WO2017150186A1 - 3次元プリンティング装置及び3次元プリンティング方法 - Google Patents
3次元プリンティング装置及び3次元プリンティング方法 Download PDFInfo
- Publication number
- WO2017150186A1 WO2017150186A1 PCT/JP2017/005440 JP2017005440W WO2017150186A1 WO 2017150186 A1 WO2017150186 A1 WO 2017150186A1 JP 2017005440 W JP2017005440 W JP 2017005440W WO 2017150186 A1 WO2017150186 A1 WO 2017150186A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressing
- head
- filament
- nozzle
- fiber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present invention relates to a three-dimensional printing apparatus and a three-dimensional printing method for forming a structure by continuously arranging a print material and then solidifying the print material.
- a three-dimensional printing apparatus is known as an apparatus for modeling an object having a three-dimensional shape (see, for example, Patent Document 1).
- the three-dimensional printing device can easily form a three-dimensional object without requiring a relatively expensive mold or jig, and a three-dimensional object that is difficult to form with existing technology. Can also be shaped.
- the hot melt laminating method in which the resin melted by heat is stacked little by little, is used for prototyping parts in the manufacturing industry because the manufacturing cost of the apparatus is relatively low.
- CFRP Carbon-fiber-reinforced plastics
- CFRPP carbon fiber reinforced thermoplastics
- the current hot melt lamination type three-dimensional printing apparatus has a mechanism for extruding a filament of resin and fiber softened by heating from the nozzle, but the nozzle may be clogged. That is, in this three-dimensional printing apparatus, in reality, tension is applied to the fibers impregnated in the resin by the viscosity of the resin on the surface of the filament discharged (attached) onto the discharge target object, and the nozzle There is a fact that the fiber is continuously pulled out from. If the filament is insufficiently bonded to the object to be ejected, the fiber cannot be pulled out well, and the fiber is clogged by the nozzle.
- the filament when the filament is insufficiently bonded to the object to be ejected, the filament is peeled off from the object to be ejected when printing a right or sharp bend, and the filament is arranged along the bend. Becomes difficult. For this reason, a product having a complicated shape including a right-angled or acute-angled bent portion cannot be manufactured.
- An object of an aspect according to the present invention is to provide a three-dimensional printing apparatus and a three-dimensional printing method capable of suppressing a supply failure of a print material and manufacturing a product having a complicated shape.
- a head to which a linear print material is fed, drive means for performing relative movement between the head and the target surface, a controller, and the print material on the target surface And a pressing unit having a pressing surface arranged so as to be able to contact, wherein the pressing unit is configured to allow movement of the pressing surface with respect to the head.
- the material is reliably arranged on the target surface by the pressing means.
- the pressing means As a result, it is possible to obtain a three-dimensional printing apparatus that can suppress the supply failure of the print material and can manufacture a product having a complicated shape.
- FIG. 1 is an overall configuration diagram of a three-dimensional printing apparatus according to an embodiment. It is a schematic diagram which shows the example of a pressing means. It is a schematic diagram which shows the example of a structure regarding a heating apparatus. It is a schematic diagram which shows the example of a structure provided with a some pressing body. It is sectional drawing which shows the structural example of the front-end
- (A) It is a top view which shows the driving
- the three-dimensional printing apparatus continuously arranges a linear (thread-like) print material (continuous material) on a platform that is a plate-like object to be ejected (target, target surface).
- An apparatus for forming a structure In one example, the three-dimensional printing apparatus is an apparatus (3D printer, three-dimensional printing system) that mainly forms a three-dimensional structure by laminating a print material on a platform in a softened state and then solidifying the print material.
- the discharge target object target, target surface
- the discharge target object includes a laminated structure (structure) of print materials laminated on the object.
- the print material (filament) that is a raw material of the structure mainly includes a resin, or can mainly include a resin and a fiber.
- the resin (resin filament) include PLA resin (polylactic acid), ABS resin, nylon resin, PET resin (polyethylene terephthalate), acrylic resin, and the like.
- the print material is formed by impregnating a thermoplastic resin with a reinforcing fiber such as carbon fiber or glass fiber to form a linear shape.
- Thermoplastic resins other than those described above are also applicable as filaments.
- a filament obtained by impregnating a resin in advance with a fiber is taken out from a storage state wound around a predetermined reel (bobbin) and supplied to a nozzle.
- the print material can be a continuous material that extends continuously along the central axis.
- the print material has the same cross-sectional shape throughout the axial direction.
- the print material can have partially different cross-sectional shapes.
- the cross-sectional shape of the print material is not limited to a circle (or an ellipse), and various shapes can be applied.
- the accommodation state of the print material is not limited to the winding type.
- the three-dimensional printing apparatus 1 includes a casing 2, a platform (support member, pad) 3 disposed in the casing 2, and a head (which supplies filament FL to the platform 3).
- a printer head) 4, a control device (controller) 5, and pressing means (pressurizing means, smoother, pusher) 30 are included as main components.
- an arrow Z indicates a vertical direction (up and down direction)
- an arrow X indicates a horizontal direction
- an arrow Y indicates a horizontal direction that is orthogonal to the Z direction and the X direction.
- the head 4 includes a head body 6, a nozzle 7, and a material feed device (resin pushing device, material) that feeds a filament (resin material, base material, first continuous material containing resin) FL to the nozzle 7.
- the three-dimensional printing apparatus 1 includes a cutting device (cutting unit, cutter, cutting means) 10 for cutting the carbon fiber FB, and a filament heating device (resin softening unit, heater, first heating unit) 21 for heating the filament FL. And have.
- at least a part of the filament heating device 21 is provided in the nozzle 7.
- the material feeding device 8 is configured to feed the filament FL while pushing the filament FL into the nozzle 7.
- the casing 2 is a box-shaped housing.
- a working window (opening) is provided on the front surface of the casing 2.
- a platform 3, a head 4 and the like are accommodated.
- the casing 2 can include an environment control unit (not shown) that controls the indoor environment as necessary.
- the platform 3 has a rectangular plate (base plate) parallel to the bottom surface 2 a of the casing 2.
- the platform 3 is disposed below the head 4 and in the vicinity of the bottom of the casing 2.
- the platform 3 is driven by the platform drive device 11 so as to be vertically movable along the Z direction (vertical direction).
- the platform 3 is provided with a platform heating device (not shown) for heating the arranged filament FL.
- the platform 3 has a function of heating the filament FL disposed on the platform 3.
- the platform heating device various mechanisms capable of controlling the temperature of the resin on the platform are applicable in addition to a plate heater, a surface heater, and the like.
- the head 4 includes a mechanism as a discharge device (extrusion device) that arranges the filament FL at an arbitrary position on the platform 3.
- the head 4 is configured such that a first material (filament FL) containing resin and a second material (carbon fiber FB) containing fibers are fed.
- the head 4 (head body 6) is at least along a plane parallel to the platform 3 (a plane formed by the first axis (X axis) and the second axis (Y axis)) by the head driving device 13 (moving means). It is configured to be movable in two dimensions. Since the platform 3 is movable up and down, the distance (and relative positional relationship) between the nozzle 7 (head body 6) of the head 4 and the platform 3 can be freely adjusted.
- the head driving device 13 drives the head 4 so that the head 4 can move to an arbitrary position on a plane parallel to the platform 3.
- the platform 3 has a support surface orthogonal to the Z-axis direction (vertical direction), and the head driving device 13 moves the head 4 in the horizontal direction.
- the head drive device 13 includes an X-axis drive device 14 for moving the head 4 in a first direction (X-axis direction) along a plane parallel to the platform 3, and a first along the plane parallel to the platform 3. And a Y-axis drive device 15 that moves in a second direction (Y-axis direction) orthogonal to the direction.
- the X-axis drive device 14 and the Y-axis drive device 15 can have a configuration in which a stepping motor and a linear motion mechanism such as a ball screw are combined.
- the head driving device 13 can have a robot arm.
- the head 4 is movable along a plane parallel to the platform 3 using a robot arm.
- the head 4 can be configured to be movable in three dimensions, or movable in six degrees of freedom (X, Y, Z, ⁇ X, ⁇ Y, ⁇ Z).
- the head 4 is configured so that the attitude regarding at least a part of the tilt and the rotation angle can be adjusted. it can.
- the head 4 is configured to discharge the softened filament FL with a predetermined thickness using the nozzle 7 after heating the filamentary filament FL to near the melting point of the filament by the filament heating device 21. .
- the nozzle 7 can be applied in various shapes.
- the nozzle 7 has a cylindrical portion 22 having a cylindrical shape and a tip portion 23 provided at one end of the cylindrical portion 22.
- the distal end portion 23 is provided with a discharge port (opening, nozzle opening, outlet opening) 23a for discharging the filament FL.
- the discharge port 23a (tip portion 23) is set according to the target thickness of the filament FL to be discharged.
- the nozzle opening can be changed by replacing the nozzle 7 with another nozzle.
- a pressing means 30 to be described later can be attached to the nozzle 7.
- the nozzle 7 can be attached to the head body 6. Additionally and / or alternatively, a plurality of nozzles 7 can be provided in one head 4.
- the number of inlets (inlet ports) and the number of outlets (outlet ports) in the head 4 may be the same or different.
- filament heating device 21 can be applied.
- at least a part of the filament heating device 21 is fixed to the outer peripheral surface of the cylindrical portion 22.
- the heating method of the filament heating device 21 include hot plate heating (surface heater, plate heater, aluminum foil heater), high frequency heating, induction heating, ultrasonic heating, gas heating, laser heating, and the like.
- the material feed device 8 is configured to feed the filament FL. In one example, the material feed device 8 is configured to push the filament FL into the inlet port of the nozzle 7. In one example, the material feeding device 8 includes a pair of filament driving rollers (gears) 16 and a motor 17 that drives at least one of the filament driving rollers 16. One of the drive rollers 16 may be replaced with a pusher pin (not shown), or a pusher pin may be provided as an auxiliary. In one example, a stepping motor is applied as the motor 17. In another example, various other motors such as a servo motor that can drive the filament driving roller 16 at an arbitrary speed are applicable as the motor 17. Additionally and / or alternatively, the material feeding device 8 can be configured to feed a plurality of filaments (a plurality of first continuous materials) FL to one head 4.
- the filament driving roller 16 can include a tire-shaped roller and a filament holding groove formed on the outer peripheral surface of the roller and extending in the circumferential direction.
- a gap for the filament FL is formed by the pair of filament holding grooves of the pair of filament driving rollers 16.
- the filament driving roller 16 is disposed so that the filament FL disposed in the gap is sandwiched between the pair of rollers 16.
- the rotational speed of the filament driving roller 16 is controlled according to the supply amount of the filament FL supplied from the nozzle 7 of the head 4, for example.
- the fiber introduction device 9 is configured to feed the carbon fiber FB.
- the carbon fiber FB is guided to the inlet of the nozzle 7 through the fiber introduction device 9.
- the fiber introduction device 9 can have a fiber pushing structure similar to the filament pushing structure of the material feed device 8.
- the fiber introduction device 9 includes a pair of fiber drive rollers (gears) 18 that function as a feeder for feeding fibers, and a motor 19 that drives at least one of the pair of fiber drive rollers 18.
- the control device 5 is configured to control the material feed device 8 and the fiber introduction device 9 individually.
- One of the drive rollers 18 may be replaced with a pusher pin, or a pusher pin may be provided as an auxiliary.
- the motor 19 can be omitted.
- a fiber element in the carbon fiber FB a PAN-based (Polyacrylonitrile) carbon fiber that is a carbon fiber using an acrylic fiber can be employed.
- a Pitch-based carbon fiber can be used as the fiber element.
- glass fiber, aramid fiber (such as Kevlar), or a fiber bundle made of fibers used for a fiber-reinforced composite material can be used.
- the kind of fiber is not limited to the above.
- the fiber introduction device 9 can be configured to feed a plurality of fibers FB (a plurality of second continuous materials) FB to one head 4.
- the fiber introduction device 9 may have a comb member (not shown) arranged to arrange the flow of the fibers FB (or fiber elements).
- the comb members are arranged to reduce or eliminate twisting of the fibers FB (or fiber elements), or arranged to align or bundle the plurality of fibers FB (or fiber elements).
- the carbon fiber FB when the carbon fiber FB is introduced from between the material feed device 8 and the filament heating device 21, the filament FL and the carbon at the rear position (upstream position) with respect to the nozzle 7.
- the fibers FB are combined.
- the position (bonding position) for introducing the carbon fiber FB is not limited to this.
- the carbon fiber FB may be introduced between the nozzle 7 and the platform 3 (front position (downstream position) with respect to the nozzle 7).
