CN113365797A - 用于增材制造复合材料结构的系统 - Google Patents
用于增材制造复合材料结构的系统 Download PDFInfo
- Publication number
- CN113365797A CN113365797A CN202080010623.0A CN202080010623A CN113365797A CN 113365797 A CN113365797 A CN 113365797A CN 202080010623 A CN202080010623 A CN 202080010623A CN 113365797 A CN113365797 A CN 113365797A
- Authority
- CN
- China
- Prior art keywords
- curing
- compactor
- additive manufacturing
- manufacturing system
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 239000000654 additive Substances 0.000 title claims abstract description 25
- 230000000996 additive effect Effects 0.000 title claims abstract description 24
- 239000002131 composite material Substances 0.000 title description 9
- 239000000463 material Substances 0.000 claims abstract description 29
- 230000002787 reinforcement Effects 0.000 claims description 70
- 239000011159 matrix material Substances 0.000 claims description 41
- 238000009736 wetting Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000012255 powdered metal Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- -1 photopolymers Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/188—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/218—Rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/232—Driving means for motion along the axis orthogonal to the plane of a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/241—Driving means for rotary motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/314—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
- B29C64/336—Feeding of two or more materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/38—Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/10—Additive manufacturing, e.g. 3D printing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Composite Materials (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Robotics (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Textile Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Ceramic Engineering (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
公开了一种用于制造结构(12)的增材制造系统(10)。所述增材制造系统可包括支撑件(14)和被配置为排出材料的出口(22)。在材料排出期间,所述出口可操作地连接到所述支撑件并可由所述支撑件在法向行进方向上移动。所述出口可包括导向件(30),以及压实机(32),所述压实机在相对于所述法向行进方向的尾随位置处可操作地连接到所述导向件。所述压实机可在所述导向件的轴向方向上移动。所述出口还可包括至少一个固化促进器(18),其被安装成与所述压实机一起相对于所述导向件移动。所述至少一个固化促进器可被配置为使所述材料暴露于固化能量。
Description
相关申请
本申请基于2019年1月25日提交的美国临时申请第62/797,078号并要求享有其优先权,所述申请的内容通过引用明确并入本文。
技术领域
本公开总体上涉及一种制造系统,并且更具体地涉及一种用于增材制造复合材料结构的系统。
背景技术
连续纤维3D打印(又名)涉及使用从可移动打印头排出的嵌入基质内的连续纤维。基质可为传统热塑性塑料、粉末金属、液体树脂(例如,可UV固化和/或两部分树脂)或这些和其他已知基质中的任何一种的组合。在离开打印头时,安装于头部的固化促进器(例如,UV光、超声波发射器、热源、催化剂供应等)被激活以引发和/或完成基质的固化。这种固化几乎立即发生,从而允许在自由空间中制造无支撑结构。当纤维,特别是连续纤维嵌入结构内时,结构的强度可能会倍增,超过基质相关强度。这项技术的示例在2016年12月6日授予Tyler的美国专利9,511,543(“'543专利”)中公开。
发明内容
在一个方面,本公开针对一种增材制造系统。增材制造系统可包括支撑件和被配置为排出材料的出口。在材料排出期间,出口可操作地连接到支撑件并可由支撑件在法向行进方向上移动。出口可包括导向件,以及压实机,所述压实机在相对于法向行进方向的尾随位置处可操作地连接到导向件。压实机可在导向件的轴向方向上移动。出口还可包括至少一个固化促进器,其被安装成与压实机一起相对于导向件移动。至少一个固化促进器可被配置为使材料暴露于固化能量。
在另一方面,本公开针对另一种增材制造系统。此增材制造系统可包括被配置为排出至少部分被基质润湿的连续增强体的喷嘴、被配置为使基质在从喷嘴排出后暴露于固化能量的至少一个固化促进器,以及被配置为在从喷嘴排出后向基质润湿连续增强体施加压力的压实机。至少一个固化促进器和压实机可被安装成在从喷嘴排出的方向上相对于喷嘴一起移动。
在又另一方面,本公开针对一种增材制造结构的方法。所述方法可包括用打印头内部的液体基质润湿连续增强体,并且通过打印头的出口排出基质润湿连续增强体。所述方法还可包括在排出后,将压实机压靠在基质润湿连续增强体上,在压制后将来自至少一个固化促进器的固化能量引向基质润湿连续增强体,以及将至少一个固化促进器与压实机一起在排出方向上相对于出口移动。
附图说明
图1是示例性公开的增材制造系统的示意图;并且
图2和3是图1的系统的示例性公开部分的示意图。
具体实施方式
图1示出了示例性系统10,其可用来制造具有任何期望形状的复合材料结构12。系统10可包括支撑件14和沉积头(“头部”)16。头部16可联接到支撑件14并由支撑件移动。在图1的公开实施例中,支撑件14是能够在结构12的制造期间在多个方向上移动头部16的机械臂。支撑件14另选地体现为机架(例如,高架桥或单支柱机架)或混合机架/臂,其还能够在结构12的制造期间在多个方向上移动头部16。尽管支撑件14被示为能够进行6轴线移动,但是可想到的是,支撑件14可能够以不同的方式(例如,沿着或围绕较多或较少数目的轴线)移动头部16。在一些实施例中,驱动器可将头部16机械地联接到支撑件14,并且包括配合以移动头部16的一部分和/或向头部供应动力或材料的部件。
头部16可被配置为接收或以其他方式含有基质(示为M)。基质可包括可固化的任何类型的材料或组合的材料(例如,液态树脂,如零挥发性有机化合物树脂、粉末金属等)。示例性树脂包括热固性树脂、单部分或多部分环氧树脂、聚酯树脂、阳离子环氧树脂、丙烯酸酯化环氧树脂、氨基甲酸酯、酯类、热塑性塑料、光敏聚合物、聚环氧化合物、硫醇、烯烃、硫醇-烯类等。在一个实施例中,头部16内的基质可例如通过经由相应的导管(未示出)流体连接到头部16的外部装置(例如,通过挤出机、泵等--未示出)被加压(例如,正压和/或负压)。然而,在另一个实施例中,压力可通过类似类型的装置在头部16内部完全生成。在又另一个实施例中,可将基质重力送入头部16中和/或穿过头部。举例来说,可将基质送入头部16中,并与一种或多种连续增强体(示为R)一起从头部16中推出或拉出。在一些情况下,为了防止过早固化或以其他方式在排出后获得期望的固化速率,可能需要使头部16内部的基质保持冷却和/或黑暗。在其他情况下,出于类似的原因,可能需要将基质保持温暖和/或照明。在任一种情况下,头部16可被特别地配置(例如,绝缘的、温度受控的、屏蔽的等)以提供这些需求。
基质可用来至少部分涂覆任何数目的连续增强体(例如,单独的纤维、丝束、粗纱、短袜和/或连续材料片),并且与增强体一起构成复合材料结构12的一部分(例如,壁)。增强体可存储在头部16内或以其他方式穿过头部。当同时使用多个增强体时,增强体可具有相同的材料成分,并且具有相同的尺寸和横截面形状(例如,圆形、方形、矩形等),或者具有不同尺寸和/或横截面形状的不同材料成分。增强体可包括例如碳纤维、植物纤维、木纤维、矿物纤维、玻璃纤维、塑料纤维、金属纤维、光纤(例如管)等。应注意,术语“增强体”意指包括结构和非结构(例如功能性)类型的连续材料,其至少部分地包封在从头部16排出的基质中。
当增强体在头部16内部时,当增强体被传递到头部16时,和/或当增强体从头部16排出时,增强体可至少部分地涂覆有基质。基质、干燥(例如,未浸渍的)增强体和/或已暴露于基质的增强体(例如,预浸渍的增强体)可以本领域技术人员显而易见的任何方式被输送到头部16中。在一些实施例中,可在基质涂覆连续增强体之前和/或之后将填充材料(例如,短切纤维、纳米颗粒或管等)和/或添加剂(例如,热引发剂、UV引发剂等)与基质混合。
一个或多个固化促进器(例如,UV光、超声波发射器、激光器、加热器、催化剂分配器等)18可安装在头部16附近(例如,在头部内、在头部上和/或与头部相邻),并且被配置为当从头部16排出时提高基质的固化速率和/或质量。可控制固化促进器18以在材料排出和结构12的形成期间选择性地将结构12的部分暴露于能量(例如,UV光、电磁辐射、振动、热、化学催化剂等)。能量可触发化学反应在基质内发生,增加化学反应的速率,烧结基质,硬化基质,固化基质,聚合基质,或以其他方式使基质从头部16排出时固化。由固化促进器18产生的能量的量可足以在结构12从头部16轴向生长超过预定长度之前固化基质。在一个实施例中,在轴向生长长度变得等于涂覆有基质的增强体的外径之前,结构12被至少部分地(例如,完全地)固化。
基质和/或增强体可经由任何数目的不同操作模式从头部16一起排出。在第一示例操作模式中,当头部16被支撑件14移动以形成结构12的特征部时,基质和/或增强体从头部16挤出(例如,在压力和/或机械力下推动)。在第二示例操作模式中,至少从头部16拉出增强体,使得在排出期间在增强体中形成拉伸应力。在此第二操作模式中,基质可紧贴增强体,从而也与增强体一起从头部16拉出,和/或基质可在压力下与被拉出的增强体一起从头部16排出。在第二操作模式中,在基质与增强体一起从头部16拉出的情况下,在固化基质之后,增强体中所产生的张力可增加结构12的强度(例如,通过对准增强体、抑制屈曲、均匀地加载增强体等),同时还允许更大长度的无支撑结构12具有更直的轨迹。也就是说,在基质固化之后剩余的增强体中的张力可抵抗重力(例如,通过形成反重力力矩而直接和/或间接地)以为结构12提供支撑。
由于头部16由支撑件14移离锚固点(例如,打印床、结构12的现有表面、固定装置等),因此可从头部16拉出增强体。举例来说,在结构形成的开始,可从头部16拉出和/或推动一定长度的基质浸渍的增强体,将其沉积在锚固点上,并且至少部分地将其固化,使得排出的材料粘附(或以其他方式联接)到锚固点。此后,头部16可从锚固点移开,并且相对移动可使得增强体从头部16拉出。如将在下面更详细地解释的,如果需要的话,可经由一个或多个内部进给机构来选择性地辅助增强体穿过头部16的移动。然而,增强体从头部16的排出速率可能主要是头部16和锚固点之间的相对移动的结果,从而在增强体内形成张力。如上所述,锚固点可从头部16移开,而不是或除了头部16从锚固点移开之外。
