车的增程器起停控制方法流程图。
图3为本实施例中解析输出SOC维持点SOC0的流程图。
图4为本实施例中增程器各起停维度所属的起动、停机需求等级表。
具体实施方式
如图1所示的增程式电动汽车的增程器起停控制系统,包括控制模块1、踏板需求功率确定模块2、车速获取模块3、地图导航获取模块4、电池状态获取模块5和电量维持点确定模块6。踏板需求功率确定模块2用于解析输出踏板需求功率W。车速获取模块3用于获取车速V。地图导航获取模块4用于获取地图导航信息,地图导航信息能提示当前路况(属于现有技术),比如长下坡、上坡、平路等。电池状态获取模块5用于获取电池SOC及电池放电功率Wf。电量维持点确定模块6用于解析输出SOC维持点SOC0。控制模块1与踏板需求功率确定模块2、车速获取模块3、地图导航获取模块4、电池状态获取模块5、电量维持点确定模块6连接,控制模块1根据获取的踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0综合判断增程器起停需求,再根据增程器起停状态,控制增程器起动或停机。
踏板需求功率确定模块2解析输出踏板需求功率W的具体方式(属于现有技术)为:踏板需求功率确定模块2获取车速和油门踏板开度,并根据车速和油门踏板开度查询通过标定方式得到的车速-油门踏板开度-踏板需求功率表,获得对应的踏板需求功率,将该对应的踏板需求功率作为W输出。
如图3所示,电量维持点确定模块6解析输出SOC维持点SOC0的具体方式为:
S1、判断是否收到用户设置的SOC维持值,如果是,则执行S3,否则执行S2。
S2、获取环境温度,并根据环境温度,查询通过标定方式得到的环境温度与SOC维持值的对应关系表,获得与环境温度对应的SOC维持值,然后执行S4。
S3、将用户设置的SOC维持值作为SOC维持点SOC0,并输出,然后结束。
S4、将与环境温度对应的SOC维持值作为SOC维持点SOC0,并输出,然后结束。
将与环境温度对应的SOC维持值作为SOC维持点SOC0能保证低温环境下可通过增程器起停控制,将整车电量维持在相对较高SOC点,使电池拥有较好的放电功率,整车拥有较好动力性。
如图2所示的增程式电动汽车的增程器起停控制方法,采用上述增程器起停控制系统,该增程器起停控制方法中由控制模块1执行的步骤具体为:
步骤一、获取踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0,然后执行步骤二。
步骤二、判断是否有增程器二级起动需求,如果是,则执行步骤五,否则执行步骤三。
增程器二级起动需求标志位的初始值为0。当控制模块1判断出电池SOC小于SOC维持点SOC0(即SOC<SOC0),或者踏板需求功率W大于电池放电功率Wf与预设的第一功率偏移量W1之差(即W> Wf - W1)时,控制模块1使增程器二级起动需求标志位为1。当控制模块1判断出电池SOC大于预设的第一SOC阈值SOC1(即SOC>SOC1),且踏板需求功率W小于电池放电功率Wf与预设的第二功率偏移量W2之差(即W< Wf - W2)时,控制模块1使增程器二级起动需求标志位为0;其中,SOC0< SOC1,W1< W2
如果增程器二级起动需求标志位为1,则控制模块1判定有增程器二级起动需求;如果增程器二级起动需求标志位为0,则控制模块1判定无增程器二级起动需求。
步骤三、判断是否有增程器二级停机需求,如果是,则执行步骤八,否则执行步骤四。
如果地图导航信息提示当前路况为长下坡,则控制模块1判定有增程器二级停机需求;如果地图导航信息提示当前路况不为长下坡,则控制模块1判定无增程器二级停机需求。
步骤四、判断是否有增程器一级起动需求,如果是,则执行步骤五,否则(即为默认的增程器一级停机需求时)执行步骤八。
增程器一级起动需求标志位的初始值为0。
当控制模块1判断出满足条件1a和条件1b中的任意一个条件时,控制模块1使增程器一级起动需求标志位为1。其中,
条件1a为:在电池充电状态下(根据电池SOC判断,如果电池SOC逐渐增加,则表示电池处于充电状态),电池SOC大于或等于预设的第一SOC阈值SOC1,且小于预设的第三SOC阈值SOC3,且车速V大于预设的第二车速阈值V2(即SOC1≤SOC<SOC3,且V>V2)。
条件1b为:在电池放电状态下(根据电池SOC判断,如果电池SOC逐渐减小,则表示电池处于放电状态),电池SOC大于或等于SOC维持点SOC0,且小于预设的第二SOC阈值SOC2,且车速V大于预设的第二车速阈值V2(即SOC0≤SOC<SOC2,且V>V2)。
当控制模块1判断出满足条件2a至条件2c中的任意一个条件时,控制模块1使增程器一级起动需求标志位为0。其中,
条件2a为:电池SOC大于或等于预设的第三SOC阈值SOC3(即SOC≥SOC3)。
条件2b为:在电池放电状态下,电池SOC大于或等于预设的第二SOC阈值SOC2,且小于预设的第三SOC阈值SOC3(即SOC2≤SOC<SOC3)。
条件2c为:车速V小于预设的第一车速阈值V1(即V<V1)。
其中,SOC0< SOC1< SOC2< SOC3,V1< V2
如果增程器一级起动需求标志位为1,则控制模块1判定有增程器一级起动需求;如果增程器一级起动需求标志位为0,则控制模块1判定无增程器一级起动需求。
步骤五、判断增程器是否已起动,如果是,则执行步骤六,否则执行步骤七。
步骤六、控制增程器维持起动状态,然后结束。
步骤七、控制增程器起动,然后结束。
步骤八、判断增程器是否已停机,如果是,则执行步骤九,否则执行步骤十。
步骤九、控制增程器维持停机状态,然后结束。
步骤十、控制增程器停机,然后结束。