- the carbon fiber (composite fiber) FB includes a plurality of fiber elements and a support member.
- a plurality of fiber elements are wound around the peripheral surface of the support member.
- a plurality of fiber elements are supported by a linear support member.
- a plurality of carbon fibers are fixed to the outer peripheral surface of the support member with an adhesive or the like.
- the material for the support member include a resin (including a synthetic resin and a fluororesin), a metal, and a composite material including a plurality of elements.
- the support member is made of a plastic such as POM (polyacetal resin).
- POM polyacetal resin
- the support member may be fed onto the platform 3 as part of the printing material.
- the support member may be separated from the print material (fiber element) so that the support member is not fed onto the platform 3.
- the carbon fiber FB may have a structure in which a plurality of fiber elements and a plurality of support members are twisted together.
- the carbon fiber FB can have a structure having a plurality of fiber elements and a hollow type support member.
- the carbon fiber FB can have a structure having a plurality of fiber elements and a multilayer support member.
- the carbon fiber FB may have a structure in which the fiber element is accommodated inside the support member, or a structure in which the fiber element is covered with the support member (coating material).
- the carbon fiber FB can have a structure in which a plurality of fiber elements are accommodated inside the support member, or a structure in which a plurality of fiber elements are covered with a support member (coating material).
- the carbon fiber FB can have a structure in which the support member is omitted.
- the carbon fiber FB has a relatively dense twisted yarn structure of a plurality of fiber elements.
- the carbon fiber FB has a relatively sparse twisted yarn structure of a plurality of fiber elements.
- the cutting device 10 includes a cutting unit that cuts the carbon fiber FB introduced by the fiber introduction device 9.
- the cutting device 10 has a cutting unit disposed on the downstream side of the fiber introduction device 9 and on the upstream side of the nozzle 7.
- the cutting unit has a rear cutting position (upstream cutting position) arranged rearward (upstream) with respect to a coupling position (for example, the nozzle 7) where the filament FL and the carbon fiber FB are connected.
- the cutting unit (cutting device 10) is configured to cut the carbon fiber FB fed (for example, pushed) from the fiber introduction device 9.
- the cutting unit can cut the carbon fiber FB at a timing based on an instruction from the control device 5.
- the cutting device 10 includes a cutting unit disposed on the downstream side of the nozzle 7.
- the cutting unit has a front cutting position (downstream cutting position) arranged forward (downstream) with respect to a bonding position (for example, the nozzle 7) where the filament FL and the carbon fiber FB are connected.
- the cutting unit is configured to cut the print material pushed out from the nozzle 7.
- the cutting unit can cut the print material containing the carbon fiber FB or the print material not containing the carbon fiber at a timing based on an instruction from the control device 5.
- the cutting device 10 can have both a first cutting unit having a rear cutting position (upstream cutting position) and a second cutting unit having a front cutting position (downstream cutting position).
- the first cutting unit can cut the carbon fiber FB at a timing based on an instruction from the control device 5.
- the second cutting unit can cut the print material containing the carbon fiber FB or the print material not containing the carbon fiber FB at a timing based on an instruction from the control device 5.
- the control device 5 selectively uses either the first cutting unit or the second cutting unit when cutting the carbon fiber FB. Alternatively, the control device 5 uses both the first cutting unit and the second cutting unit substantially simultaneously when cutting the carbon fiber FB.
- the cutting device 10 can be a laser cutting device using a laser such as a YAG laser.
- the cutting device 10 can apply a mechanical structure (cutter, roller cutter) having a saw (electric circular saw or the like) or a blade.
- an ultrasonic cutting machine can be applied to the cutting device 10 (cutting unit).
- the cutting device 10 (cutting unit) can apply gas cutting, arc cutting, plasma cutting, or the like.
- arc cutting a voltage is applied to an electrode adjacent to the carbon fiber FB, and an arc is generated between the electrode and the carbon fiber.
- the carbon fiber FB can be cut by the thermal energy of the arc.
- a configuration in which a part of heat energy at the time of cutting is reused for a heating process such as heating of the filament FL can be applied.
- a relative speed difference between the nozzle 7 and the platform 3 may be used.
- control device 5 is configured to centrally control an operation device including elements such as the head 4 (head drive device 13), the platform 3 (platform drive device 11), and the cutting device 10.
- the control device 5 includes a control program for controlling an operation device including the head 4 and the like, a storage device for storing 3D data of a structure, and a processor (processor, processing circuitry, circuitry).
- the pressing means 30 has a pressing surface (contact surface, movable surface) 41 arranged so as to be able to contact the print material PM on the target surface (for example, the upper surface of the platform 3) 3a. It has a body 31.
- the pressing means 30 pressing body 31
- the means 30) can move relative to the target surface 3a (for example, two-dimensional movement in the XY plane and movement in the Z direction).
- the first driving device (head driving device) 13 and / or the second driving device (platform driving device) 11 performs relative movement between the head main body 6 and the target surface 3a, and the pressing body 31 and the target surface.
- the relative movement to 3a is performed.
- the pressing body 31 is attached to an object other than the head body 6, and the pressing body 31 and the target surface are driven by another driving device (third driving device) and / or the second driving device (platform driving device) 11.
- Relative movement with respect to 3a (for example, two-dimensional movement in the XY plane and movement in the Z direction) can be performed.
- the pressing body 31 moves relative to the target surface 3a (platform 3) (for example, two-dimensional movement in the XY plane) substantially synchronously and / or asynchronously with the head body 6 (head 4). And movement in the Z direction).
- the pressing means 30 is configured to allow movement of the pressing surface 41 of the pressing body 31 with respect to the head 4 (head body 6).
- the pressing body 31 is movably attached to the head body 6.
- the pressing body 31 is attached to another object so that the pressing body 31 is movable with respect to the head body 6.
- the pressing surface 41 is disposed so as to face the target surface 3a, and at least one of the position and posture of the pressing surface 41 with respect to the head 4 (head body 6, discharge position) can be changed.
- the printing material PM is disposed between the pressing surface 41 and the target surface 3a in a state where the pressing surface 41 is in contact with the printing material PM.
- the distance from the pressing surface 41 from the target surface 3a can be set to be equal to or smaller than the thickness of the printing material PM on the target surface 3a.
- the pressing means 30 can be configured such that at least a part of the weight of the pressing means 30 acts on the print material PM on the target surface 3 a via the pressing surface 41.
- the pressing means 30 can be configured such that the force from the pressurizing means (spring, elastic body, fluid pressure supply device, etc.) 37 acts on the print material PM on the target surface 3 a via the pressing surface 41.
- the pressing surface 41 of the pressing body 31 moves in a predetermined direction with respect to the head main body 6.
- the moving direction can have at least one of an X direction, a Y direction, a Z direction, a ⁇ X direction, a ⁇ Y direction, and a ⁇ Z direction. That is, in the pressing means 30, the position of the pressing surface 41 with respect to the head body 6 can be changed.
- the posture of the pressing surface 41 of the pressing body 31 changes with respect to the head body 6.
- the posture of the pressing surface 41 changes in a state where the position of the pressing body 31 with respect to the head body 6 is substantially fixed.
- the position of the pressing body 31 changes and the posture of the pressing surface 41 changes.
- the pressing means 30 can be configured such that the pressing body 31 can move freely without a driving device.
- the pressing unit 30 can include a driving device 34 that drives the pressing body 31 and / or the contact surface 40a.
- the pressing means 30 can be configured such that the pressing body 31 can freely move in a predetermined direction, and the movement of the pressing body 31 and / or the contact surface 40 a in another direction is controlled by the driving device 34.
- the pressing surface 41 of the pressing body 31 rotates with respect to the head body 6.
- a rotating body (roller, pressing roller, rotating contact body) 31 rotates about a predetermined point 6a on the head 4 (head body 6) or other object.
- the rotating body 31 is rotatably arranged and has a pressing surface 41 that includes at least a part of the peripheral surface of the rotating body 31.
- the pressing means 30 can be configured such that the rotating body 31 can be freely rotated without a driving device.
- the pressing unit 30 can include a driving device 34 that drives the rotation of the pressing body 31.
- the pressing means 30 can be configured such that the pressing body 31 can freely rotate in a predetermined direction and the rotation of the pressing body 31 in another direction is controlled by the drive device 34.
- FIGS. 2A, 2B, and 2C can be appropriately combined.
- the three-dimensional printing apparatus can have a heating unit (preheater, second heating unit) 50 for heating the print material PM on the target surface 3 a in the vicinity of the pressing body 31. At least a part of the heating unit 50 is provided separately from the filament heating device (first heating unit) 21.
- the heating unit 50 can be configured to heat the pressing body 31. That is, the heating unit 50 can be configured to heat the print material PM mainly through the pressing surface 41 of the pressing body 31. The heat of the heating unit 50 is transmitted to the print material PM through the pressing surface 41 of the pressing body 31 and / or the surface in the vicinity thereof. As a result, the print material PM (resin) is softened and / or melted.
- the heating unit 50 can be configured to heat the print material PM directly.
- the three-dimensional printing apparatus can include a heating unit (preheater, third heating unit) 51 for mainly heating the carbon fiber FB. At least a part of the heating unit 51 is provided separately from the filament heating device (first heating unit) 21.
- heating units 50 and 51 are applicable. Examples of the heating method include hot wire heating, high frequency heating, induction heating, ultrasonic heating, gas heating, laser heating and the like.
- the heating units 50 and 51 can heat the pressing body 31 or the carbon fiber FB using a heating wire (such as a nichrome wire).
- a heating wire such as a nichrome wire
- a part in contact with the pressing body 31 or the carbon fiber FB is used as an electrode, and the carbon fiber FB is heated through the part.
- the laser light from the laser unit is applied to the print material PM or the carbon fiber FB.
- the heated gas is supplied directly to the print material PM or the carbon fiber FB.
- the print material PM or the carbon fiber FB can be heated using the thermal energy of laser light or gas.
- the laser unit can be used as a cutting unit for the carbon fiber FB by controlling the output.
- the three-dimensional printing apparatus can include all the heating units 40, 50, 51 described above. In another example, the three-dimensional printing apparatus may include a heating unit 50 and omit at least one of the other heating units 40 and 51.
- the configuration of the nozzle 7 can be simplified.
- the nozzle 7 can be configured to use no cylindrical member (substantially nozzle-less structure or a configuration using a member (for example, a roller) other than the cylindrical member as the nozzle). This is advantageous for suppressing problems such as material clogging in the nozzle 7.
- the pressing means 30 can have a plurality of pressing bodies 31. 4A, the pressing means 30 has a first pressing body 31A disposed at the front position and a second pressing body 31B disposed at the rear position in the print progress direction PD.
- the pressing surface 41A of the first pressing body 31A comes into contact with the uppermost print material PM disposed on the target surface 3a in the past.
- the pressing surface 41B of the second pressing body 31B comes into contact with the print material PM immediately after being disposed on the target surface 3a.
- the three-dimensional printing apparatus includes a heating unit 50A for heating the print material PM on the target surface 3a in the vicinity of the first pressing body 31A and a target surface 3a in the vicinity of the second pressing body 31B.
- a heating unit 50B for heating the printing material PM for heating the printing material PM.
- the amount of heat supplied can be substantially the same between the heating unit 50A and the heating unit 50B.
- a difference in the amount of supplied heat can be set between the heating unit 50A and the heating unit 50B.
- the upper layer print layered by the heat from the heating unit 50B, mainly in the vicinity of the surface of the lower layer printing material PM, which is partially softened and / or melted by the heat from the heating unit 50A.
- the material PM is set to be softened and / or melted as a whole. Controlling the amount of heat is advantageous for improving the adhesion and adhesion between the print materials PM.
- the pressing means 30 has a second pressing body 31B and a third pressing body 31C, both of which are arranged at the rear position in the print progress direction PD.
- the pressing surface 41B of the second pressing body 31B is in contact with the printing material PM
- the pressing surface 41C of the third pressing body 31C is in contact with the printing material PM.
- the second pressing body 31B has substantially the same shape as the third pressing body 31C.
- the shape is different between the second pressing body 31B and the third pressing body 31C.
- the second pressing body 31B can be a rotating body
- the third pressing body 31C can be a rotating body having a larger or smaller diameter than the second pressing body 31B.
- the pressing means 30 can be configured such that both pressing bodies 31B and 31C can move freely without a driving device.
- the pressing unit 30 may include a driving device 34 that drives at least one of the pressing bodies 31B and 31C.
- the pressing means 30 can be configured so that both weights of the pressing bodies 31B and 31C act on the print material PM without any pressurizing means.