头部16除其他外可包括出口22和位于出口22上游的基质贮存器24。在一个示例中,出口22是单通道出口,其被配置为排出具有大体上圆形、管状或矩形横截面的复合材料。然而,头部16的配置可允许将出口22换成另一个出口,所述另一个出口排出具有不同形状(例如,平坦或片状横截面、多轨道横截面等)的复合材料的多个通道。纤维、管和/或其他增强体可穿过基质贮存器24(例如,穿过位于贮存器24内部的一个或多个内部润湿机构26)并在排出前被基质润湿(例如,至少部分地涂覆和/或完全饱和)。
可提供一个或多个控制器28,并且将其与支撑件14和头部16通信地耦合。每个控制器28可体现为被编程和/或以其他方式被配置为控制系统10的操作的单个处理器或多个处理器。控制器28可包括一个或多个通用或专用处理器或微处理器。控制器28还可包括存储器或者与存储器相关联,用于存储数据,例如设计极限、性能特征、操作指令、工具路径和系统10的每个部件的相应参数。各种其他已知的电路可与控制器28相关联,包括电源电路、信号调节电路、螺线管驱动器电路、通信电路和其他适当的电路。而且,控制器28可能够经由有线和/或无线传输与系统10的其他部件通信。
一个或多个映射可存储在控制器28的存储器内,并且在结构12的制造期间使用。这些映射中的每一个均可包括查找表、图形和/或等式形式的数据集合。在所公开的实施例中,控制器28可使用这些映射来确定产生结构12的期望几何形状(例如,大小、形状、材料成分、性能参数和/或轮廓)所需的头部16的移动,以及与移动协调地调节固化促进器(一个或多个)18和/或其他相关部件的操作。
如图2所示,出口22可为部件的组件,这些部件相互配合以精确放置基质润湿增强体(一个或多个),从而形成结构12(参考图1)。这些部件除其他外可包括位于润湿机构26(参考图1)下游的导向件或喷嘴30,以及尾随喷嘴30的压实机32(例如,在材料排出期间,相对于头部16的法向行进方向,如箭头34所示)。可想到的是,喷嘴30或压实机32中的任一个均可用作头部16的工具中心点(TCP),以在当暴露于固化促进器(一个或多个)18的能量时而固化之前,定位基质润湿增强体(一个或多个)。
在从头部16排出材料期间,基质润湿增强体(一个或多个)可穿过喷嘴30的一个或多个特征部(例如,通道、凹槽、突起等),这些特征部有助于维持增强体(一个或多个)的期望轨迹(例如,相邻增强体之间的分离、平直度和/或转向压实机32上)。压实机32可越过从喷嘴30排出的基质润湿增强体(一个或多个),从而以期望的压力将增强体(一个或多个)抵靠在底层表面上。固化促进器(一个或多个)18可将固化能量(例如,UV光和/或激光)引导穿过和/或到达紧靠压实机32后面的排出材料上的一点(例如,相对于法向行进方向)。
为了清楚起见,在图3中省略了固化促进器(一个或多个)18。从图3中可看出,压实机32可包括经由轴40可旋转地安装在支架38内的辊36。当支架38和轴40与喷嘴30一起在头部16的法向行进方向上(例如,在箭头34的方向上)由支撑件14(参考图1)平移时,由于平移在辊36内产生的力矩,辊36可被配置为在从喷嘴30排出的材料上滚动(例如,在材料已弯曲约90°以重叠底层表面之后)。支架38(连同辊36和轴40)可通过在喷嘴30和支架38之间延伸的弹簧42(例如,从喷嘴30和支架38延伸的固定或可调整螺柱44之间)在材料排出方向上(例如,在喷嘴30的轴向方向上)推动。喷嘴30的螺柱44可被组装成比支架38的螺柱44更靠近排出材料,使得弹簧42的偏压起到将螺柱44拉近的作用。
在所描绘的实施例中,支架38是包含在借助于盖47形成在喷嘴30的背面处的凹槽或通道46内的细长板。支架38的板部分可至少部分地设置在通道46内并允许相对于通道轴向滑动,并且盖47可封闭通道46的开放侧以将支架38的板部分捕获在通道46内。在这种配置中,弹簧42可为张紧弹簧,其被配置为通过将螺柱44朝向彼此拉动而将支架38的板部分延伸出通道46。然而,可想到的是,能够将压实机32推向排出材料的其他配置也是可能的。
固化促进器18在图2中用截断的光学管表示,这些光学管可经由支架48安装到压实机32上。任意数目(例如,两个)的固化促进器18可终止于支架48处,并且支架48可经由向后突出(例如,从支架38突出)的螺柱50连接到压实机32。以这种方式,压实机32在喷嘴30的轴向方向上的移动可导致支架48和固化促进器(一个或多个)18的相应移动。这些共同移动可允许期望水平的固化能量强度始终维持在与被排出和压实的材料相距期望距离的位置处。
应注意的是,当包括两个固化促进器18时,相关联的光管可彼此倾斜和/或朝向辊36倾斜。举例来说,光学管可位于连续增强体的相对侧,并且在能量暴露的位置处相对于连续增强体的法线以角度α朝向彼此横向倾斜。在一个实施例中,倾斜角α可为约5-60°。光学管可附加地或另选地在头部16的法向行进方向上(例如,在朝向辊36的箭头34的方向上)在能量暴露的位置处相对于连续增强体的法线以角度β倾斜。在一个实施例中,倾斜角β可为约5-45°。这种倾斜可帮助确保润湿连续增强体的基质在多个侧面(例如,至少两个侧面,并且在一些应用中为三个侧面)并且尽可能靠近工具中心点暴露于能量。这种暴露可帮助快速将增强体更准确地加固在期望位置处。
压实机32和固化促进器(一个或多个)18可在喷嘴30的轴向方向上选择性地延伸。举例来说,气动活塞(未示出)可被定位成在支架38上(例如,在支架38和/或喷嘴30的螺柱44上)生成延伸力。另选地,可连接电动机/螺钉装置、螺线管和/或重力以生成这些延伸力。也可使用其他扩展装置。可想到的是,在一些应用中可省略弹簧42,并且相关联的延伸装置还被操作为缩回压实机32。举例来说,可利用双作用气缸来使压实机32伸出和缩回。
工业适用性
所公开的系统可用来制造具有任何期望的横截面形状和长度的复合材料结构。复合材料结构可包括相同或不同类型、相同或不同直径的任意数目的不同纤维,以及相同或不同构成的任意数目的不同基质。现在将详细描述系统10的操作。
在制造事件开始时,可将关于期望结构12的信息加载到系统10中(例如,加载到负责调节支撑件14和/或头部16的操作的控制器28中)。此信息除其他外可包括大小(例如,直径、壁厚、长度等)、轮廓(例如,轨迹、表面法线等)、表面特征(例如,脊的大小、位置、厚度、长度;法兰大小、位置、厚度、长度等)、连接几何形状(例如,联轴器、三通、接头等的位置和大小)、增强体的选择、基质的选择、排出位置、切断位置等。应注意的是,如果需要的话,此信息另选地或附加地在制造事件期间的不同时间和/或连续地加载到系统10中。基于部件信息,可将一种或多种不同的增强体和/或基质材料安装和/或连续地供应到系统10中。
为了安装增强体,可使单独的纤维、丝束和/或条带穿过基质贮存器24和出口22(例如,穿过喷嘴30的特征部并在压实机32下方)。在一些实施例中,增强体还可能需要连接到拉力机(未示出)和/或到安装固定装置(例如,到锚固点)。基质材料的安装可包括填充头部16(例如,贮存器24的润湿机构26)和/或将挤出机(未示出)联接到头部16。
部件信息然后可用来控制系统10的操作。举例来说,当支撑件14选择性地移动时(例如,基于支撑件14的已知运动学和/或结构12的已知几何形状),可从头部16的出口22拉出和/或推动原位润湿的增强体,使得根据需要制造所得到的结构12。
支撑件14、固化促进器(一个或多个)18、压实机32和/或系统10的其他部件的操作参数可在材料排出期间实时地调整,以提供期望的粘合、强度、张力、几何形状和结构12的其他特性。一旦结构12已增长到期望的长度,就可从系统10中切断结构12。
对于本领域技术人员将显而易见的是,可对所公开的系统进行各种修改和变型。通过考虑到说明书和所公开系统的实践,其他实施例对于本领域技术人员将是显而易见的。举例来说,可想到的是,固化促进器(一个或多个)18可另外在一定程度上或完全独立于压实机32移动(例如,在穿过导向件30的材料的轴向方向上),同时固化促进器(一个或多个)18和压实机32两者均独立于导向件30移动。说明书和示例旨在仅被认为是示例性的,真正的范围由所附权利要求及其等同物指示。
Claims (15)
1.一种增材制造系统(10),其包含:
支撑件(14);和
出口(22),所述出口被配置为排出材料(R+M),并且在材料排出期间可操作地连接到所述支撑件并能够由所述支撑件在法向行进方向(34)上移动,所述出口包括:
导向件(30);
压实机(32),所述压实机在相对于所述法向行进方向的尾随位置处可操作地连接到所述导向件,所述压实机能够在所述导向件的轴向方向上移动;和
至少一个固化促进器(18),所述固化促进器被安装成与所述压实机一起相对于所述导向件移动,所述至少一个固化促进器被配置为使所述材料暴露于固化能量。
2.根据权利要求1所述的增材制造系统,其中所述压实机包括:
压实机支架(38),所述压实机支架安装到所述导向件;
辊(36);和
轴(40),所述轴旋转地将所述辊连接到所述压实机支架。
3.根据权利要求2所述的增材制造系统,其中所述至少一个固化促进器可操作地安装到所述压实机支架。
4.根据权利要求3所述的增材制造系统,其中所述至少一个固化促进器包括终止于所述压实机支架处且被配置为传输光能的至少一个光学管。
5.根据权利要求2所述的增材制造系统,其中所述压实机支架滑动地设置在所述导向件的通道(46)内。
6.根据权利要求5所述的增材制造系统,其还包括被配置为将所述压实机支架捕获在所述通道中的盖(47)。
7.根据权利要求4所述的增材制造系统,其还包括被配置为在所述导向件的所述轴向方向上偏压所述压实机的弹簧(42)。
8.根据权利要求7所述的增材制造系统,其还包括:
第一螺柱(44),所述第一螺柱与所述压实机支架相关联;和
第二螺柱(44),所述第二螺柱与所述导向件相关联,
其中所述弹簧被配置为将所述第一和第二螺柱朝向彼此拉动。
9.根据权利要求1所述的增材制造系统,其还包括位于所述导向件上游的润湿机构(26),所述润湿机构被配置为用能够通过所述固化能量固化的液体基质润湿连续增强体。
10.根据权利要求1所述的增材制造系统,其中:
所述至少一个固化促进器包括第一固化促进器(18)和第二固化促进器(18);并且
所述第一和第二固化促进器相对于在固化能量暴露的位置处延伸穿过所述基质润湿连续增强体的法线以5-60°的角度朝向彼此倾斜。
11.根据权利要求10所述的增材制造系统,其中所述第一和第二固化促进器相对于在固化能量暴露的位置处延伸穿过所述基质润湿连续增强体的法线以5-45°的角度朝向所述压实机倾斜。
12.一种增材制造结构(12)的方法,其包含:
在打印头(16)的内部用液体基质(M)润湿连续增强体(R);
通过所述打印头的出口(22)排出所述基质润湿连续增强体;
在排出后,将压实机(32)压靠在所述基质润湿连续增强体上;
在压制后,将来自至少一个固化促进器(18)的固化能量引向所述基质润湿连续增强体;和
将所述至少一个固化促进器与所述压实机一起在排出方向上相对于所述出口移动。
13.根据权利要求12所述的方法,其还包括在排出期间将所述出口、压实机和至少一个固化促进器一起移动。
14.根据权利要求12所述的方法,其中:
所述至少一个固化促进器包括至少一根光学管;并且
所述固化能量是光能。
15.根据权利要求12所述的方法,其中将来自至少一个固化促进器的固化能量引向所述基质润湿连续增强体包括:
以5-45°的角度沿法向行进方向引导固化能量;和
将来自第一和第二固化促进器的固化能量以5-60°的角度横向地朝向基质润湿连续增强体引导。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962797078P | 2019-01-25 | 2019-01-25 | |
US62/797,078 | 2019-01-25 | ||
US16/752,257 US11338503B2 (en) | 2019-01-25 | 2020-01-24 | System for additively manufacturing composite structure |
US16/752,257 | 2020-01-24 | ||
PCT/US2020/015125 WO2020154713A1 (en) | 2019-01-25 | 2020-01-25 | System for additively manufacturing composite structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113365797A true CN113365797A (zh) | 2021-09-07 |
Family