Claims (6)

1.一种增程式电动汽车的增程器起停控制系统,包括控制模块(1)、用于获取车速V的车速获取模块(3)和用于获取电池SOC及电池放电功率Wf的电池状态获取模块(5),其特征在于:还包括用于解析输出踏板需求功率W的踏板需求功率确定模块(2)、用于获取地图导航信息的地图导航获取模块(4)和用于解析输出SOC维持点SOC0的电量维持点确定模块(6);控制模块(1)与所述踏板需求功率确定模块(2)、车速获取模块(3)、地图导航获取模块(4)、电池状态获取模块(5)、电量维持点确定模块(6)连接,控制模块(1)根据获取的踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0综合判断增程器起停需求,再根据增程器起停状态,控制增程器起动或停机。
2.一种增程式电动汽车的增程器起停控制方法,采用如权利要求1所述的增程器起停控制系统,其特征在于,该控制方法为:
步骤一、控制模块(1)获取踏板需求功率W、车速V、地图导航信息、电池SOC、电池放电功率Wf和SOC维持点SOC0,然后执行步骤二;
步骤二、控制模块(1)判断是否有增程器二级起动需求,如果是,则执行步骤五,否则执行步骤三;
步骤三、控制模块(1)判断是否有增程器二级停机需求,如果是,则执行步骤八,否则执行步骤四;
步骤四、控制模块(1)判断是否有增程器一级起动需求,如果是,则执行步骤五,否则执行步骤八;
步骤五、控制模块(1)判断增程器是否已起动,如果是,则执行步骤六,否则执行步骤七;
步骤六、控制模块(1)控制增程器维持起动状态,然后结束;
步骤七、控制模块(1)控制增程器起动,然后结束;
步骤八、控制模块(1)判断增程器是否已停机,如果是,则执行步骤九,否则执行步骤十;
步骤九、控制模块(1)控制增程器维持停机状态,然后结束;
步骤十、控制模块(1)控制增程器停机,然后结束。
3.根据权利要求2所述的增程式电动汽车的增程器起停控制方法,其特征在于:
增程器二级起动需求标志位的初始值为0;当电池SOC小于SOC维持点SOC0,或者踏板需求功率W大于电池放电功率Wf与预设的第一功率偏移量W1之差时,控制模块(1)使增程器二级起动需求标志位为1;当电池SOC大于预设的第一SOC阈值SOC1,且踏板需求功率W小于电池放电功率Wf与预设的第二功率偏移量W2之差时,控制模块(1)使增程器二级起动需求标志位为0;其中,SOC0< SOC1,W1< W2
如果增程器二级起动需求标志位为1,则控制模块(1)判定有增程器二级起动需求;如果增程器二级起动需求标志位为0,则控制模块(1)判定无增程器二级起动需求。
4.根据权利要求2所述的增程式电动汽车的增程器起停控制方法,其特征在于:如果地图导航信息提示当前路况为长下坡,则控制模块(1)判定有增程器二级停机需求;如果地图导航信息提示当前路况不为长下坡,则控制模块(1)判定无增程器二级停机需求。
5.根据权利要求2所述的增程式电动汽车的增程器起停控制方法,其特征在于:
增程器一级起动需求标志位的初始值为0;
当满足条件1a和条件1b中的任意一个条件时,控制模块(1)使增程器一级起动需求标志位为1;其中,
条件1a为:在电池充电状态下,电池SOC大于或等于预设的第一SOC阈值SOC1,且小于预设的第三SOC阈值SOC3,且车速V大于预设的第二车速阈值V2
条件1b为:在电池放电状态下,电池SOC大于或等于SOC维持点SOC0,且小于预设的第二SOC阈值SOC2,且车速V大于预设的第二车速阈值V2
当满足条件2a至条件2c中的任意一个条件时,控制模块(1)使增程器一级起动需求标志位为0;其中,
条件2a为:电池SOC大于或等于预设的第三SOC阈值SOC3
条件2b为:在电池放电状态下,电池SOC大于或等于预设的第二SOC阈值SOC2,且小于预设的第三SOC阈值SOC3
条件2c为:车速V小于预设的第一车速阈值V1
其中,SOC0< SOC1< SOC2< SOC3,V1< V2
如果增程器一级起动需求标志位为1,则控制模块(1)判定有增程器一级起动需求;如果增程器一级起动需求标志位为0,则控制模块(1)判定无增程器一级起动需求。
6.根据权利要求2至5任一项所述的增程式电动汽车的增程器起停控制方法,其特征在于:所述电量维持点确定模块(6)解析输出SOC维持点SOC0的具体方式为:
S1、判断是否收到用户设置的SOC维持值,如果是,则执行S3,否则执行S2;
S2、根据获取的环境温度,查询通过标定方式得到的环境温度与SOC维持值的对应关系表,获得与环境温度对应的SOC维持值,然后执行S4;
S3、将用户设置的SOC维持值作为所述SOC维持点SOC0,并输出,然后结束;
S4、将与环境温度对应的SOC维持值作为所述SOC维持点SOC0,并输出,然后结束。
CN202110830437.8A 2021-07-22 2021-07-22 一种增程式电动汽车的增程器起停控制系统及控制方法 Active CN113370844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110830437.8A CN113370844B (zh) 2021-07-22 2021-07-22 一种增程式电动汽车的增程器起停控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110830437.8A CN113370844B (zh) 2021-07-22 2021-07-22 一种增程式电动汽车的增程器起停控制系统及控制方法