- the pressing unit 30 can be configured such that the force from the pressurizing unit 37 acts on the print material PM via at least one of the pressing bodies 31B and 31C.
- the three-dimensional printing apparatus can include a heating unit 50 for heating the print material PM on the target surface 3a in the vicinity of one of the pressing bodies 31B and 31C.
- the three-dimensional printing apparatus can include a heating unit 50 for heating the print material PM on the target surface 3a in the vicinity of each of the pressing bodies 31B and 31C.
- the position of the pressing body 31, the pressure applied by the pressing body 31, the movement of the pressing body 31, the heating of the material in the vicinity of the pressing body 31, and the like can be comprehensively controlled by the control device 5.
- the condition (pressing condition) when the pressing surface 41 of the pressing body 31 is pressed against the printing material PM is continuously maintained substantially constant as the printing process proceeds.
- the pressing body 31 is constantly pressed against the printing material PM.
- a temporary, periodic, vibrational, or intermittent pressing operation is set.
- the pressurization value in the pressing operation or other conditions changes.
- the pressurization is set to be relatively high, and as a result, the adhesion / adhesion of the print material PM Is improved.
- the number of pressing bodies 31 can be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more.
- the pressing surface 41 of the pressing body 31 can be made flat or have a surface shape with irregularities. Unevenness on the surface of the pressing surface 41 is transferred to the print member PM.
- the pressing surface 41 of the pressing body 31 can have a corrugated shape or a satin shape.
- the pressing body 31 can have a shape like a gear tooth.
- the pressing of the printing material PM by the pressing body 31 is advantageous for the material arrangement having high adhesion and adhesion on the target surface 3a. Further, as a result of prompting the supply of the print material from the head 4 toward the target surface 3a, the supply failure of the print material in the head 4 such as nozzle clogging is suppressed. Furthermore, such a pressing operation is advantageous for improving the quality (such as mechanical characteristics) of the molded product. For example, it is possible to improve the impregnation rate of the fibers with respect to the resin and to suppress the gaps between the print materials (voids in the laminated structure). Further, the smoothness of the surface properties of the laminated surface and the molded product can be improved, and the unevenness of fibers in the resin can be suppressed. Heating the printing material in the vicinity of the pressing body 31 is advantageous for speeding up the molding and simplifying the apparatus.
- the pressing means 30 is attached to the tip portion 23 of the nozzle 7.
- the pressing means 30 causes the platform to discharge the filament FL discharged from the discharge port 23 a behind and below the discharge port 23 a of the nozzle 7. 3 is pressed.
- the pressing means 30 includes a rotating body 31 that is rotatably supported by the nozzle 7. A plurality of the rotators 31 are arranged around the discharge port 23a.
- the plurality of rotating bodies 31 are arranged in an annular shape around the center O of the discharge port 23a.
- the plurality of rotating bodies 31 are rotatably supported via the wire shaft 32.
- the wire shaft 32 is formed in an annular shape that penetrates the plurality of rotating bodies 31. Portions facing the platform 3 on the peripheral surfaces (pressing surfaces) of the plurality of rotating bodies 31 are movable in the radial direction around the discharge port 23a. Further, the plurality of rotating bodies 31 can rotate independently of the wire shaft 32.
- the main part of the wire shaft 32 is supported by a support member 33.
- the support member 33 grips the wire shaft 32 exposed between the adjacent rotating bodies 31.
- a plurality of the support members 33 are provided at intervals in the circumferential direction of the wire shaft 32.
- the support member 33 is suspended downward from the side of the tip 23 of the nozzle 7.
- the wire shaft 32 is detachably attached to the support member 33.
- an arc-shaped fitting groove for example, a cylindrical member cut in a straight line along the axial direction and made elastically deformable so as to open the cut
- the shaft 32 can be easily attached and detached.
- Rotating body 31 is a roller having a circumferential surface with a predetermined width.
- the filament FL can be uniformly pressed with a constant width without giving a discharge resistance.
- a spherical shape, an elliptical shape, a barrel shape, or the like can be employed as the rotating body 31 .
- the rotary body 31 you may arrange
- a surface treatment or minute unevenness may be formed on the peripheral surface of the rotating body 31 so that the filament FL is easily separated from the peripheral surface of the rotating body 31.
- the peripheral surface of the rotator 31 may be coated with fluorine, or the peripheral surface of the rotator 31 may be formed of a porous ceramic or the like, and minute irregularities may be formed on the peripheral surface of the rotator 31.
- the peripheral surface of the rotating body 31 may have a dimple structure like the surface of a golf ball.
- the rotating body 31 presses the filament FL discharged from the discharge port 23 a against the platform 3 below the discharge port 23 a of the nozzle 7. That is, the distance D2 from the lower end of the rotating body 31 to the platform 3 is smaller than the distance D1 from the discharge port 23a platform 3 to the discharge port 23a.
- the distance D2 is managed to be smaller than the width W (the diameter of the discharge port 23a) in which the filament FL is discharged in order to press the filament FL against the platform 3.
- the distance D2 is about 60% to 90% of the width W, and preferably about 70% to 80% of the width W.
- the above numerical value is an example, and the present invention is not limited to this.
- the user when using the three-dimensional printing apparatus 1, the user prepares three-dimensional data of a structure as shown in the flowchart of FIG. 7 (step 101).
- the three-dimensional data may include various parameters (mixing parameters) for specifying the blending state of the filament and the carbon fiber, including the position where the carbon fiber is contained, in addition to the parameters that specify the shape of the structure. it can.
- the user inputs the shape data of the structure to the storage device of the control device 5.
- the shape data is three-dimensional data (three-dimensional model data), which is sliced by a control program and converted into a stack of two-dimensional data. Furthermore, the printing process in the two-dimensional data of each layer is determined by the control program.
- the control program determines the travel route of the nozzle 7 based on the determined two-dimensional data.
- control device 5 feeds the filament FL and the carbon fiber FB, and laminates the material on the platform 3 (step 102). That is, the control device 5 moves the head 4 by controlling the head driving device 13 in accordance with the determined travel path of the nozzle 7. At the same time, the material feed device 8 and the fiber introduction device 9 of the head 4 are controlled to discharge the filament FL and impregnate the filament FL with the carbon fiber FB. At this time, the filament FL can be softened by the filament heating device 21.
- the fiber introduction device 9 is controlled so as to be synchronized with the material feed device 8, and the softened filament FL is impregnated into the carbon fiber FB introduced into the cylindrical portion 22 of the nozzle 7.
- a filament FL containing carbon fibers softened print material
- the print material is drawn and printed in a predetermined pattern on the platform 3.
- the print material on the platform 3 is pressed against the pressing surface in a state where the movement of the pressing surface of the rotating body 31 with respect to the head 4 is allowed.
- the filament FL disposed on the platform 3 is heated by a platform heating device (not shown), and the softened state of the filament FL is maintained.
- control device 5 controls the cutting device 10 so that the carbon fiber FB is not supplied to a portion that does not require the carbon fiber. Specifically, the carbon fiber FB introduced from the fiber introduction device 9 is cut and the introduction of the carbon fiber FB is stopped based on the three-dimensional data in which the position to contain the carbon fiber is designated. Thereby, the structure containing the fiber part in which the carbon fiber FB is introduced and the resin part formed only with the resin can be manufactured. By solidifying the laminated structure formed by the lamination process, a three-dimensional structure (fiber-containing object) is formed (step 103).
- FIG. 8 is a plan view showing an example of a travel route of the nozzle 7.
- the travel path of the nozzle 7 is a right angle including the first straight line portion L1, the second straight line portion L2, and the bent portion L12 connecting the first straight line portion L1 and the second straight line portion L2. It is a travel route.
- Fig.8 (a) shows the arrangement
- FIG. 8B shows the travel path of the nozzle 7 not provided with the pressing means 30 and the arrangement state of the filaments FL discharged along the travel path.
- the filament FL discharged from the nozzle 7 is caused by the viscosity of the resin on the surface when discharged onto the platform 3 (attracted). Tension is applied to the carbon fiber bundle C, and the carbon fiber bundle C is continuously pulled out from the nozzle 7.
- the filament FL immediately after being discharged from the discharge port 23 a is in a state of being floated or lightly attracted to the platform 3. For this reason, when the nozzle 7 bends from the first straight line portion L1 to the second straight line portion L2, the filament FL that is floated or lightly attracted is pulled by the nozzle 7 and peeled off, and is spaced apart from the bent portion L12. It will be.
- the pressing means 30 when the pressing means 30 is provided, the pressing means 30 is located behind and below the discharge port 23a of the nozzle 7 that continuously discharges the filament FL onto the platform 3 (see FIG. 8). 5), the filament FL discharged from the discharge port 23a is pressed against the platform 3. Thereby, the filament FL can be reliably bonded along the traveling path. Therefore, as shown in FIG. 8A, the filament FL can be disposed along the bent portion L12, and a product having a complicated shape including a right angle and an acute angle (for example, a honeycomb structure) can be manufactured. Become.
- the carbon fiber bundle C can be satisfactorily pulled out from the nozzle 7 by reliably adhering the filament FL to the platform 3 by the pressing means 30, and clogging of the nozzle 7 is suppressed. be able to. Further, when a void (bubble) is included in the filament FL, the void can be released to the outside by the pressing of the pressing means 30, so that the quality of the product can be improved.
- a void bubble
- a plurality of rotating bodies 31 are arranged around the discharge port 23a, and the plurality of rotating bodies 31 are rotatable in a radial direction around the discharge port 23a. Even if the nozzle 7 moves in any direction on the plane, any one of the plurality of rotating bodies 31 is arranged behind the nozzle 7, and the filament FL discharged from the discharge port 23a can be pressed against the platform 3. .
- the three-dimensional printing apparatus 1 includes the nozzle 7 capable of continuously discharging the filament FL on the platform 3 and the nozzle 7 at least intersecting the platform 3.
- the header driving device 13 is moved relative to the plane formed along the plane formed by the first axis (X axis) and the second axis (Y axis), and the nozzle 7 is moved in the plane direction with respect to the platform 3 by the header driving device 13.
- the three-dimensional printing apparatus 1 includes a pressing unit 30 ⁇ / b> A having a rotating body moving unit 34.
- the rotating body moving means 34 changes the position of the rotating body 31 around the Z axis around the discharge port 23a of the nozzle 7 (roll movement of the rotating body 31 around the Z axis).
- the pressing means 30 ⁇ / b> A has a single rotating body 31.
- the nozzle 7 moves (movement of the head 4 in the XY plane)
- the pressing body 31 moves around the nozzle 7 in the circumferential direction via the rotating body moving means 34 so that the print follows the nozzle 7.
- a rotating body 31 is arranged behind the nozzle 7 in the traveling direction.
- a bearing in which an inner ring is detachably fitted to the peripheral surface of the nozzle 7 can be exemplified.
- a rotating body 31 is attached to the outer ring of the bearing.
- the rotating body 31 can be moved to the rear of the nozzle 7.
- the number of the rotary bodies 31 can be reduced and the weight of the nozzle 7 can be reduced.
- the rotary body 31 can be brought close to the discharge outlet 23a compared with the form of FIG.
- the rotating body moving means 34 employs a configuration in which a weight is attached to the rotating body 31 and the inertial force accompanying the movement of the nozzle 7 is used to promote the movement of the rotating body 1 to the rear of the nozzle 7. Also good. Further, as the rotating body moving means 34, a large disk is attached to both shaft portions of the rotating body 31, and the rotating body 31 is rotated on the platform 3 so that the rotating body 31 is a nozzle like a caster. 7 may be adopted. In addition, a configuration may be adopted in which a driving unit such as a motor is provided in the rotating body moving means 34 and the rotating body 31 is moved to the rear of the nozzle 7 by electrical driving.
- a driving unit such as a motor
- FIG. 10 shows a modification of the embodiment of FIG.
- the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
- the pressing means 30 ⁇ / b> B is configured such that the rotating body 31 can roll around the Z axis around the discharge port 23 a of the nozzle 7, and the rotating body 31 can swing around the axis orthogonal to the Z axis. It is comprised so that it may become.
- the pressing unit 30 ⁇ / b> B includes a single rotating body 31, a rotating body moving unit 34 similar to that in FIG. 9, and a swing mechanism 35.
- the swing mechanism 35 includes a swing arm 35 a having a first end that supports the central shaft of the rotating body 31 and a second end connected to the rotational movement means 34. At the second end, the swing arm 35 a is rotatably supported with respect to the rotational movement means 34. In the configuration of FIG.