ID=71731937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080010623.0A Pending CN113365797A (zh) | 2019-01-25 | 2020-01-25 | 用于增材制造复合材料结构的系统 |
Country Status (9)
Country | Link |
---|---|
US (9) | US20200238603A1 (zh) |
EP (1) | EP3914436A1 (zh) |
JP (1) | JP2022517500A (zh) |
KR (1) | KR20210119379A (zh) |
CN (1) | CN113365797A (zh) |
AU (1) | AU2020211609A1 (zh) |
CA (1) | CA3124707A1 (zh) |
SG (1) | SG11202106148PA (zh) |
WO (3) | WO2020154163A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11370058B2 (en) * | 2019-08-13 | 2022-06-28 | The Boeing Company | Loading feedstock into an additive friction stir deposition machine |
US11613080B2 (en) * | 2020-09-11 | 2023-03-28 | Continuous Composites Inc. | Print head for additive manufacturing system |
CN112191846B (zh) * | 2020-09-21 | 2021-10-29 | 昆明理工大学 | 碾轧复合选区激光熔化的增材制造工艺及设备 |
CN112139498B (zh) * | 2020-09-21 | 2021-10-29 | 昆明理工大学 | 选区激光熔化复合在线轧制的增材制造工艺及设备 |
US11241841B1 (en) * | 2021-03-12 | 2022-02-08 | Thermwood Corporation | Systems and methods for greater inter-layer bond integrity in additive manufacturing |
US20230071513A1 (en) * | 2021-09-04 | 2023-03-09 | Continuous Composites Inc. | Print head and method for additive manufacturing system |
CN114872324B (zh) * | 2022-04-15 | 2023-09-29 | 华中科技大学 | 一种基于多维信息耦合调控性能的激光增材制造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203945693U (zh) * | 2014-06-27 | 2014-11-19 | 航天特种材料及工艺技术研究所 | 一种提高聚合物材料3d打印强度的装置 |
US20170028635A1 (en) * | 2015-07-31 | 2017-02-02 | Boeing Co | Systems and methods for additively manufacturing composite parts |
CN106799833A (zh) * | 2016-11-30 | 2017-06-06 | 宁夏共享模具有限公司 | 一种大型工业级fdm打印机的打印头及其打印方法 |
CN106926452A (zh) * | 2017-03-02 | 2017-07-07 | 西安交通大学 | 一种用于材料挤出成形的多功能3d打印头及其使用方法 |
CN206426464U (zh) * | 2016-11-24 | 2017-08-22 | 珠海赛纳打印科技股份有限公司 | 校平组件及3d打印装置 |
CN107187044A (zh) * | 2017-05-18 | 2017-09-22 | 西安交通大学 | 一种可用于材料挤出成形的自滚压3d打印集成喷头装置 |
CN107379539A (zh) * | 2017-08-14 | 2017-11-24 | 上海宇航系统工程研究所 | 一种连续纤维预浸料3d打印喷头及其3d打印机、打印方法 |
Family Cites Families (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3286305A (en) | 1964-09-03 | 1966-11-22 | Rexall Drug Chemical | Apparatus for continuous manufacture of hollow articles |
BE791272A (fr) | 1971-11-13 | 1973-03-01 | Castro Nunez Elem Huecos | Machine de fabrication en continu d'elements creux |
US3984271A (en) | 1973-06-25 | 1976-10-05 | Owens-Corning Fiberglas Corporation | Method of manufacturing large diameter tubular structures |
US3993726A (en) | 1974-01-16 | 1976-11-23 | Hercules Incorporated | Methods of making continuous length reinforced plastic articles |
US4461669A (en) * | 1983-09-30 | 1984-07-24 | The Boeing Company | Pivotal mount for laminating head |
US4508584A (en) * | 1983-12-01 | 1985-04-02 | The Ingersoll Milling Machine Company | Tape-laying head |
DE3424269C2 (de) | 1984-06-30 | 1994-01-27 | Krupp Ag | Vorrichtung zum Herstellen von armierten Profilen und verstärkten Schläuchen |
US4643940A (en) | 1984-08-06 | 1987-02-17 | The Dow Chemical Company | Low density fiber-reinforced plastic composites |
US4851065A (en) | 1986-01-17 | 1989-07-25 | Tyee Aircraft, Inc. | Construction of hollow, continuously wound filament load-bearing structure |
US4869761A (en) * | 1986-04-25 | 1989-09-26 | Rohr Industries, Inc. | Filament winding process |
DE3619981A1 (de) | 1986-06-13 | 1987-12-17 | Freudenberg Carl Fa | Verfahren und vorrichtung zur herstellung eines fadenverstaerkten schlauches aus polymerem werkstoff |
US5037691A (en) | 1986-09-15 | 1991-08-06 | Compositech, Ltd. | Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products |
US4938824A (en) * | 1987-01-23 | 1990-07-03 | Thiokol Corporation | Method for making a composite component using a transverse tape |
DE3835575A1 (de) | 1988-10-19 | 1990-04-26 | Bayer Ag | Verbundwerkstoffe |
US5121329A (en) | 1989-10-30 | 1992-06-09 | Stratasys, Inc. | Apparatus and method for creating three-dimensional objects |
JP2597778B2 (ja) * | 1991-01-03 | 1997-04-09 | ストラタシイス,インコーポレイテッド | 三次元対象物組み立てシステム及び組み立て方法 |
DE4102257A1 (de) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Vorrichtung zur herstellung von kunststoffteilen |
US5296335A (en) | 1993-02-22 | 1994-03-22 | E-Systems, Inc. | Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling |
US5580413A (en) * | 1993-10-01 | 1996-12-03 | J. R. Automation Technologies, Inc. | Taping apparatus and method and article manufacturing therewith |
US5746967A (en) | 1995-06-26 | 1998-05-05 | Fox Lite, Inc. | Method of curing thermoset resin with visible light |
US5700347A (en) * | 1996-01-11 | 1997-12-23 | The Boeing Company | Thermoplastic multi-tape application head |
US6144008A (en) | 1996-11-22 | 2000-11-07 | Rabinovich; Joshua E. | Rapid manufacturing system for metal, metal matrix composite materials and ceramics |
US5866058A (en) | 1997-05-29 | 1999-02-02 | Stratasys Inc. | Method for rapid prototyping of solid models |
IL121458A0 (en) | 1997-08-03 | 1998-02-08 | Lipsker Daniel | Rapid prototyping |
US5936861A (en) | 1997-08-15 | 1999-08-10 | Nanotek Instruments, Inc. | Apparatus and process for producing fiber reinforced composite objects |
US6073670A (en) * | 1997-10-31 | 2000-06-13 | Isogrid Composites, Inc. | Multiple fiber placement head arrangement for placing fibers into channels of a mold |
US6259962B1 (en) * | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
US6261675B1 (en) | 1999-03-23 | 2001-07-17 | Hexcel Corporation | Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures |
WO2001034371A2 (en) | 1999-11-05 | 2001-05-17 | Z Corporation | Material systems and methods of three-dimensional printing |