Publications (2)

Publication Number Publication Date
CN113370844A true CN113370844A (zh) 2021-09-10
CN113370844B CN113370844B (zh) 2022-08-02

Family

ID=77582921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110830437.8A Active CN113370844B (zh) 2021-07-22 2021-07-22 一种增程式电动汽车的增程器起停控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN113370844B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116160875A (zh) * 2023-04-23 2023-05-26 新誉轨道交通科技有限公司 增程器系统的控制方法、控制装置

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101115650A (zh) * 2005-03-03 2008-01-30 丰田自动车株式会社 混合动力车辆以及混合动力车辆的控制方法
US20100107608A1 (en) * 2007-03-27 2010-05-06 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP2010264841A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 車両走行制御装置
CN102267453A (zh) * 2011-05-17 2011-12-07 奇瑞汽车股份有限公司 一种增程式电动车的能量管理方法
CN102458904A (zh) * 2009-06-05 2012-05-16 丰田自动车株式会社 电动汽车以及电动汽车中的全体容许放电电力量设定方法
CN102556048A (zh) * 2010-12-29 2012-07-11 上海汽车集团股份有限公司 混合动力汽车自动停机控制方法及系统
CN102951037A (zh) * 2012-11-16 2013-03-06 同济大学 增程式电动汽车的能量控制策略多模式自动切换方法
WO2013044357A1 (en) * 2011-09-26 2013-04-04 Magna E-Car Systems Of America, Inc. Control strategies for state of charge of battery pack for electric vehicle with range extender
CN104163114A (zh) * 2014-07-22 2014-11-26 浙江大学 一种用于内燃发电增程式电动车的整车能量管理方法
CN105459844A (zh) * 2015-12-30 2016-04-06 北京理工大学 一种增程式电动汽车多模式能量管理方法
CN105922986A (zh) * 2016-05-24 2016-09-07 北京新能源汽车股份有限公司 增程式电动汽车及其模式切换控制方法和系统
CN106143477A (zh) * 2015-03-25 2016-11-23 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
CN106143467A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
US20160375892A1 (en) * 2015-06-26 2016-12-29 Hyundai Motor Company System and method for engine stop control of hybrid vehicle
US20170021823A1 (en) * 2015-07-22 2017-01-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control apparatus
CN107650694A (zh) * 2017-09-29 2018-02-02 奇瑞汽车股份有限公司 提高增程式电动车nvh性能的控制方法
US20180072300A1 (en) * 2016-09-09 2018-03-15 Hyundai Motor Company Apparatus and method for controlling start of engine for mild hybrid electric vehicle
CN108146254A (zh) * 2017-12-26 2018-06-12 奇瑞新能源汽车技术有限公司 增程器的控制方法和装置
CN108725443A (zh) * 2018-05-30 2018-11-02 重庆长安汽车股份有限公司 新能源汽车及其发动机起动控制方法
US20190105993A1 (en) * 2017-10-11 2019-04-11 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicle
CN110040004A (zh) * 2019-04-01 2019-07-23 一汽-大众汽车有限公司 一种增程式纯电动汽车的功率跟随控制方法和系统
CN110816308A (zh) * 2019-12-09 2020-02-21 北京车和家信息技术有限公司 控制增程器启动的方法、装置及增程式电动汽车
CN111409645A (zh) * 2020-04-13 2020-07-14 宁波吉利汽车研究开发有限公司 一种用于混合动力车辆的驾驶模式切换的控制方法及系统
CN111775728A (zh) * 2020-07-22 2020-10-16 河南科技大学 一种增程式电动拖拉机控制方法及其系统
US20200398655A1 (en) * 2018-02-09 2020-12-24 Zhejiang Geely Holding Group Co., Ltd Series-parallel hybrid power system and vehicle working mode decision-making method