- the pressing body 31 comes into contact with the platform 3 or the print material PM on the platform 3, and the swing arm 35 a
- the pressing body 31 supported by the first end of the swing arm 35a is swing-moved around the second end.
- the rotating body 31 is disposed behind the nozzles 7 in the print traveling direction PD.
- the weight of at least a part of the pressing means 30B acts on the print material PM on the target surface 3a via the pressing surface 41.
- a pressing operation can be realized against the print material PM on the target surface 3 a with a simple configuration using one rotating body 31.
- a material arrangement having high adhesion and adhesion on the target surface 3a is realized, and a printing material supply failure in the head 4 is suppressed.
- a configuration may be adopted in which the wire shaft 32 described above is formed in a hollow structure and a rotating body 31 is heated by passing a heater (heating wire).
- a heater heating wire
- the several rotary body 31 is arrange
- the structure which covers the clearance gap between the rotary bodies 31 with the outer side rotary body 31 may be sufficient.
- the some rotary body 31 may have another rotating shaft, respectively. That is, a configuration in which the wire shaft 32 is divided may be employed.
- the rotating body 31 is illustrated as the pressing unit 30.
- a non-rotating pressing unit such as a leaf spring may be employed.
- the platform 3 in order to enable the three-dimensional arrangement of the filament FL and the carbon fiber bundle C, the platform 3 can be moved up and down and the head 4 can be moved horizontally.
- the head 4 in order to enable the three-dimensional arrangement of the filament FL and the carbon fiber bundle C, the head 4 is movable up and down and horizontally by, for example, a robot arm, while the platform 3 is fixed. It can be set as such a structure. Moreover, it is good also as a structure which fixes the head 4 while making the platform 3 movable vertically and horizontally.
- Various configurations can be applied as a unit capable of freely controlling the relative position and posture (tilt, rotation angle, etc.) between the platform 3 and the head 4.
- the carbon fiber is used as the fiber impregnated with the filament FL.
- the fiber is not limited to this as long as it functions as a reinforcing material.
- glass fiber, resin fiber, or aramid fiber can be used.
- the fibers can include first fibers and second fibers that are different from each other.
- the fibers can include first fibers and second fibers that are similar in material and have different shapes and / or structures and twisting conditions.
- the fiber can also include three or more types of fiber elements.
- Fiber is not limited to functioning as a reinforcing material.
- Functions added / controlled by the fiber include, for example, physical functions (stiffness, weight, flexibility, toughness, extensibility, elasticity, bending strength, partial reinforcement (density, strength due to tissue structure), and wear resistance. ), Electrical functions (chargeability, conductivity, etc.), optical functions (transparency, gloss, color, UV cut, reflection, letters, patterns, appearance, etc.), chemical functions (flame retardant, antibacterial) Properties, acid resistance, alkali resistance, chemical resistance, substance absorbability, metal adsorption, weather resistance, thermal characteristics, heat retention, cold retention, etc.).
- a plurality of fiber introduction devices 9 may be provided to introduce a plurality of carbon fibers FB into the filament FL.
- the carbon fiber FB may be introduced from one fiber introduction device 9 and the glass fiber may be introduced from the other fiber introduction device 9.
- carbon fiber can be introduced into a portion where rigidity is required, and glass fiber can be introduced into a portion where ductility is required.
- a thermoplastic resin is used as the resin as the base body constituting the filament FL.
- other resins can be used as long as the softened state and the cured state can be artificially controlled. is there.
- a photo-curing resin may be employed and the softened resin may be cured by the action of light energy.
- the resin as the base material can include a first resin and a second resin that are different from each other.
- the resin as the base material may include a first resin and a second resin that are similar in material and have different shapes and / or structures.
- the resin as the base material can also include three or more types of resin elements.
- the filament FL as the first continuous material and the carbon fiber FB as the second continuous material are individually fed to the head 4, and the filament FL and the carbon fiber FB are inside or near the nozzle 7.
- a configuration in which the coupling position is coupled to the head 4 rearward (upstream) can be applied.
- a configuration in which a continuous material in which the filament FL and the carbon fiber FB are combined in advance is fed to the head 4 can be applied.
- the carbon fiber FB is introduced into the filament FL.
- the pressing means described above may be applied even when the filament FL (resin) alone is discharged. That is, the three-dimensional printing apparatus 1 can stop the introduction of the carbon fiber FB, and can manufacture a structure including a fiber part into which the carbon fiber FB is introduced and a resin part that is formed of only a resin.
- voids of the resin filament can be reduced by pressing the pressing means, so that the strength of the structure can be improved.
- the three-dimensional printing apparatus includes a nozzle capable of continuously discharging linear filaments including resin and fibers on an object to be ejected, and the nozzle at least on the object to be ejected.
- the moving means that moves relatively in the plane direction along the plane formed by the first axis and the second axis that intersect each other,
- a pressing unit that presses the filament discharged from the discharge port against the discharge target behind and below the discharge port of the nozzle.
- the pressing means may include a rotating body that is rotatably supported by the nozzle.
- a plurality of the rotating bodies may be disposed around the discharge ports, and the plurality of rotating bodies may be rotatable in a radial direction around the discharge ports.
- the pressing unit may include a rotating body moving unit that moves the rotating body to the rear of the nozzle.
- the pressing means disposed behind the nozzle that continuously discharges the linear filament containing the resin and the fiber onto the object to be discharged is located behind the nozzle outlet. And below, the filament discharged from the said discharge outlet is pressed against a to-be-discharged object.