US6501554B1 (en) | 2000-06-20 | 2002-12-31 | Ppt Vision, Inc. | 3D scanner and method for measuring heights and angles of manufactured parts |
US6799081B1 (en) | 2000-11-15 | 2004-09-28 | Mcdonnell Douglas Corporation | Fiber placement and fiber steering systems and corresponding software for composite structures |
US6471800B2 (en) | 2000-11-29 | 2002-10-29 | Nanotek Instruments, Inc. | Layer-additive method and apparatus for freeform fabrication of 3-D objects |
US6797220B2 (en) | 2000-12-04 | 2004-09-28 | Advanced Ceramics Research, Inc. | Methods for preparation of three-dimensional bodies |
US6803003B2 (en) | 2000-12-04 | 2004-10-12 | Advanced Ceramics Research, Inc. | Compositions and methods for preparing multiple-component composite materials |
US20020113331A1 (en) | 2000-12-20 | 2002-08-22 | Tan Zhang | Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers |
US6899777B2 (en) | 2001-01-02 | 2005-05-31 | Advanced Ceramics Research, Inc. | Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same |
US20030044539A1 (en) | 2001-02-06 | 2003-03-06 | Oswald Robert S. | Process for producing photovoltaic devices |
US7029621B2 (en) | 2001-03-01 | 2006-04-18 | Schroeder Ernest C | Apparatus and method of fabricating fiber reinforced plastic parts |
US6767619B2 (en) | 2001-05-17 | 2004-07-27 | Charles R. Owens | Preform for manufacturing a material having a plurality of voids and method of making the same |
US6866807B2 (en) | 2001-09-21 | 2005-03-15 | Stratasys, Inc. | High-precision modeling filament |
CA2369710C (en) | 2002-01-30 | 2006-09-19 | Anup Basu | Method and apparatus for high resolution 3d scanning of objects having voids |
US6934600B2 (en) | 2002-03-14 | 2005-08-23 | Auburn University | Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites |
US7229586B2 (en) | 2002-05-07 | 2007-06-12 | Dunlap Earl N | Process for tempering rapid prototype parts |
US7572403B2 (en) | 2003-09-04 | 2009-08-11 | Peihua Gu | Multisource and multimaterial freeform fabrication |
US7293590B2 (en) | 2003-09-22 | 2007-11-13 | Adc Acquisition Company | Multiple tape laying apparatus and method |
US7063118B2 (en) | 2003-11-20 | 2006-06-20 | Adc Acquisition Company | Composite tape laying apparatus and method |
US7039485B2 (en) | 2004-03-12 | 2006-05-02 | The Boeing Company | Systems and methods enabling automated return to and/or repair of defects with a material placement machine |
US7824001B2 (en) | 2004-09-21 | 2010-11-02 | Z Corporation | Apparatus and methods for servicing 3D printers |
FR2878779B1 (fr) * | 2004-12-02 | 2007-02-09 | Eads Ccr Groupement D Interet | Dispositif de drapage de bandes souples pre-impregnees |
US7680555B2 (en) | 2006-04-03 | 2010-03-16 | Stratasys, Inc. | Auto tip calibration in an extrusion apparatus |
US7849903B2 (en) * | 2007-06-06 | 2010-12-14 | Cincinnati Machine, Llc | Motorized cut and feed head |
US7555404B2 (en) | 2007-08-09 | 2009-06-30 | The Boeing Company | Methods and systems for automated ply boundary and orientation inspection |
US8151854B2 (en) | 2007-10-16 | 2012-04-10 | Ingersoll Machine Tools, Inc. | Fiber placement machine platform system having interchangeable head and creel assemblies |
DE102008022946B4 (de) | 2008-05-09 | 2014-02-13 | Fit Fruth Innovative Technologien Gmbh | Vorrichtung und Verfahren zum Aufbringen von Pulvern oder Pasten |
KR100995983B1 (ko) | 2008-07-04 | 2010-11-23 | 재단법인서울대학교산학협력재단 | 회로기판의 교차인쇄방법 및 장치 |
US8454788B2 (en) * | 2009-03-13 | 2013-06-04 | The Boeing Company | Method and apparatus for placing short courses of composite tape |
FR2948059B1 (fr) * | 2009-07-17 | 2011-08-05 | Coriolis Composites | Machine d'application de fibres avec rouleau de compactage transparent au rayonnement du systeme de chauffage |
US20120159785A1 (en) | 2009-09-04 | 2012-06-28 | BayerMaerialScience LLC | Automated processes for the production of polyurethane wind turbine blades |
US8221669B2 (en) | 2009-09-30 | 2012-07-17 | Stratasys, Inc. | Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments |
DE102009052835A1 (de) | 2009-11-13 | 2011-05-19 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren zum Herstellen eines Bauteils aus einem faserverstärkten Werkstoff |
US9086033B2 (en) | 2010-09-13 | 2015-07-21 | Experimental Propulsion Lab, Llc | Additive manufactured propulsion system |
US8920697B2 (en) | 2010-09-17 | 2014-12-30 | Stratasys, Inc. | Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments |
US8282758B2 (en) * | 2010-09-24 | 2012-10-09 | General Electric Company | System and method for the automated delivery and layup of resin infused fibers |
KR101172859B1 (ko) | 2010-10-04 | 2012-08-09 | 서울대학교산학협력단 | 나노 스케일 3차원 프린팅을 사용한 초정밀 가공 장치 및 방법 |
DE102011109369A1 (de) | 2011-08-04 | 2013-02-07 | Arburg Gmbh + Co Kg | Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes mit Faserzuführung |
US9457521B2 (en) | 2011-09-01 | 2016-10-04 | The Boeing Company | Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts |
PL2589481T3 (pl) | 2011-11-04 | 2016-06-30 | Ralph Peter Hegler | Urządzenie do ciągłego wytwarzania rury wielowarstwowej z kielichem łączącym |
EP2788172A1 (en) * | 2011-12-07 | 2014-10-15 | E. I. Du Pont de Nemours and Company | Composite article made with unidirectional fiber reinforced tape |
US20130164498A1 (en) | 2011-12-21 | 2013-06-27 | Adc Acquisition Company | Thermoplastic composite prepreg for automated fiber placement |
US10518490B2 (en) | 2013-03-14 | 2019-12-31 | Board Of Regents, The University Of Texas System | Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices |
US9884318B2 (en) | 2012-02-10 | 2018-02-06 | Adam Perry Tow | Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing |
US8919410B2 (en) | 2012-03-08 | 2014-12-30 | Fives Machining Systems, Inc. | Small flat composite placement system |
US9764378B2 (en) | 2012-04-04 | 2017-09-19 | Massachusetts Institute Of Technology | Methods and apparatus for actuated fabricator |
DE102012007439A1 (de) | 2012-04-13 | 2013-10-17 | Compositence Gmbh | Legekopf und Vorrichtung und Verfahren zum Aufbau eines dreidimensionalen Vorformlings für ein Bauteil aus einem Faserverbundwerkstoff |
GB201210851D0 (en) | 2012-06-19 | 2012-08-01 | Eads Uk Ltd | Extrusion-based additive manufacturing system |
GB201210850D0 (en) | 2012-06-19 | 2012-08-01 | Eads Uk Ltd | Thermoplastic polymer powder |
US9458955B2 (en) | 2012-07-20 | 2016-10-04 | Mag Aerospace Industries, Llc | Composite waste and water transport elements and methods of manufacture for use on aircraft |
US20140039662A1 (en) | 2012-07-31 | 2014-02-06 | Makerbot Industries, Llc | Augmented three-dimensional printing |
US8962717B2 (en) | 2012-08-20 | 2015-02-24 | Basf Se | Long-fiber-reinforced flame-retardant polyesters |
US9511543B2 (en) | 2012-08-29 | 2016-12-06 | Cc3D Llc | Method and apparatus for continuous composite three-dimensional printing |
US9233506B2 (en) | 2012-12-07 | 2016-01-12 | Stratasys, Inc. | Liquefier assembly for use in additive manufacturing system |
FR3001366B1 (fr) * | 2013-01-30 | 2015-10-30 | Atelier Vendome L | Element decoratif comprenant plusieurs pierres assemblees dans un cadre ferme, comportant deux faces decoratives |
US20140232035A1 (en) | 2013-02-19 | 2014-08-21 | Hemant Bheda | Reinforced fused-deposition modeling |
WO2014145675A1 (en) | 2013-03-15 | 2014-09-18 | Hollander Jonathan Marc | Methods for three-dimensional weaving of composite preforms and products with varying cross-sectional topology |
US9688028B2 (en) | 2013-03-22 | 2017-06-27 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US9579851B2 (en) | 2013-03-22 | 2017-02-28 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9694544B2 (en) | 2013-03-22 | 2017-07-04 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9815268B2 (en) | 2013-03-22 | 2017-11-14 | Markforged, Inc. | Multiaxis fiber reinforcement for 3D printing |
US9186846B1 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9539762B2 (en) | 2013-03-22 | 2017-01-10 | Markforged, Inc. | 3D printing with kinematic coupling |
US9956725B2 (en) | 2013-03-22 | 2018-05-01 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
US11237542B2 (en) | 2013-03-22 | 2022-02-01 | Markforged, Inc. | Composite filament 3D printing using complementary reinforcement formations |
US10682844B2 (en) | 2013-03-22 | 2020-06-16 | Markforged, Inc. | Embedding 3D printed fiber reinforcement in molded articles |
CN105339154B (zh) | 2013-03-22 | 2017-11-24 | 格雷戈里·托马斯·马克 | 三维打印 |
US10259160B2 (en) | 2013-03-22 | 2019-04-16 | Markforged, Inc. | Wear resistance in 3D printing of composites |
US20170173868A1 (en) | 2013-03-22 | 2017-06-22 | Markforged, Inc. | Continuous and random reinforcement in a 3d printed part |
US9126367B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
WO2014193505A1 (en) | 2013-05-31 | 2014-12-04 | United Technologies Corporation | Continuous fiber-reinforced component fabrication |
EP3444102B1 (en) | 2013-06-05 | 2023-08-09 | Markforged, Inc. | Method and apparatus for fiber reinforced additive manufacturing |
ES2879847T3 (es) | 2013-10-30 | 2021-11-23 | Branch Tech Inc | Fabricación aditiva de edificios y otras estructuras |
US10618217B2 (en) | 2013-10-30 | 2020-04-14 | Branch Technology, Inc. | Cellular fabrication and apparatus for additive manufacturing |
JP6588901B2 (ja) | 2013-10-30 | 2019-10-09 | ライング オーローク オーストラリア プロプライエタリー リミテッド | 対象物の製造方法 |
US20160243762A1 (en) | 2013-11-15 | 2016-08-25 | Fleming Robert J | Automated design, simulation, and shape forming process for creating structural elements and designed objects |
US20150136455A1 (en) | 2013-11-15 | 2015-05-21 | Robert J. Fleming | Shape forming process and application thereof for creating structural elements and designed objects |
EP3071396B1 (en) | 2013-11-19 | 2021-10-06 | Guill Tool & Engineering | Coextruded, multilayered and multicomponent 3d printing inputs |
JP6563953B2 (ja) | 2013-12-26 | 2019-08-28 | テキサス・テック・ユニバーシティー・システム | 熱溶解フィラメント製法による造形品の内面ビード拡散接合を強化するためのマイクロ波誘導によるcnt充填ポリマーコンポジットの局所加熱 |
US20150197063A1 (en) * | 2014-01-12 | 2015-07-16 | Zohar SHINAR | Device, method, and system of three-dimensional printing |
US20150197062A1 (en) * | 2014-01-12 | 2015-07-16 | Zohar SHINAR | Method, device, and system of three-dimensional printing |
US10611098B2 (en) | 2014-01-17 | 2020-04-07 | G6 Materials Corp. | Fused filament fabrication using multi-segment filament |
JP2017506177A (ja) | 2014-02-04 | 2017-03-02 | サミル シャーSamir Shah | カスタマイズ可能な三次元オブジェクトの製造装置及びその製造方法 |
WO2015149054A1 (en) | 2014-03-28 | 2015-10-01 | Ez Print, Llc | 3d print bed having permanent coating |
DE112015002058T5 (de) | 2014-04-30 | 2017-01-05 | Magna International Inc. | Vorrichtung und Verfahren zur Ausbildung von dreidimensionalen Objekten |
JP6313115B2 (ja) * | 2014-05-14 | 2018-04-18 | 津田駒工業株式会社 | 自動積層装置における積層位置の補正方法 |
JP6061261B2 (ja) | 2014-05-27 | 2017-01-18 | 学校法人日本大学 | 三次元プリンティングシステム、三次元プリンティング方法、成形装置、繊維入りオブジェクト及びその製造方法 |
EP2952316B1 (de) * | 2014-06-03 | 2017-10-11 | Airbus Defence and Space GmbH | Faserauftragwerkzeug, faserverlegevorrichtung, faserverlegeverfahren und herstellverfahren |