US20210188103A1 (en) * 2019-12-23 2021-06-24 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101115650A (zh) * 2005-03-03 2008-01-30 丰田自动车株式会社 混合动力车辆以及混合动力车辆的控制方法
US20100107608A1 (en) * 2007-03-27 2010-05-06 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP2010264841A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 車両走行制御装置
CN102458904A (zh) * 2009-06-05 2012-05-16 丰田自动车株式会社 电动汽车以及电动汽车中的全体容许放电电力量设定方法
CN102556048A (zh) * 2010-12-29 2012-07-11 上海汽车集团股份有限公司 混合动力汽车自动停机控制方法及系统
CN102267453A (zh) * 2011-05-17 2011-12-07 奇瑞汽车股份有限公司 一种增程式电动车的能量管理方法
WO2013044357A1 (en) * 2011-09-26 2013-04-04 Magna E-Car Systems Of America, Inc. Control strategies for state of charge of battery pack for electric vehicle with range extender
CN102951037A (zh) * 2012-11-16 2013-03-06 同济大学 增程式电动汽车的能量控制策略多模式自动切换方法
CN104163114A (zh) * 2014-07-22 2014-11-26 浙江大学 一种用于内燃发电增程式电动车的整车能量管理方法
CN106143477A (zh) * 2015-03-25 2016-11-23 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
CN106143467A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
US20160375892A1 (en) * 2015-06-26 2016-12-29 Hyundai Motor Company System and method for engine stop control of hybrid vehicle
US20170021823A1 (en) * 2015-07-22 2017-01-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control apparatus
CN105459844A (zh) * 2015-12-30 2016-04-06 北京理工大学 一种增程式电动汽车多模式能量管理方法
CN105922986A (zh) * 2016-05-24 2016-09-07 北京新能源汽车股份有限公司 增程式电动汽车及其模式切换控制方法和系统
US20180072300A1 (en) * 2016-09-09 2018-03-15 Hyundai Motor Company Apparatus and method for controlling start of engine for mild hybrid electric vehicle
CN107650694A (zh) * 2017-09-29 2018-02-02 奇瑞汽车股份有限公司 提高增程式电动车nvh性能的控制方法
US20190105993A1 (en) * 2017-10-11 2019-04-11 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicle
CN108146254A (zh) * 2017-12-26 2018-06-12 奇瑞新能源汽车技术有限公司 增程器的控制方法和装置
US20200398655A1 (en) * 2018-02-09 2020-12-24 Zhejiang Geely Holding Group Co., Ltd Series-parallel hybrid power system and vehicle working mode decision-making method
CN108725443A (zh) * 2018-05-30 2018-11-02 重庆长安汽车股份有限公司 新能源汽车及其发动机起动控制方法
CN110040004A (zh) * 2019-04-01 2019-07-23 一汽-大众汽车有限公司 一种增程式纯电动汽车的功率跟随控制方法和系统
CN110816308A (zh) * 2019-12-09 2020-02-21 北京车和家信息技术有限公司 控制增程器启动的方法、装置及增程式电动汽车
US20210188103A1 (en) * 2019-12-23 2021-06-24 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle
CN111409645A (zh) * 2020-04-13 2020-07-14 宁波吉利汽车研究开发有限公司 一种用于混合动力车辆的驾驶模式切换的控制方法及系统
CN111775728A (zh) * 2020-07-22 2020-10-16 河南科技大学 一种增程式电动拖拉机控制方法及其系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张袅娜等: "神经遗传增程式电动汽车控制策略", 《长春工业大学学报》 *
魏兆森等: "基于两种运行工况的增程式混合动力客车控制策略研究", 《客车技术与研究》 *
黄欣等: "两种行驶模式下增程器启停时刻优化", 《安徽理工大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116160875A (zh) * 2023-04-23 2023-05-26 新誉轨道交通科技有限公司 增程器系统的控制方法、控制装置
CN116160875B (zh) * 2023-04-23 2023-07-18 新誉轨道交通科技有限公司 增程器系统的控制方法、控制装置