- the filament can be reliably bonded to the object to be discharged, the filament can be dragged out from the nozzle satisfactorily, and peeling of the filament from the object to be discharged can be suppressed. Therefore, clogging of a nozzle that discharges a linear filament containing resin and fibers is suppressed, and a three-dimensional printing apparatus that can manufacture a product having a complicated shape is obtained.
- SYMBOLS 1 Three-dimensional printing apparatus, 4 ... Head, 5 ... Control apparatus (controller), 6 ... Head main body, 7 ... Nozzle, 9 ... Fiber introduction apparatus (fiber introduction means), 10 ... Cutting apparatus (cutting means), 11 ... Platform drive device, 13 ... head drive device (moving means), 23a ... discharge port, 30, 30A, 30B ... pressing means, 31 ... rotating body, 34 ... rotating body moving means, 41 ... pressing surface, FB ... carbon fiber ( Fiber), FL ... filament (resin), PM ... printing material.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
Abstract
3次元プリンティング装置(1)は、線状のプリント材料がフィードされるヘッド(4)と、ヘッド(4)とターゲット面(3a)との間の相対移動を行う駆動装置と、コントローラと、ターゲット面(3a)上のプリント材料に当接可能に配される押付面(41)を有する押付手段(30)と、を備える。押付手段(30)は、ヘッド(4)に対する押付面(41)の動きを許容するように構成されている。
Description
本発明は、プリント材料を連続的に配置した後、固化させることによって構造物を形成する3次元プリンティング装置及び3次元プリンティング方法に関する。
本願は、2016年2月29日に出願された特願2016-037437号に基づき優先権を主張し、その内容をここに援用する。
本願は、2016年2月29日に出願された特願2016-037437号に基づき優先権を主張し、その内容をここに援用する。
例えば、立体的な形状を有する物体を造形する装置として、3次元プリンティング装置が知られている(例えば特許文献1参照)。3次元プリンティング装置は、比較的高いコストのかかる金型や治具などを必要とせずに三次元形状の物体を容易に造形することができ、また、既存技術では形成が難しい三次元形状の物体も造形することができる。3次元プリンティング装置の中でも、熱で融解した樹脂を少しずつ積み重ねていく熱溶解積層方式は、装置の製造コストが比較的低いため、製造業において部品の試作などに使用されている。
一方で、金属材料よりも比剛性や比強度に優れる炭素繊維強化プラスチック(Carbon-fiber-reinforced plastic,CFRP)や、炭素繊維強化熱可塑プラスチック(Carbon-fiber-reinforced thermoplastics,CFRTP)は、例えば、燃費削減のために軽量化が求められる自動車への適用が進められている。3次元プリンティング装置を用いてCFRTP部品を成形することができれば、成形コストの削減を図ることはもちろん、複雑形状の造形も可能となる。
ところで、現状の熱溶解積層方式の3次元プリンティング装置では、加熱して軟化した樹脂と繊維とのフィラメントをノズルから押し出す機構となっているが、ノズルが目詰まりを起こすことがあった。すなわち、この3次元プリンティング装置では、実際には、被吐出対象物の上に吐出された(引き付いた)フィラメントの表面にある樹脂の粘性によって当該樹脂に含浸した繊維に張力が付与され、ノズルから連続的に繊維を引きずり出しているという実態がある。フィラメントが被吐出対象物に対し接着不十分であると、繊維の引きずり出しが上手くいかず、繊維がノズルで目詰まりを起こす。
また、フィラメントが被吐出対象物に対し接着不十分であると、直角や鋭角の曲がり部をプリントする際に、フィラメントが被吐出対象物から剥がれて、当該曲がり部に沿ってフィラメントを配置することが困難になる。このため、直角や鋭角の曲がり部を含む複雑形状の製品を製造することができなかった。
本発明にかかる態様の目的は、プリント材料の供給不良を抑制し、複雑形状の製品を製造することができる3次元プリンティング装置及び3次元プリンティング方法を提供することにある。
本発明の一態様によれば、線状のプリント材料がフィードされるヘッドと、前記ヘッドとターゲット面との間の相対移動を行う駆動手段と、コントローラと、前記ターゲット面上の前記プリント材料に当接可能に配される押付面を有する押付手段と、を備え、前記押付手段は、前記ヘッドに対する前記押付面の動きを許容するように構成されている、三次元プリンティング装置が提供される。
本発明の別の態様によれば、3次元モデルデータを用意する工程と、3次元モデルデータに基づいて、プリント材料を積層する工程であり、前記プリント材料をヘッドにフィードする工程と、前記ヘッドからの前記プリント材料をターゲット面上に描画する工程であり、前記ヘッドに対する押付面の動きが許容された状態で、前記ターゲット面上の前記プリント材料が前記押付面に押し付けられる、前記工程と、を含む、3次元プリンティング方法が提供される。
本発明にかかる態様によれば、押付手段によりターゲット面上に材料が確実に配置される。その結果、プリント材料の供給不良が抑制され、複雑形状の製品を製造することができる3次元プリンティング装置が得られる。
以下、本発明の実施形態の3次元プリンティング装置について図面を参照して説明する。図面において、説明の便宜上、いくつかの部分が拡大され又は省略されているが、図面に表されている各構成要素の寸法比率などが実際と同じであるとは限らない。
一実施形態において、3次元プリンティング装置は、線状(糸状)のプリント材料(連続材料)を板状の被吐出対象物(ターゲット、ターゲット面)であるプラットホームの上に連続的に配置することによって構造物を形成する装置である。一例において、3次元プリンティング装置は、プリント材料を軟化状態でプラットホームに積層した後、固化させることによって、主に三次元構造物を形成する装置(3Dプリンタ、3次元プリンティングシステム)である。被吐出対象物(ターゲット、ターゲット面)には、プラットホームの他に、物体上に積層されたプリント材料の積層構造体(構造物)も含まれる。
構造物の原材料となるプリント材料(フィラメント)は、主に、樹脂を含む、又は主に樹脂及び繊維を含むことができる。樹脂(樹脂フィラメント)として、例えば、PLA樹脂(polylactic acid、ポリ乳酸)、ABS樹脂、ナイロン樹脂、PET樹脂(polyethylene terephthalate)、アクリル樹脂などが挙げられる。一例において、プリント材料は、熱可塑性樹脂に、炭素繊維やガラス繊維などの強化繊維を含浸させ、線状に形成したものである。上記以外の熱可塑性樹脂もフィラメントとして適用可能である。例えば、予め樹脂に繊維を含浸させたフィラメントが、所定のリール(ボビン)に巻回された収容状態から取り出され、ノズルに供給される。プリント材料は、中心軸に沿って連続的に延在した連続材料にできる。一例において、プリント材料は、軸方向の全体にわたり同じ断面形状を有する。他の例において、プリント材料は、部分的に異なる断面形状を有することができる。プリント材料の断面形状として、円(又は楕円)に限定されず、様々な形状が適用可能である。プリント材料の収容状態は、巻回タイプに限定されない。
一実施形態において、図1に示すように、3次元プリンティング装置1は、ケーシング2と、ケーシング2内に配置されたプラットホーム(支持部材、パッド)3と、プラットホーム3にフィラメントFLを供給するヘッド(プリンタヘッド)4と、制御装置(コントローラ)5と、押付手段(加圧手段、スムーザ、プッシャ)30と、を主な構成要素として有している。図1において、矢印Zは鉛直方向(上下方向)を示し、矢印Xは水平方向の一方向を示し、矢印Yは水平方向であってZ方向及びX方向に直交する方向を示している。
一実施形態において、ヘッド4は、ヘッド本体6と、ノズル7と、ノズル7にフィラメント(樹脂材料、ベース材料、樹脂を含む第1連続材料)FLをフィードする材料フィード装置(樹脂押込装置、材料フィーダ、第1フィーダ)8と、連続的に形成された炭素繊維(炭素繊維束、繊維、機能材料、繊維を含む第2連続材料)FBをフィラメントFLに供給する繊維導入装置(繊維ガイドユニット、繊維フィーダ、第2フィーダ、繊維導入手段)9とを有する。また、3次元プリンティング装置1は、炭素繊維FBを切断する切断装置(切断ユニット、カッター、切断手段)10と、フィラメントFLを加熱するフィラメント加熱装置(樹脂軟化ユニット、ヒータ、第1加熱ユニット)21とを有している。一例において、フィラメント加熱装置21の少なくとも一部がノズル7に設けられている。一例において、材料フィード装置8は、ノズル7にフィラメントFLを押し込みながらフィラメントFLをフィードするように構成される。
一実施形態において、ケーシング2は、箱形状の筐体である。一例において、ケーシング2の前面に、作業用の窓(開口)が設けられる。ケーシング2内には、プラットホーム3、ヘッド4などが収容されている。ケーシング2は、必要に応じて室内の環境を制御する環境制御ユニット(不図示)を備えることができる。
一実施形態において、プラットホーム3は、ケーシング2の底面2aと平行な矩形板(ベースプレート)を有する。プラットホーム3は、ヘッド4の下方であって、ケーシング2の底部近傍に配置されている。一例において、プラットホーム3は、プラットホーム駆動装置11によってZ方向(鉛直方向)に沿って上下移動可能に駆動される。一例において、プラットホーム3には、配置されたフィラメントFLを加熱するためのプラットホーム加熱装置(図示せず)が設けられている。換言すれば、プラットホーム3は、プラットホーム3上に配置されたフィラメントFLを加熱する機能を有している。プラットフォーム加熱装置として、プレートヒータ、面ヒータ等の他、プラットフォーム上の樹脂の温度を制御可能な様々な機構が適用可能である。
一実施形態において、ヘッド4は、プラットホーム3上の任意の位置にフィラメントFLを配置する吐出装置(押出装置)としての機構を備える。一例において、ヘッド4は、樹脂を含む第1材料(フィラメントFL)と繊維を含む第2材料(炭素繊維FB)とがフィードされるように構成されている。ヘッド4(ヘッド本体6)は、ヘッド駆動装置13(移動手段)によってプラットホーム3に平行な平面(第1軸(X軸)と第2軸(Y軸)によって形成される平面)に沿って少なくとも二次元に移動可能に構成されている。プラットホーム3が上下動自在であることによって、ヘッド4のノズル7(ヘッド本体6)とプラットホーム3との距離(及び相対位置関係)は自在に調整可能である。
一実施形態において、ヘッド駆動装置13は、プラットホーム3と平行な面上の任意の位置にヘッド4が移動可能となるように、ヘッド4を駆動する。例えば、プラットホーム3は、Z軸方向(鉛直方向)に直交する支持面を有しており、ヘッド駆動装置13は、ヘッド4を水平方向に移動させる。
ヘッド駆動装置13は、ヘッド4をプラットホーム3と平行な面上に沿う第一方向(X軸方向)に移動させるX軸駆動装置14と、ヘッド4をプラットホーム3と平行な面上に沿う第一方向と直交する第二方向(Y軸方向)に移動させるY軸駆動装置15とを有する。一例において、X軸駆動装置14とY軸駆動装置15とは、ステッピングモータと、ボールねじなどの直動機構を組み合わせた構成を有することができる。
ヘッド駆動装置13は、様々なタイプを適用できる。例えば、ヘッド駆動装置13は、ロボットアームを有することができる。一例において、ロボットアームを用いて、ヘッド4がプラットホーム3と平行な面に沿って移動可能である。別の一例において、ヘッド4は、三次元に移動可能、あるいは6自由度(X、Y、Z、θX、θY、θZ)に移動可能に構成できる。X軸方向、Y軸方向、及びZ軸方向におけるヘッド4とプラットフォーム3との相対的な位置関係に加え、傾き及び回転角度の少なくとも一部に関する姿勢が調整可能となるように、ヘッド4を構成できる。
一例において、ヘッド4は、糸状のフィラメントFLをフィラメント加熱装置21によってフィラメントの融点近傍まで加熱した後、ノズル7を用いて、軟化状態のフィラメントFLを所定の太さで吐出するように構成される。
ノズル7は様々な形状を適用可能である。一実施形態において、ノズル7は、円筒状を有する筒部22と、筒部22の一端に設けられた先端部23とを有している。先端部23には、フィラメントFLを吐出する吐出口(開口、ノズル開口、出口開口)23aが設けられている。吐出口23a(先端部23)は、吐出するフィラメントFLの目標太さに応じて設定される。例えば、ノズル7を別のノズルに交換することで、ノズル開口を変更することができる。一例において、ノズル7には、後述する押付手段30が取り付け可能である。ノズル7は、ヘッド本体6に取り付けることができる。追加的及び/又は代替的に、複数のノズル7を1つのヘッド4に設けることができる。ヘッド4における入口(入口ポート)の数と出口(出口ポート)の数は同じでもよく異なってもよい。
フィラメント加熱装置21は様々なタイプが適用可能である。一例において、フィラメント加熱装置21は、その少なくとも一部が筒部22の外周面に固定されている。フィラメント加熱装置21の加熱方法としては、例えば、熱板加熱(面ヒータ、プレートヒータ、アルミ箔ヒーター)、高周波加熱、誘導加熱、超音波加熱、ガス加熱、レーザ加熱などが挙げられる。
一実施形態において、材料フィード装置8は、フィラメントFLをフィードするように構成される。一例において、材料フィード装置8は、フィラメントFLをノズル7の入口ポートに押し込むように構成される。一例において、材料フィード装置8は、一対のフィラメント駆動ローラ(ギア)16と、フィラメント駆動ローラ16の少なくとも1つを駆動するモータ17と、を有している。駆動ローラ16の1つをプッシャーピン(不図示)に置換してもよく、又は補助的にプッシャーピンを設けてもよい。一例において、モータ17として、ステッピングモータが適用される。他の例において、モータ17として、フィラメント駆動ローラ16を任意の速度で駆動可能な、サーボモータなど他の様々なモータが適用可能である。追加的及び/又は代替的に、材料フィード装置8は、1つのヘッド4に対して、複数のフィラメント(複数の第1連続材料)FLをフィードするように構成できる。