US20160012935A1 (en) | 2014-07-11 | 2016-01-14 | Empire Technology Development Llc | Feedstocks for additive manufacturing and methods for their preparation and use |
US9808991B2 (en) | 2014-07-29 | 2017-11-07 | Cc3D Llc. | Method and apparatus for additive mechanical growth of tubular structures |
DE102014215935A1 (de) | 2014-08-12 | 2016-02-18 | Airbus Operations Gmbh | Vorrichtung und Verfahren zur Fertigung von Bauteilen aus einem faserverstärkten Verbundmaterial |
WO2016026045A1 (en) | 2014-08-21 | 2016-02-25 | Mosaic Manufacturing Ltd. | Series enabled multi-material extrusion technology |
US9931778B2 (en) | 2014-09-18 | 2018-04-03 | The Boeing Company | Extruded deposition of fiber reinforced polymers |
US10118375B2 (en) | 2014-09-18 | 2018-11-06 | The Boeing Company | Extruded deposition of polymers having continuous carbon nanotube reinforcements |
TW201617202A (zh) * | 2014-11-12 | 2016-05-16 | 鈺創科技股份有限公司 | 具有調整功能的立體印表機及其操作方法 |
EP3218160A4 (en) | 2014-11-14 | 2018-10-17 | Nielsen-Cole, Cole | Additive manufacturing techniques and systems to form composite materials |
US20170259507A1 (en) | 2014-12-01 | 2017-09-14 | Sabic Global Technologies B.V. | Additive manufacturing process automation systems and methods |
EP3227089A1 (en) | 2014-12-01 | 2017-10-11 | SABIC Global Technologies B.V. | Nozzle tool changing for material extrusion additive manufacturing |
CN107000317B (zh) | 2014-12-01 | 2018-08-24 | 沙特基础工业全球技术有限公司 | 用于增材制造的快速喷嘴冷却 |
US10226103B2 (en) | 2015-01-05 | 2019-03-12 | Markforged, Inc. | Footwear fabrication by composite filament 3D printing |
FR3031471A1 (fr) | 2015-01-09 | 2016-07-15 | Daher Aerospace | Procede pour la fabrication d’un piece composite complexe, notamment a matrice thermoplastique et piece obtenue par un tel procede |
US20160263823A1 (en) | 2015-03-09 | 2016-09-15 | Frederick Matthew Espiau | 3d printed radio frequency absorber |
US20160271876A1 (en) | 2015-03-22 | 2016-09-22 | Robert Bruce Lower | Apparatus and method of embedding cable in 3D printed objects |
CN107428061A (zh) | 2015-03-31 | 2017-12-01 | 京洛株式会社 | 线条树脂成型体、三维物体的成型方法以及线条树脂成型体的制造方法 |
WO2016196382A1 (en) | 2015-06-01 | 2016-12-08 | Velo3D, Inc. | Three-dimensional printing and three-dimensional objects formed using the same |
DE102015109855A1 (de) | 2015-06-19 | 2016-12-22 | Airbus Operations Gmbh | Verfahren zur Herstellung von Bauteilen, insbesondere länglichen Profilen aus bandförmigen, vorimprägnierten Fasern (Prepreg) |
WO2017006178A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systems, apparatuses and methods for substance delivery from dental appliances and for ornamental designs on dental appliances |
US10363116B2 (en) | 2015-07-07 | 2019-07-30 | Align Technology, Inc. | Direct fabrication of power arms |
US10492888B2 (en) | 2015-07-07 | 2019-12-03 | Align Technology, Inc. | Dental materials using thermoset polymers |
US11642194B2 (en) | 2015-07-07 | 2023-05-09 | Align Technology, Inc. | Multi-material aligners |
US11045282B2 (en) | 2015-07-07 | 2021-06-29 | Align Technology, Inc. | Direct fabrication of aligners with interproximal force coupling |
US11576750B2 (en) | 2015-07-07 | 2023-02-14 | Align Technology, Inc. | Direct fabrication of aligners for arch expansion |
US10201409B2 (en) | 2015-07-07 | 2019-02-12 | Align Technology, Inc. | Dental appliance having ornamental design |
WO2017006324A1 (en) | 2015-07-09 | 2017-01-12 | Something3D Ltd. | Method and apparatus for three dimensional printing |
US20170015060A1 (en) | 2015-07-17 | 2017-01-19 | Lawrence Livermore National Security, Llc | Additive manufacturing continuous filament carbon fiber epoxy composites |
US9944016B2 (en) | 2015-07-17 | 2018-04-17 | Lawrence Livermore National Security, Llc | High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites |
US9926796B2 (en) | 2015-07-28 | 2018-03-27 | General Electric Company | Ply, method for manufacturing ply, and method for manufacturing article with ply |
US10343330B2 (en) | 2015-07-31 | 2019-07-09 | The Boeing Company | Systems for additively manufacturing composite parts |
US10232570B2 (en) | 2015-07-31 | 2019-03-19 | The Boeing Company | Systems for additively manufacturing composite parts |
US10131132B2 (en) | 2015-07-31 | 2018-11-20 | The Boeing Company | Methods for additively manufacturing composite parts |
US10195784B2 (en) | 2015-07-31 | 2019-02-05 | The Boeing Company | Systems for additively manufacturing composite parts |
US10232550B2 (en) | 2015-07-31 | 2019-03-19 | The Boeing Company | Systems for additively manufacturing composite parts |
US10201941B2 (en) | 2015-07-31 | 2019-02-12 | The Boeing Company | Systems for additively manufacturing composite parts |
US10582619B2 (en) | 2015-08-24 | 2020-03-03 | Board Of Regents, The University Of Texas System | Apparatus for wire handling and embedding on and within 3D printed parts |
US20170056970A1 (en) * | 2015-08-24 | 2017-03-02 | Desktop Metal, Inc. | Control of a three-dimensional printing process using estimated thermal parameters |
US10357924B2 (en) | 2015-08-25 | 2019-07-23 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
EP3341179A4 (en) | 2015-08-25 | 2019-10-30 | University of South Carolina | INTEGRATED ROBOTIC 3D PRINTING SYSTEM FOR PRINTING FIBER REINFORCED PIECES |
US10464268B2 (en) | 2015-08-25 | 2019-11-05 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
US10336056B2 (en) | 2015-08-31 | 2019-07-02 | Colorado School Of Mines | Hybrid additive manufacturing method |
GB201515955D0 (en) * | 2015-09-03 | 2015-10-21 | Composite Technology & Applic Ltd | Lay-up head |