Also Published As

Publication number Publication date
CN113370844B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN109532566B (zh) 燃料电池动力系统及动力电池荷电状态控制方法
KR100992755B1 (ko) 하이브리드 차량의 soc별 최적 운전점 결정 방법
CN102269067B (zh) 改进发动机停止-起动响应时间的控制系统和方法
CN110395268B (zh) 一种基于前方道路信息的卡车经济驾驶提醒系统
CN113370844B (zh) 一种增程式电动汽车的增程器起停控制系统及控制方法
CN103057541A (zh) 用于混合动力车辆的爬行控制装置及方法
CN114017188B (zh) 车辆怠速控制方法、装置、可读存储介质及车辆
CN108116271B (zh) 一种电机系统及其控制方法
KR101054758B1 (ko) 하이브리드 차량의 크립 토크 제어방법
CN111559250A (zh) 一种氢能汽车驱动电机系统的电机转速消抖方法
CN109835324B (zh) 串并联插电式混合动力汽车的发动机异常熄火识别方法
CN1932703A (zh) 一种用于混合动力电动车的整车中央控制单元
CN111997766B (zh) 一种应用于汽车控制器的控制方法
CN102267402A (zh) 多模式纯电动汽车及其模式控制方法
CN112477843A (zh) 混合动力车的扭矩分配方法、系统、设备及存储介质
CN110040127B (zh) 车辆的动力性能优化方法和具有动力性优化功能的系统
CN111873818A (zh) 增程器能量管理方法、装置、车辆和存储介质
Skugor et al. Instantaneous optimization-based energy management control strategy for extended range electric vehicle
CN115091970A (zh) 一种双电机纯电动汽车的能耗优化的扭矩分配控制方法
US20190031175A1 (en) Heating control method of hybrid vehicle
CN114801879A (zh) 增程式燃料电池车的控制方法
CN111361459B (zh) 氢燃料电池汽车功率需求较小时电压控制方法
CN111942388B (zh) 发动机启停控制方法、装置及混合动力车辆
CN112319247A (zh) 一种增程式电动汽车能量管理控制方法
CN113460030A (zh) 混联式混合动力扭矩分配方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 401133 room 208, 2 house, 39 Yonghe Road, Yu Zui Town, Jiangbei District, Chongqing

Patentee after: Deep Blue Automotive Technology Co.,Ltd.

Address before: 401133 room 208, 2 house, 39 Yonghe Road, Yu Zui Town, Jiangbei District, Chongqing

Patentee before: CHONGQING CHANGAN NEW ENERGY AUTOMOBILE TECHNOLOGY Co.,Ltd.