一例において、フィラメント駆動ローラ16は、タイヤ形状のローラと、ローラの外周面に形成された周方向に延びるフィラメント保持溝とを有することができる。一対のフィラメント駆動ローラ16の一対のフィラメント保持溝によってフィラメントFLのためのギャップが形成される。そのギャップ内に配置されたフィラメントFLが一対のローラ16に挟まれるように、フィラメント駆動ローラ16が配置されている。フィラメント駆動ローラ16の回転速度は、例えば、ヘッド4のノズル7から供給されるフィラメントFLの供給量に応じて制御されている。
一実施形態において、繊維導入装置9は、炭素繊維FBをフィードするように構成される。一例において、繊維導入装置9を介して炭素繊維FBがノズル7の入口に案内される。繊維導入装置9は、材料フィード装置8のフィラメント押込構造と同様の繊維押込構造を有することができる。一例において、繊維導入装置9は、繊維を送るフィーダとして機能する一対の繊維駆動ローラ(ギア)18と、一対の繊維駆動ローラ18の少なくとも1つを駆動するモータ19と、を有している。一例において、制御装置5は、材料フィード装置8と繊維導入装置9とを個別に制御するように構成される。駆動ローラ18の1つをプッシャーピンに置換してもよく、又は補助的にプッシャーピンを設けてもよい。他の例において、材料フィード装置8の駆動力によって炭素繊維FBがフィードされる場合、モータ19を省く構成とすることができる。炭素繊維FBにおける繊維要素としては、一例において、アクリル繊維を使用した炭素繊維であるPAN系(Polyacrylonitrile)炭素繊維を採用することができる。他の例において、繊維要素としては、Pitch系炭素繊維を用いることができる。炭素繊維に換えて、ガラス繊維、アラミド繊維(ケブラー等)、又は繊維強化複合材料に使用される繊維からなる繊維束等を用いることが可能である。繊維の種類は、上記に限定されない。追加的及び/又は代替的に、繊維導入装置9は、1つのヘッド4に対して、複数の繊維FB(複数の第2連続材料)FBをフィードするように構成できる。追加的に、繊維導入装置9は、繊維FB(又は繊維要素)の流れを整えるように配置された櫛部材(不図示)を有することができる。一例において、櫛部材は、繊維FB(又は繊維要素)の捻じれを緩和する又は解消するように配置される、あるいは、複数の繊維FB(又は複数の繊維要素)を揃える又は纏めるように配置される。
繊維導入装置9において、材料フィード装置8とフィラメント加熱装置21との間から炭素繊維FBを導入するように構成されている場合、ノズル7に対して後方位置(上流位置)において、フィラメントFLと炭素繊維FBとが結合される。なお、炭素繊維FBを導入する位置(結合位置)は、これに限定されない。例えば、ノズル7とプラットホーム3との間(ノズル7に対して前方位置(下流位置))にて炭素繊維FBを導入する構成としてもよい。
一例において、炭素繊維(複合繊維)FBは、複数の繊維要素とサポート部材とを有する。サポート部材の周面に、複数の繊維要素が巻かれている。複数の繊維要素が線状のサポート部材によって支持されている。一例において、複数の炭素繊維がサポート部材の外周面に接着剤などによって固定されている。サポート部材の材料としては、例えば、樹脂(合成樹脂、フッ素樹脂を含む)、金属、複数要素からなる複合材などが挙げられる。一例において、サポート部材は、POM(ポリアセタール樹脂)などのプラスチックによって形成されている。サポート部材を形成する材料としては、弾性を有するものが好ましく、金属製のワイヤなどの採用も可能である。なお、サポート部材は、プリント材料の一部としてプラットホーム3上にフィードされてもよい。あるいは、プリント材料(繊維要素)からサポート部材を分離して、サポート部材がプラットホーム3上にフィードされないようにしてもよい。別の例において、炭素繊維FBは、複数の繊維要素と複数のサポート部材とが一緒に撚糸された構造を有することができる。あるいは、炭素繊維FBは、複数の繊維要素と、中空タイプのサポート部材とを有する構造を有することができる。あるいは、炭素繊維FBは、複数の繊維要素と、多層型のサポート部材とを有する構造を有することができる。さらに別の例において、炭素繊維FBは、サポート部材の内側に繊維要素が収容された構造、又は繊維要素がサポート部材(コーティング材)で覆われた構造を有することができる。あるいは、炭素繊維FBは、サポート部材の内側に複数の繊維要素が収容された構造、又は複数の繊維要素がサポート部材(コーティング材)で覆われた構造を有することができる。さらに別の例において、炭素繊維FBは、サポート部材を省いた構造を有することができる。炭素繊維FBは、複数の繊維要素の比較的密な撚糸構造を有する。あるいは、炭素繊維FBは、複数の繊維要素の比較的疎な撚糸構造を有する。
一実施形態において、切断装置10は、繊維導入装置9によって導入される炭素繊維FBを切断する切断ユニットを有する。一例において、切断装置10は、繊維導入装置9の下流側かつノズル7の上流側に配置された切断ユニットを有する。この場合、切断ユニットは、フィラメントFLと炭素繊維FBとが結びつく結合位置(例えばノズル7)に対して後方(上流側)に配される後方切断位置(上流切断位置)を有する。切断ユニット(切断装置10)は、繊維導入装置9からフィードされる(例えば、押し込まれる)炭素繊維FBを切断するように構成されている。切断ユニットは、制御装置5からの指示に基づくタイミングで、炭素繊維FBを切断することができる。他の例において、切断装置10は、ノズル7の下流側に配置された切断ユニットを有する。切断ユニットは、フィラメントFLと炭素繊維FBとが結びつく結合位置(例えばノズル7)に対して前方(下流側)に配される前方切断位置(下流切断位置)を有する。この場合、切断ユニットは、ノズル7から押し出される、プリント材料を切断するように構成されている。切断ユニットは、制御装置5からの指示に基づくタイミングで、炭素繊維FBを含むプリント材料又は炭素繊維を含まないプリント材料を切断することができる。さらに別の例において、切断装置10は、後方切断位置(上流切断位置)を有する第1切断ユニットと、前方切断位置(下流切断位置)を有する第2切断ユニットとの両方を有することができる。第1切断ユニットは、制御装置5からの指示に基づくタイミングで、炭素繊維FBを切断することができる。第2切断ユニットは、制御装置5からの指示に基づくタイミングで、炭素繊維FBを含むプリント材料又は炭素繊維FBを含まないプリント材料を切断することができる。制御装置5は、炭素繊維FBの切断に際し、第1切断ユニット及び第2切断ユニットのいずれかを選択的に使用する。あるいは、制御装置5は、炭素繊維FBの切断に際し、第1切断ユニット及び第2切断ユニットの両方を実質的同時に使用する。
切断装置10としては、炭素繊維FBを切断可能な様々なタイプが適用可能である。一例において、切断装置10(切断ユニット)は、YAGレーザなどのレーザを用いたレーザ切断装置を適用できる。別の例において、切断装置10(切断ユニット)は、鋸(電動丸鋸など)又はブレードを有する機械的な構成(カッター、ローラカッター)を適用できる。さらに別の例において、切断装置10(切断ユニット)は、超音波切断機を適用できる。さらに別の例において、切断装置10(切断ユニット)は、ガス切断、アーク切断、プラズマ切断等を適用できる。アーク切断の一例において、炭素繊維FBに近接した電極に電圧が与えられ、電極と炭素繊維の間にアークが発生する。アークの熱エネルギーにより炭素繊維FBを切断することができる。一例において、切断時の熱エネルギーの一部を、フィラメントFLの加熱などの加熱プロセスに再利用する構成を適用できる。なお、炭素繊維FB(プリント材料)の切断において、後述するように、ノズル7とプラットホーム3の間の相対速度差を利用してもよい。
一実施形態において、制御装置5は、ヘッド4(ヘッド駆動装置13)、及びプラットホーム3(プラットホーム駆動装置11)、切断装置10などの要素を含む動作装置を統括的に制御するように構成されたコンピュータを有する。具体的には、制御装置5は、ヘッド4などを含む動作装置を制御する制御プログラム、構造物の3Dデータなどを記憶する記憶装置、及び制御プログラムを実行するためのプロセッサ(processor, processing circuitry, circuitry)を有する。
図2に示すように、押付手段30は、ターゲット面(例えば、プラットホーム3の上面)3a上のプリント材料PMに当接可能に配される押付面(当接面、可動面)41を有する押付体31を有する。一例において、押付手段30(押付体31)がヘッド本体6(ヘッド4)に取り付けられ、ヘッド駆動装置13及び/又はプラットホーム駆動装置11によって、ヘッド本体6(ヘッド4)とともに、押付体31(押付手段30)がターゲット面3aに対して相対移動(例えばXY平面における2次元移動、及びZ方向の移動)可能である。すなわち、第1駆動装置(ヘッド駆動装置)13及び/又は第2駆動装置(プラットホーム駆動装置)11は、ヘッド本体6とターゲット面3aとの間の相対移動を行うとともに、押付体31とターゲット面3aとの間の相対移動を行う。他の例において、押付体31がヘッド本体6以外の物体に取り付けられ、他の駆動装置(第3駆動装置)及び/又は第2駆動装置(プラットホーム駆動装置)11によって、押付体31とターゲット面3aとの間の相対移動(例えばXY平面における2次元移動、及びZ方向の移動)を行うことができる。この場合、押付体31(押付手段30)は、ヘッド本体6(ヘッド4)と実質同期的及び/又は非同期に、ターゲット面3a(プラットホーム3)に対して相対移動(例えばXY平面における2次元移動、及びZ方向の移動)するように構成できる。
図2において、押付手段30は、ヘッド4(ヘッド本体6)に対する押付体31における押付面41の動きを許容するように構成されている。一例において、押付体31がヘッド本体6に移動自在に取り付けられる。他の例において、ヘッド本体6に対して押付体31が移動自在になるように、押付体31が別の物体に取り付けられる。押付手段30において、押付面41がターゲット面3aと対向するように配されるとともに、ヘッド4(ヘッド本体6、吐出位置)に対する押付面41の位置及び姿勢の少なくとも1つが変化可能にできる。
また、図2において、押付面41がプリント材料PMに接する状態において、押付面41とターゲット面3aとの間にプリント材料PMが配される。また、押付面41がプリント材料PMに接する状態において、ターゲット面3aからの押付面41からの距離は、ターゲット面3a上のプリント材料PMの厚みと同程度又は小さく設定できる。押付手段30は、押付手段30の少なくとも一部の重みが押付面41を介してターゲット面3a上のプリント材料PMに作用するように構成できる。あるいは、押付手段30は、与圧手段(スプリング、弾性体、流体圧供給装置など)37からの力が押付面41を介してターゲット面3a上のプリント材料PMに作用するように構成できる。
図2(a)において、ヘッド本体6に対して押付体31における押付面41が所定方向に移動する。移動方向は、X方向、Y方向、Z方向、θX方向、θY方向、及びθZ方向の少なくとも1つを有することができる。すなわち、押付手段30において、ヘッド本体6に対する押付面41の位置が変化可能にできる。図2(b)において、ヘッド本体6に対して押付体31における押付面41の姿勢が変化する。一例において、ヘッド本体6に対する押付体31の位置が実質的に固定された状態で、押付面41の姿勢が変化する。他の例において、押付体31の位置が変化するとともに、押付面41の姿勢が変化する。姿勢変化の向きや態様は任意に設定できる。図2(a)及び(b)において、押付手段30は、駆動装置無しで、押付体31の動きが自由であるように、構成できる。あるいは、押付手段30は、押付体31及び/又は接触面40aを駆動する駆動装置34を有することができる。一例において、押付手段30は、押付体31の所定方向の動きが自由であり、押付体31及び/又は接触面40aの別の方向の動きが駆動装置34によって制御されるように、構成できる。図2(c)において、ヘッド本体6に対して押付体31における押付面41が回転運動する。一例において、ヘッド4(ヘッド本体6)又は他の物体上における所定点6aを中心に、回転体(ローラ、押付ローラ、回転接触体)31が回転運動する。回転体31は、回転自在に配されるとともに、回転体31の周面の少なくとも一部を含む押付面41を有する。押付手段30は、駆動装置無しで、回転体31の回転が自由となるように、構成できる。あるいは、押付手段30は、押付体31の回転を駆動する駆動装置34を有することができる。一例において、押付手段30は、押付体31の所定方向の回転が自由であり、押付体31の別方向の回転が駆動装置34によって制御されるように、構成できる。上記の図2(a)、(b)、及び(c)の例は、適宜組み合わせ可能である。
図3に示すように、3次元プリンティング装置は、押付体31の近傍における、ターゲット面3a上のプリント材料PMを加熱するための加熱ユニット(プレヒータ、第2加熱ユニット)50を有することができる。加熱ユニット50は、その少なくとも一部がフィラメント加熱装置(第1加熱ユニット)21とは別に設けられる。一例において、加熱ユニット50は、押付体31を加熱するように構成できる。すなわち、加熱ユニット50は、主に押付体31の押付面41を介して、プリント材料PMを加熱するように構成できる。加熱ユニット50の熱は、押付体31の押付面41及び/又はその近傍の面を介してプリント材料PMに伝わる。その結果、プリント材料PM(樹脂)が軟化及び/又は溶融する。他の例において、加熱ユニット50は、直接的にプリント材料PMを加熱するように構成できる。また、3次元プリンティング装置は、主に炭素繊維FBを加熱するための加熱ユニット(プレヒータ、第3加熱ユニット)51を有することができる。加熱ユニット51の少なくとも一部がフィラメント加熱装置(第1加熱ユニット)21とは別に設けられる。
加熱ユニット50、51は、様々なタイプが適用可能である。加熱方法としては、例えば、熱線加熱、高周波加熱、誘導加熱、超音波加熱、ガス加熱、レーザ加熱などが挙げられる。一例において、加熱ユニット50、51は、電熱線(ニクロム線など)を用いて押付体31又は炭素繊維FBを加熱することができる。あるいは、押付体31又は炭素繊維FBに接する部品が電極とされ、その部品を介して炭素繊維FBが加熱される。あるいは、レーザユニットからのレーザ光がプリント材料PM又は炭素繊維FBに照射される。あるいは、加熱ガスがプリント材料PM又は炭素繊維FBに直接的に供給される。レーザ光又はガスの熱エネルギーを用いて、プリント材料PM又は炭素繊維FBを加熱することができる。なお、レーザユニットは、出力を制御することにより、炭素繊維FBの切断ユニットとして流用することが可能である。
一例において、3次元プリンティング装置は、上述したすべての加熱ユニット40、50、51を備えることができる。他の例において、3次元プリンティング装置は、加熱ユニット50を備え、他の加熱ユニット40、51の少なくとも1つを省く構成にできる。3次元プリンティング装置において、加熱ユニット40が省略される又は加熱ユニット40での必要熱量が低く設定される場合、ノズル7の構成を簡略化できる。例えば、ノズル7における、筒状部材を用いない構成(実質的なノズルレス構造、又は、筒状部材以外の部材(例えばローラ)をノズルとして用いる構成)にできる。これはノズル7における材料詰まり等の不具合の抑制に有利である。