GB201516943D0 (en) | 2015-09-24 | 2015-11-11 | Victrex Mfg Ltd | Polymeric materials |
US10207426B2 (en) | 2015-10-14 | 2019-02-19 | Northrop Grumman Systems Corporation | Continuous fiber filament for fused deposition modeling (FDM) additive manufactured (AM) structures |
US11097440B2 (en) | 2015-11-05 | 2021-08-24 | United States Of America As Represented By The Administrator Of Nasa | Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof |
US10513080B2 (en) | 2015-11-06 | 2019-12-24 | United States Of America As Represented By The Administrator Of Nasa | Method for the free form fabrication of articles out of electrically conductive filaments using localized heating |
US10500836B2 (en) | 2015-11-06 | 2019-12-10 | United States Of America As Represented By The Administrator Of Nasa | Adhesion test station in an extrusion apparatus and methods for using the same |
US10894353B2 (en) | 2015-11-09 | 2021-01-19 | United States Of America As Represented By The Administrator Of Nasa | Devices and methods for additive manufacturing using flexible filaments |
US9889606B2 (en) | 2015-11-09 | 2018-02-13 | Nike, Inc. | Tack and drag printing |
EP3168034A1 (de) | 2015-11-12 | 2017-05-17 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur additiven fertigung eines bauteils |
US20170239885A1 (en) * | 2015-11-13 | 2017-08-24 | Paxis Llc | Additive Manufacturing Apparatus, System, and Method |
ITUB20155642A1 (it) | 2015-11-17 | 2017-05-17 | Milano Politecnico | Apparecchiatura e metodo per la stampa tridimensionale di materiali compositi a fibra continua |
WO2017087663A1 (en) | 2015-11-17 | 2017-05-26 | Zephyros, Inc. | Additive manufacturing materials system |
US10150262B2 (en) | 2015-11-20 | 2018-12-11 | The Boeing Company | System and method for cutting material in continuous fiber reinforced additive manufacturing |
US20170151728A1 (en) | 2015-11-30 | 2017-06-01 | Ut-Battelle, Llc | Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements |
US10173410B2 (en) | 2015-12-08 | 2019-01-08 | Northrop Grumman Systems Corporation | Device and method for 3D printing with long-fiber reinforcement |
US10335991B2 (en) | 2015-12-08 | 2019-07-02 | Xerox Corporation | System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers |
US10625466B2 (en) | 2015-12-08 | 2020-04-21 | Xerox Corporation | Extrusion printheads for three-dimensional object printers |
US10456968B2 (en) | 2015-12-08 | 2019-10-29 | Xerox Corporation | Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads |
WO2017100783A1 (en) | 2015-12-11 | 2017-06-15 | Massachusetts Institute Of Technology | Systems, devices, and methods for deposition-based three-dimensional printing |
EP3390005B1 (en) * | 2015-12-18 | 2021-09-01 | Laing O'Rourke Australia Pty Limited | Apparatus and method for fabricating an object |
DE102015122647A1 (de) | 2015-12-22 | 2017-06-22 | Arburg Gmbh + Co. Kg | Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Gegenstandes mit einer Faserzuführeinrichtung |
US10369742B2 (en) | 2015-12-28 | 2019-08-06 | Southwest Research Institute | Reinforcement system for additive manufacturing, devices and methods using the same |
EP3402653B1 (en) | 2016-01-12 | 2023-03-08 | Markforged, Inc. | Embedding 3d printed fiber reinforcement in molded articles |
KR101826970B1 (ko) | 2016-01-14 | 2018-02-07 | 주식회사 키스타 | 형성 가능한 플라스틱 재료로 이루어진 소재를 공급하는 소재 공급 장치 및 이를 포함하는 3d 입체물 제조 로봇 |
KR101755015B1 (ko) | 2016-01-14 | 2017-07-06 | 주식회사 키스타 | 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머 |
KR101785703B1 (ko) | 2016-01-14 | 2017-10-17 | 주식회사 키스타 | 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛 |
CA3011260A1 (en) | 2016-01-15 | 2017-07-20 | Markforged, Inc. | Continuous and random reinforcement in a 3d printed part |
JP6602678B2 (ja) | 2016-01-22 | 2019-11-06 | 国立大学法人岐阜大学 | 立体構造物の製造方法 |
JP6251925B2 (ja) | 2016-01-22 | 2017-12-27 | 国立大学法人岐阜大学 | 立体構造物の製造方法および3dプリンタ用フィラメント |
EP3414080A2 (en) | 2016-02-11 | 2018-12-19 | Martin Kuster | Movable printing devices for three-dimensional printers |
WO2017142867A1 (en) | 2016-02-15 | 2017-08-24 | Georgia-Pacific Chemicals Llc | Extrusion additive manufacturing of pellets or filaments of thermosetting resins |
WO2017150186A1 (ja) | 2016-02-29 | 2017-09-08 | 学校法人日本大学 | 3次元プリンティング装置及び3次元プリンティング方法 |
US10875288B2 (en) | 2016-03-10 | 2020-12-29 | Mantis Composites Inc. | Additive manufacturing of composite materials |
EP3219474B1 (en) | 2016-03-16 | 2019-05-08 | Airbus Operations GmbH | Method and device for 3d-printing a fiber reinforced composite component by tape-laying |
US10052813B2 (en) | 2016-03-28 | 2018-08-21 | Arevo, Inc. | Method for additive manufacturing using filament shaping |
US10234342B2 (en) | 2016-04-04 | 2019-03-19 | Xerox Corporation | 3D printed conductive compositions anticipating or indicating structural compromise |
US20170341300A1 (en) * | 2016-05-26 | 2017-11-30 | Wisconsin Alumni Research Foundation | Additive Manufacturing Process Continuous Reinforcement Fibers And High Fiber Volume Content |
JPWO2017212529A1 (ja) * | 2016-06-06 | 2019-03-28 | オリンパス株式会社 | 光学素子の製造方法、及び光学素子の製造装置 |
JP6843968B2 (ja) * | 2016-08-22 | 2021-03-17 | ストラタシス,インコーポレイテッド | 多軸ロボットビルドシステムを用いて3d部品を印刷する方法及び部品のオーブン外3d印刷の方法 |
JP6786310B2 (ja) * | 2016-08-31 | 2020-11-18 | 株式会社ミマキエンジニアリング | 造形装置及び造形方法 |
US10884388B2 (en) * | 2016-09-06 | 2021-01-05 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10953598B2 (en) * | 2016-11-04 | 2021-03-23 | Continuous Composites Inc. | Additive manufacturing system having vibrating nozzle |
IT201600128438A1 (it) * | 2016-12-20 | 2018-06-20 | Gimac Di Maccagnan Giorgio | Sistema per processi di additive manufacturing e relativo metodo di controllo |
US10857726B2 (en) * | 2017-01-24 | 2020-12-08 | Continuous Composites Inc. | Additive manufacturing system implementing anchor curing |
US11179890B2 (en) * | 2017-05-16 | 2021-11-23 | Toshiba Kikai Kabushiki Kaisha | Additive manufacturing device and additive manufacturing method |
US10589463B2 (en) | 2017-06-29 | 2020-03-17 | Continuous Composites Inc. | Print head for additive manufacturing system |
US10814550B2 (en) * | 2017-07-06 | 2020-10-27 | The Boeing Company | Methods for additive manufacturing |
EP3658355A4 (en) * | 2017-07-24 | 2021-04-28 | University of South Carolina | NOZZLE ASSEMBLY OF A 3D PRINTING SYSTEM FOR PRINTING FIBER REINFORCED PARTS |
US11801638B2 (en) * | 2017-08-31 | 2023-10-31 | Hewlett-Packard Development Company, L.P. | Printers |
US11155031B2 (en) * | 2018-03-30 | 2021-10-26 | Mantis Composites Inc. | 5-axis continuous carbon fiber 3D printing and meta-materials, parts, structures, systems, and design methods thereby enabled |
US11161300B2 (en) * | 2018-04-11 | 2021-11-02 | Continuous Composites Inc. | System and print head for additive manufacturing system |
US20210268715A1 (en) * | 2018-08-09 | 2021-09-02 | University Of Maine System Board Of Trustees | Non-orthogonal additive manufacturing and the treatment of parts manufactured thereof |
US20200086563A1 (en) * | 2018-09-13 | 2020-03-19 | Cc3D Llc | System and head for continuously manufacturing composite structure |
WO2020087048A2 (en) * | 2018-10-25 | 2020-04-30 | Make Composites, Inc. | Systems and methods of printing with fiber-reinforced materials |
CN109571932A (zh) * | 2018-11-14 | 2019-04-05 | 中国科学院福建物质结构研究所 | 一种制备连续纤维增强树脂基复合材料构件的装置 |
US20200376758A1 (en) * | 2019-05-28 | 2020-12-03 | Continuous Composites Inc. | System for additively manufacturing composite structure |
-
2020
- 2020-01-10 US US16/739,891 patent/US20200238603A1/en not_active Abandoned
- 2020-01-16 WO PCT/US2020/013838 patent/WO2020154163A1/en active Application Filing
- 2020-01-16 US US16/744,937 patent/US11400643B2/en active Active
- 2020-01-16 US US16/744,415 patent/US11618208B2/en active Active
- 2020-01-16 US US16/744,902 patent/US11478980B2/en active Active
- 2020-01-23 WO PCT/US2020/014792 patent/WO2020154503A1/en active Application Filing
- 2020-01-24 US US16/752,257 patent/US11338503B2/en active Active
- 2020-01-25 KR KR1020217016793A patent/KR20210119379A/ko not_active Application Discontinuation
- 2020-01-25 CA CA3124707A patent/CA3124707A1/en active Pending
- 2020-01-25 JP JP2021531122A patent/JP2022517500A/ja active Pending
- 2020-01-25 SG SG11202106148PA patent/SG11202106148PA/en unknown
- 2020-01-25 WO PCT/US2020/015125 patent/WO2020154713A1/en unknown
- 2020-01-25 CN CN202080010623.0A patent/CN113365797A/zh active Pending
- 2020-01-25 EP EP20708771.9A patent/EP3914436A1/en active Pending
- 2020-01-25 AU AU2020211609A patent/AU2020211609A1/en active Pending
-
2022
- 2022-03-08 US US17/654,033 patent/US11485070B2/en active Active
- 2022-06-24 US US17/808,926 patent/US20220324161A1/en not_active Abandoned
- 2022-07-20 US US17/813,835 patent/US11958238B2/en active Active
- 2022-09-26 US US17/935,249 patent/US20230008580A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203945693U (zh) * | 2014-06-27 | 2014-11-19 | 航天特种材料及工艺技术研究所 | 一种提高聚合物材料3d打印强度的装置 |
US20170028635A1 (en) * | 2015-07-31 | 2017-02-02 | Boeing Co | Systems and methods for additively manufacturing composite parts |
CN206426464U (zh) * | 2016-11-24 | 2017-08-22 | 珠海赛纳打印科技股份有限公司 | 校平组件及3d打印装置 |
CN106799833A (zh) * | 2016-11-30 | 2017-06-06 | 宁夏共享模具有限公司 | 一种大型工业级fdm打印机的打印头及其打印方法 |
CN106926452A (zh) * | 2017-03-02 | 2017-07-07 | 西安交通大学 | 一种用于材料挤出成形的多功能3d打印头及其使用方法 |
CN107187044A (zh) * | 2017-05-18 | 2017-09-22 | 西安交通大学 | 一种可用于材料挤出成形的自滚压3d打印集成喷头装置 |
CN107379539A (zh) * | 2017-08-14 | 2017-11-24 | 上海宇航系统工程研究所 | 一种连续纤维预浸料3d打印喷头及其3d打印机、打印方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200238606A1 (en) | 2020-07-30 |
EP3914436A1 (en) | 2021-12-01 |
US11338503B2 (en) | 2022-05-24 |
WO2020154163A1 (en) | 2020-07-30 |
US20230008580A1 (en) | 2023-01-12 |
WO2020154713A1 (en) | 2020-07-30 |
US11478980B2 (en) | 2022-10-25 |
US11618208B2 (en) | 2023-04-04 |
CA3124707A1 (en) | 2020-07-30 |
US11958238B2 (en) | 2024-04-16 |
AU2020211609A1 (en) | 2021-06-24 |
US11400643B2 (en) | 2022-08-02 |
US11485070B2 (en) | 2022-11-01 |
JP2022517500A (ja) | 2022-03-09 |
US20200238609A1 (en) | 2020-07-30 |
US20200238627A1 (en) | 2020-07-30 |
US20220355537A1 (en) | 2022-11-10 |
US20200238610A1 (en) | 2020-07-30 |
US20220324161A1 (en) | 2022-10-13 |
US20220184882A1 (en) | 2022-06-16 |
WO2020154503A1 (en) | 2020-07-30 |
US20200238603A1 (en) | 2020-07-30 |
SG11202106148PA (en) | 2021-07-29 |
KR20210119379A (ko) | 2021-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113365797A (zh) | 用于增材制造复合材料结构的系统 | |
KR102416295B1 (ko) | 복합 구조물을 연속 제조하는 시스템, 프린트 헤드 및 콤팩터 | |
US11806923B2 (en) | System for additive manufacturing | |
KR20190107008A (ko) | 마무리-종동부를 갖는 적층 제조 시스템 | |
US20200086565A1 (en) | System and head for continuously manufacturing composite structure | |
CN114786925A (zh) | 增材制造系统 | |
US20200376758A1 (en) | System for additively manufacturing composite structure | |
CN113905872A (zh) | 用于增材制造复合材料结构的系统 | |
US11420390B2 (en) | System for additively manufacturing composite structure | |
US20220371274A1 (en) | System for additively manufacturing composite structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210907 |