図4に示すように、押付手段30は、複数の押付体31を有することができる。図4(a)において、押付手段30は、プリント進行方向PDにおける、前方位置に配される第1押付体31Aと、後方位置に配される第2押付体31Bとを有する。第1押付体31Aの押付面41Aがターゲット面3a上に過去に配置された最上層のプリント材料PMに接触する。第2押付体31Bの押付面41Bがターゲット面3a上に配置された直後のプリント材料PMに接触する。一例において、3次元プリンティング装置は、第1押付体31Aの近傍における、ターゲット面3a上のプリント材料PMを加熱するための加熱ユニット50Aと、第2押付体31Bの近傍における、ターゲット面3a上のプリント材料PMを加熱するための加熱ユニット50Bとを有することができる。加熱ユニット50Aと加熱ユニット50Bとの間で、供給熱量は実質的に同じにできる。あるいは、加熱ユニット50Aと加熱ユニット50Bとの間で、供給熱量の差を設定できる。例えば、積層される2層のうち、加熱ユニット50Aからの熱により下層のプリント材料PMの主に表面付近が部分軟化及び/又は部分溶融し、加熱ユニット50Bからの熱により積層される上層のプリント材料PMが全体的に軟化及び/又は溶融するように設定される。熱量の制御は、プリント材料PM同士の密着性・接着性の向上に有利である。
図4(b)において、押付手段30は、第2押付体31Bと第3押付体31Cとを有し、その両方がプリント進行方向PDにおける後方位置に配される。プリント工程において、第2押付体31Bの押付面41Bがプリント材料PMに接した後に、第3押付体31Cの押付面41Cがプリント材料PMに接する。一例において、第2押付体31Bは、第3押付体31Cと実質的に同じ形状を有する。他の例において、第2押付体31Bと第3押付体31Cとの間で、形状が異なる。例えば、第2押付体31Bが回転体であり、第3押付体31Cが第2押付体31Bに比べて大又は小の直径を有する回転体にできる。一例において、押付手段30は、駆動装置無しで、両方の押付体31B、31Cの動きが自由であるように、構成できる。他の例において、押付手段30は、押付体31B、31Cの少なくとも1つを駆動する駆動装置34を有することができる。一例において、押付手段30は、与圧手段無しで、押付体31B、31Cの両方の重みがプリント材料PMにそれぞれ作用するように構成できる。他の例において、押付手段30は、与圧手段37からの力が、押付体31B、31Cの少なくとも1つを介してプリント材料PMに作用するように構成できる。例えば、押付体31B、31Cの一方が自重によりプリント材料PMに押接され、押付体31B、31Cの他方が与圧手段37からの力によりプリント材料PMに押接される。一例において、3次元プリンティング装置は、押付体31B、31Cの一方の近傍における、ターゲット面3a上のプリント材料PMを加熱するための加熱ユニット50を有することができる。他の例において、3次元プリンティング装置は、押付体31B、31Cの各々の近傍における、ターゲット面3a上のプリント材料PMを加熱するための加熱ユニット50を有することができる。
押付体31の位置、押付体31による与圧、押付体31の運動、押付体31の近傍材料に対する加熱、などが制御装置5によって統括的に制御可能である。一例において、押付体31の押付面41がプリント材料PMに押付される際の条件(押付条件)が、プリント工程の進行に伴って、実質的に一定のまま連続的に維持される。例えば、プリント工程において、プリント材料PMに押付体31が常時的に押付される。他の例において、一時的、周期的、振動的、又は間欠的な押付動作が設定される。あるいは、プリント工程において、押付動作における与圧値、又は他の条件が変化する。例えば、始点、非直線パターン、角部(直角、鋭角、曲がり部)、及び終点の少なくとも1つの描画時において、与圧が比較的高く設定され、その結果、プリント材料PMの密着性・接着性の向上が図られる。あるいは、周期的に押付条件を変化させるなどにより、プリント材料PMの表面形状(輪郭)及び/又は性状に変化を付与することができる。押付体31の数は、1、2、3、4、5、6、7、8、9、又は10以上にできる。
押付体31の押付面41は、平坦にできる、又は凹凸を有する表面形状にできる。押付面41の表面の凹凸がプリント部材PMに転写される。例えば、押付体31の押付面41は、波型形状、梨地形状を有することができる。あるいは、押付体31は、ギア歯のような形状を有することができる。
押付体31によるプリント材料PMの押付けは、ターゲット面3a上での高い密着性・接着性を有する材料配置に有利である。また、ターゲット面3aに向けたヘッド4からのプリント材料の供給が促される結果、ノズル詰まりなど、ヘッド4でのプリント材料の供給不良が抑制される。さらに、こうした押付動作は、成形品の品質(力学特性など)の向上に有利である。例えば、樹脂に対する繊維の含浸率の向上や、プリント材料間の空隙(積層構造内の空隙)の抑制が図られる。また、積層面および成形品の表面性状の平滑性の向上や、樹脂内での繊維の偏りの抑制が図られる。押付体31の近傍でのプリント材料の加熱は、成形の高速化や装置の簡素化に有利である。
図5に示す詳細な構成例において、ノズル7の先端部23に、押付手段30が取り付けられている。押付手段30は、ヘッダ駆動装置13によってノズル7がプラットホーム3に対し平面方向に相対移動するとき、ノズル7の吐出口23aよりも後方且つ下方で、当該吐出口23aから吐出されたフィラメントFLをプラットホーム3に押し付けるものである。押付手段30は、ノズル7に回転自在に支持された回転体31を有する。回転体31は、吐出口23aの周りに複数配置されている。
図6に示すように、複数の回転体31は、吐出口23aの中心Oを中心に円環状に配置されている。複数の回転体31は、ワイヤー軸32を介して回転自在に支持されている。ワイヤー軸32は、複数の回転体31を貫通する円環状に形成されている。複数の回転体31の周面(押付面)におけるプラットホーム3に対向する部分が、吐出口23aを中心とした放射方向に移動可能である。また、複数の回転体31は、それぞれ独立してワイヤー軸32に対して回転自在である。このワイヤー軸32の要所は、支持部材33によって支持されている。
支持部材33は、隣り合う回転体31の間において露出するワイヤー軸32を把持するものである。この支持部材33は、ワイヤー軸32の周方向において間隔をあけて複数設けられている。支持部材33は、図5に示すように、ノズル7の先端部23の側部から下方に垂設されている。ワイヤー軸32は、支持部材33に対して着脱可能に取り付けられることが好ましい。例えば、支持部材33の下端部に円弧状の嵌め込み溝(例えば、円筒部材に軸方向に沿って一直線に切り込みを入れ、当該切り込みを開くように弾性変形可能にしたもの)を設けることで、ワイヤー軸32を容易に着脱することができる。
回転体31は、所定幅の周面を有するローラである。このように回転体31をローラにすることで、フィラメントFLに吐出抵抗を与えることなく一定幅で均一に押し付けることができる。なお、回転体31としては、他に、球形状や、楕円形状、樽型形状等を採用することができる。また、回転体31としては、周面の幅が狭い円板部材として、ローラよりも密集して配置してもよい。また、フィラメントFLを押し付け後、フィラメントFLが回転体31の周面から離れ易くなるように、回転体31の周面に表面処理や微小な凹凸を形成してもよい。例えば、回転体31の周面をフッ素コーティングしてもよいし、回転体31の周面を多孔質体セラミック等から形成し、回転体31の周面に微小な凹凸を形成してもよい。また、回転体31の周面をゴルフボールの表面のようなディンプル構造にしてもよい。
図5に示すように、回転体31は、ノズル7の吐出口23aよりも下方で、当該吐出口23aから吐出されたフィラメントFLをプラットホーム3に押し付ける。すなわち、回転体31の下端からプラットホーム3までの距離D2は、吐出口23aプラットホーム3から吐出口23aまでの距離D1よりも小さい。また、距離D2は、フィラメントFLをプラットホーム3に押し付けるため、フィラメントFLが吐出される幅W(吐出口23aの直径)よりも小さく管理されている。例えば、距離D2の大きさは、幅Wの6割~9割程度であり、好ましくは、幅Wの7割~8割程度である。上記数値は一例であり、これに限定されない。
次に、3次元プリンティング装置1の動作の一例について説明する。
一実施形態において、3次元プリンティング装置1の使用にあたっては、図7のフローチャート図に示すように、使用者は、構造物の三次元データを用意する(ステップ101)。三次元データは、構造物の形状を指定するパラメータに加え、炭素繊維を含有させる位置などを含む、フィラメントと炭素繊維との配合状態を指定するための様々なパラメータ(配合パラメータ)を含むことができる。
一実施形態において、3次元プリンティング装置1の使用にあたっては、図7のフローチャート図に示すように、使用者は、構造物の三次元データを用意する(ステップ101)。三次元データは、構造物の形状を指定するパラメータに加え、炭素繊維を含有させる位置などを含む、フィラメントと炭素繊維との配合状態を指定するための様々なパラメータ(配合パラメータ)を含むことができる。
使用者は、制御装置5の記憶装置に、構造物の形状データをインプットする。形状データは三次元データ(三次元モデルデータ)であり、制御プログラムによってスライスされ、二次元データを積層したものに変換される。さらに、制御プログラムによって、各層の二次元データにおける印刷行程が決定される。制御プログラムは、決定された二次元データに基づいて、ノズル7の走行経路を決定する。
次に、制御装置5は、フィラメントFLと炭素繊維FBとをフィードし、プラットフォーム3上で材料を積層する(ステップ102)。すなわち、制御装置5は、決定されたノズル7の走行経路に従って、ヘッド駆動装置13を制御して、ヘッド4を移動させる。同時に、ヘッド4の材料フィード装置8、及び繊維導入装置9を制御して、フィラメントFLを吐出するとともに炭素繊維FBをフィラメントFLに含浸させる。この際、フィラメントFLはフィラメント加熱装置21によって軟化可能である。
一方、繊維導入装置9は、材料フィード装置8と同期するように制御され、軟化されたフィラメントFLがノズル7の筒部22に導入された炭素繊維FBに含浸する。その結果、ノズル7の先端からは、炭素繊維を含んだフィラメントFL(軟化状態のプリント材料)が吐出される。プラットホーム3とヘッド4との間の相対移動に伴い、プリント材料がプラットホーム3上に所定パターンで描画・プリントされる。このとき、ヘッド4に対する回転体31の押付面の動きが許容された状態で、プラットホーム3上のプリント材料が押付面に押し付けられる。プラットホーム3に配置されたフィラメントFLは、図示しないプラットホーム加熱装置によって加熱され、フィラメントFLの軟化状態が保たれる。
また、制御装置5は、炭素繊維を必要としない部位に炭素繊維FBが供給されないように、切断装置10を制御する。具体的には、炭素繊維を含有させる位置が指定された三次元データに基づいて、繊維導入装置9から導入される炭素繊維FBを切断するとともに、炭素繊維FBの導入を停止する。これにより、炭素繊維FBが導入される繊維部と、樹脂のみにて形成される樹脂部と、を含む構造物を製造することができる。積層プロセスで形成された積層構造物を固化させることによって、三次元構造物(繊維入りオブジェクト)が形成される(ステップ103)。
図8は、ノズル7の走行経路の一例を示す平面図である。このノズル7の走行経路は、第1の直線部L1と、第2の直線部L2と、第1の直線部L1と第2の直線部L2とを接続する曲がり部L12と、を含む直角の走行経路である。図8(a)は、上述した押付手段30を備えるノズル7の走行経路と、その走行経路に沿って吐出されるフィラメントFLの配置状態を示す。また、図8(b)は、押付手段30を備えないノズル7の走行経路と、その走行経路に沿って吐出されるフィラメントFLの配置状態を示す。
図8(b)に示すように、押付手段30を備えない場合、ノズル7から吐出されるフィラメントFLは、プラットホーム3の上に吐出された(引き付いた)ときの表面にある樹脂の粘性によって炭素繊維束Cに張力が付与され、ノズル7から連続的に引きずり出される。吐出口23aから吐出された直後のフィラメントFLは、浮いている若しくはプラットホーム3に軽く引き付いた状態になっている。このため、ノズル7が第1の直線部L1から第2の直線部L2に曲がると、浮いた若しくは軽く引き付いたフィラメントFLが、ノズル7に引きずられて剥がれ、曲がり部L12から離間して配置されてしまう。
一方、図8(a)に示すように、押付手段30を備える場合、押付手段30が、プラットホーム3の上にフィラメントFLを連続して吐出するノズル7の吐出口23aよりも後方且つ下方(図5参照)で、当該吐出口23aから吐出されたフィラメントFLをプラットホーム3に押し付ける。これにより、フィラメントFLを走行経路に沿って確実に接着させることができる。したがって、図8(a)に示すように、曲がり部L12に沿ってフィラメントFLを配置することができ、直角や鋭角を含む複雑形状の製品(例えばハニカム構造体等)を製造することが可能となる。
また、図5に示すように、押付手段30によって、フィラメントFLをプラットホーム3に確実に接着させることで、ノズル7から炭素繊維束Cを良好に引きずり出すことができ、ノズル7の目詰まりを抑制することができる。また、フィラメントFLにボイド(気泡)が含まれる場合、押付手段30の押し付けによって、そのボイドを外に逃がすことができるため、製品の品質も向上させることができる。
また、図6に示すように、回転体31は、吐出口23aの周りに複数配置されており、複数の回転体31は、吐出口23aを中心とした放射方向に回転自在であるため、XY平面上のあらゆる方向にノズル7が移動したとしても、複数の回転体31のいずれかがノズル7の後方に配置され、吐出口23aから吐出されたフィラメントFLをプラットホーム3に押し付けることが可能となる。
このように、上述した本実施形態によれば、3次元プリンティング装置1は、プラットホーム3の上にフィラメントFLを連続して吐出可能なノズル7と、ノズル7を、プラットホーム3に対し、少なくとも互いに交差する第1軸(X軸)と第2軸(Y軸)によって形成される平面に沿う平面方向に相対移動させるヘッダ駆動装置13と、ヘッダ駆動装置13によってノズル7がプラットホーム3に対し平面方向に相対移動するとき、ノズル7の吐出口23aよりも後方且つ下方で、当該吐出口23aから吐出されたフィラメントFLをプラットホーム3に押し付ける押付手段30と、を有する、という構成を採用することによって、ノズル7の目詰まりを抑制し、複雑形状の製品を製造することができる3次元プリンティング装置1が得られる。
次に、図9に示す別の構成例について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。図9において、3次元プリンティング装置1は、回転体移動手段34を有する押付手段30Aを備える。
回転体移動手段34は、ノズル7の吐出口23aを中心としたZ軸周りの回転体31の位置を変化させる(Z軸周りの回転体31のロール移動)ものである。複数の回転体を備える図5の形態と異なり、押付手段30Aは、一つの回転体31を有する。ノズル7の移動(ヘッド4のXY平面内での移動)に伴い、回転体移動手段34を介して押付体31がノズル7の周りを周方向に移動し、ノズル7に追従するように、プリント進行方向におけるノズル7の後方に回転体31が配置される。回転体移動手段34としては、ノズル7の周面に内輪が着脱自在に嵌め込まれたベアリングを例示することができる。ベアリングの外輪に回転体31が取り付けられる。ることで、回転体31をノズル7の後方に移動させることができる。これにより、回転体31の個数を減らし、ノズル7の軽量化を図ることができる。また、この形態によれば、図5の形態に比べて回転体31を吐出口23aに近づけることができる。
なお、回転体移動手段34としては、回転体31に錘を取り付けて、ノズル7の移動に伴う慣性力を利用して、ノズル7の後方への回転体1の移動を促す構成を採用してもよい。また、回転体移動手段34としては、回転体31の両軸部に一回り大きな円板を取り付け、当該円板がプラットホーム3の上を回動することで、回転体31をキャスターのようにノズル7の後方に移動させる構成を採用してもよい。また、回転体移動手段34に、モータ等の駆動部を設けて、電気的な駆動により、回転体31をノズル7の後方に移動させる構成を採用してもよい。
図10は、図9の形態の変形例を示す。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
図10において、押付手段30Bは、ノズル7の吐出口23aを中心としてZ軸周りに回転体31がロール移動可能に、かつ、Z軸と直交する軸を中心として回転体31がスイング移動可能となるように、構成されている。押付手段30Bは、1つの回転体31と、図9と同様の回転体移動手段34と、スイング機構35とを有する。一例において、スイング機構35は、回転体31の中心シャフトを支持する第1端部と、回転移動手段34に接続される第2端部と、を有するスイングアーム35aを有する。第2端部において、スイングアーム35aは、回転移動手段34に対して回転自在に支持される。図10の構成において、プリント動作の開始又は準備において、プラットホーム3に対してZ方向にヘッド4が近づくと、プラットホーム3又はプラットホーム3上のプリント材料PMに押付体31が当接し、スイングアーム35aの第2端部を中心として、スイングアーム35aの第1端部に支持された押付体31がスイング移動される。また、図9と同様に、ヘッド4(ノズル7)のヘッド4のXY平面内での移動に伴い、プリント進行方向PDにおけるノズル7の後方に回転体31が配置される。描画工程において、押付手段30Bの少なくとも一部(押付体31、スイングアーム35aなど)の重みが押付面41を介してターゲット面3a上のプリント材料PMに作用する。図10に示す3次元プリンティング装置において、1つの回転体31を使った簡易な構成で、ターゲット面3aのプリント材料PMに対して押付動作を実現できる。また、ターゲット面3a上での高い密着性・接着性を有する材料配置が実現されるとともに、ヘッド4でのプリント材料の供給不良が抑制される。
以上、代表的な様々な実施形態の内容について開示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。本発明は、添付の請求の範囲に規定された、本発明の精神と範囲内にあるすべての変形、代替、及び等価物を含むものとする。
例えば、上記実施形態では、上述したワイヤー軸32を中空構造にしてヒータ(電熱線)を通し、回転体31を加熱する構成を採用してもよい。回転体31を加熱することにより、フィラメントFLが冷えて固着することなく、回転体31から離れ易くなる。
また、上記実施形態では、一重の環状に複数の回転体31を配置した構成を採用したが、半ピッチずらした二重の環状に複数の回転体31を配置し、例えば内側の回転体31と回転体31の隙間を、外側の回転体31でカバーする構成であってもよい。また、複数の回転体31は、それぞれ別の回転軸を有していてもよい。すなわち、ワイヤー軸32が分割されたような構成を採用してもよい。
また、例えば、上記実施形態では、押付手段30として回転体31を例示したが、板バネ等の回転しない押付手段を採用してもよい。
また、例えば、上記実施形態では、フィラメントFL及び炭素繊維束Cの三次元的な配置を可能とするために、プラットホーム3を上下移動自在とするとともに、ヘッド4を水平移動自在とする構成とした。他の例において、フィラメントFL及び炭素繊維束Cの三次元的な配置を可能とするために、ヘッド4を、例えばロボットアームにより、上下移動及び水平移動自在とする一方で、プラットホーム3を固定するような構成とすることができる。また、プラットホーム3を上下移動及び水平移動自在とする一方で、ヘッド4を固定するような構成としてもよい。プラットフォーム3とヘッド4との相対的な位置及び姿勢(傾き、回転角度など)を自在に制御可能なユニットとして、様々な構成が適用可能である。
また、上記実施形態では、フィラメントFLを含浸させる繊維として炭素繊維を採用したが、強化材として機能する繊維であればこれに限ることはない。例えば、ガラス繊維、樹脂繊維、アラミド繊維の採用も可能である。繊維は、互いに材質が異なる第1繊維と第2繊維を含むことができる。繊維は、材質は同様でかつ形状及び/又は構造や撚糸条件が互いに異なる第1繊維及び第2繊維を含むことができる。繊維は、3種類以上の繊維要素を含むこともできる。
繊維は強化材として機能することに限定されない。繊維により付加/制御される機能として、例えば、物理的機能(剛性、重量、柔軟性、靱性、伸び性、弾力性、曲げ強さ、部分的な補強(密度、組織構造による強度)、耐摩耗性など)、電気的機能(帯電性、導電性など)、光学的機能(透過性、光沢、色彩、紫外線カット、反射、文字、柄、外観性など)、化学的機能(難燃性、抗菌性、耐酸性、耐アルカリ性、耐薬品性、物質吸収性、金属吸着性、耐候性、熱特性、保温性、保冷性など)が挙げられる。
また、繊維導入装置9を複数設けて、フィラメントFLに複数の炭素繊維FBを導入する構成としてもよい。この場合、一方の繊維導入装置9から炭素繊維FBを導入し、他方の繊維導入装置9からガラス繊維を導入する構成としてもよい。このような構成とすることによって、例えば、剛性が要求される部位に炭素繊維を導入するとともに、延性が要求される部位にガラス繊維を導入することができる。
また、上記実施形態では、フィラメントFLを構成するベース体としての樹脂として熱可塑性樹脂を用いたが、人為的に軟化状態と硬化状態とを制御することができれば、他の樹脂の採用も可能である。例えば、光硬化性樹脂を採用して、軟化状態の樹脂を光エネルギーの作用で硬化させてもよい。ベース材としての樹脂は、互いに材質が異なる第1樹脂と第2樹脂を含むことができる。また、ベース材としての樹脂は、材質は同様でかつ形状及び/又は構造が互いに異なる第1樹脂及び第2樹脂を含むことができる。ベース材としての樹脂は、3種類以上の樹脂要素を含むこともできる。
また、上記の実施形態では、第1連続材料としてのフィラメントFLと第2連続材料としての炭素繊維FBが個別にヘッド4にフィードされ、ノズル7の内部又はその近傍でフィラメントFLと炭素繊維FBが結合される。別の実施形態において、結合位置をヘッド4に対して後方(上流)で結合する構成を適用できる。あるいは、予めフィラメントFLと炭素繊維FBとが結びついた連続材料がヘッド4にフィードされる構成を適用できる。
また、上記実施形態では、フィラメントFLに炭素繊維FBを導入させたが、フィラメントFL(樹脂)単体を吐出する場合であっても、上述した押付手段を適用してもよい。すなわち、3次元プリンティング装置1は、炭素繊維FBの導入を停止させ、炭素繊維FBが導入される繊維部と、樹脂のみにて形成される樹脂部と、を含む構造物を製造することができるが、この樹脂のみのフィラメント(樹脂フィラメント)を吐出する場合においても、押付手段の押し付けによって樹脂フィラメントのボイドを低減できるため、構造物の強度向上が見込める。
一実施形態において、3次元プリンティング装置は、被吐出対象物の上に樹脂と繊維を含む線状のフィラメントを連続して吐出可能なノズルと、前記ノズルを、前記被吐出対象物に対し、少なくとも互いに交差する第1軸と第2軸によって形成される平面に沿う平面方向に相対移動させる移動手段と、前記移動手段によって前記ノズルが前記被吐出対象物に対し前記平面方向に相対移動するとき、前記ノズルの吐出口よりも後方且つ下方で、当該吐出口から吐出された前記フィラメントを前記被吐出対象物に押し付ける押付手段と、を有する。上記3次元プリンティング装置において、前記押付手段は、前記ノズルに回転自在に支持された回転体を有してもよい。また、上記3次元プリンティング装置において、前記回転体は、前記吐出口の周りに複数配置されており、前記複数の回転体は、前記吐出口を中心とした放射方向に回転自在であってもよい。また、上記3次元プリンティング装置において、前記押付手段は、前記回転体を前記ノズルの後方に移動させる回転体移動手段を有してもよい。
上記の3次元プリンティング装置によれば、被吐出対象物の上に樹脂と繊維を含む線状のフィラメントを連続して吐出するノズルの後方に配置された押付手段が、ノズルの吐出口よりも後方且つ下方で、当該吐出口から吐出されたフィラメントを被吐出対象物に押し付ける。これにより、フィラメントを被吐出対象物に確実に接着させることができるため、ノズルからフィラメントを良好に引きずり出すことができ、また、被吐出対象物からのフィラメントの剥がれを抑制することができる。したがって、樹脂と繊維を含む線状のフィラメントを吐出するノズルの目詰まりが抑制され、複雑形状の製品を製造することができる3次元プリンティング装置が得られる。
1…3次元プリンティング装置、4…ヘッド、5…制御装置(コントローラ)、6…ヘッド本体、7…ノズル、9…繊維導入装置(繊維導入手段)、10…切断装置(切断手段)、11…プラットホーム駆動装置、13…ヘッド駆動装置(移動手段)、23a…吐出口、30、30A、30B…押付手段、31…回転体、34…回転体移動手段、41…押付面、FB…炭素繊維(繊維)、FL…フィラメント(樹脂)、PM…プリント材料。
Claims (5)
- 線状のプリント材料がフィードされるヘッドと、
前記ヘッドとターゲット面との間の相対移動を行う駆動手段と、
コントローラと、
前記ターゲット面上の前記プリント材料に当接可能に配される押付面を有する押付手段と、
を備え、
前記押付手段は、前記ヘッドに対する前記押付面の動きを許容するように構成されている、
三次元プリンティング装置。 - 前記押付手段は、回転自在に配される回転体を有し、
前記押付面は、前記回転体の周面の少なくとも一部を含む、
請求項1に記載の3次元プリンティング装置。 - 前記押付手段は、前記押付手段の少なくとも一部の重みが前記押付面を介して前記ターゲット面上の前記プリント材料に作用するように構成される、又は、与圧手段からの力が前記押付面を介して前記ターゲット面上の前記プリント材料に作用するように構成される、請求項1又は請求項2に記載の3次元プリンティング装置。
- 前記押付面の近傍の前記プリント材料を加熱する加熱手段をさらに備える、請求項1から請求項3のいずれかに記載の3次元プリンティング装置。
- (a)3次元モデルデータを用意する工程と、
(b)3次元モデルデータに基づいて、プリント材料を積層する工程であり、
(b1)前記プリント材料をヘッドにフィードする工程と、
(b2)前記ヘッドからの前記プリント材料をターゲット面上に描画する工程であり、前記ヘッドに対する押付面の動きが許容された状態で、前記ターゲット面上の前記プリント材料が前記押付面に押し付けられる、前記工程と、
を有する前記工程と、
を含む、3次元プリンティング方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016037437 | 2016-02-29 | ||
JP2016-037437 | 2016-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017150186A1 true WO2017150186A1 (ja) | 2017-09-08 |
Family
ID=59743862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/005440 WO2017150186A1 (ja) | 2016-02-29 | 2017-02-15 | 3次元プリンティング装置及び3次元プリンティング方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017150186A1 (ja) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10040240B1 (en) | 2017-01-24 | 2018-08-07 | Cc3D Llc | Additive manufacturing system having fiber-cutting mechanism |
US10081129B1 (en) | 2017-12-29 | 2018-09-25 | Cc3D Llc | Additive manufacturing system implementing hardener pre-impregnation |
US10131088B1 (en) | 2017-12-19 | 2018-11-20 | Cc3D Llc | Additive manufacturing method for discharging interlocking continuous reinforcement |
CN109016493A (zh) * | 2018-08-22 | 2018-12-18 | 大连理工大学 | 一种压力调控的连续纤维复合材料fdm 3d打印方法 |
US10216165B2 (en) | 2016-09-06 | 2019-02-26 | Cc3D Llc | Systems and methods for controlling additive manufacturing |
CN109532010A (zh) * | 2019-01-25 | 2019-03-29 | 南京航空航天大学 | 一种碳纤维复材变角度电损耗自加热3d打印装置及方法 |
EP3473441A1 (en) * | 2017-10-23 | 2019-04-24 | General Electric Company | Moveable molding assembly for use with additive manufacturing |
US10319499B1 (en) | 2017-11-30 | 2019-06-11 | Cc3D Llc | System and method for additively manufacturing composite wiring harness |
US10345068B2 (en) | 2017-02-13 | 2019-07-09 | Cc3D Llc | Composite sporting equipment |
CN110696361A (zh) * | 2019-10-14 | 2020-01-17 | 华育昌(肇庆)智能科技研究有限公司 | 一种3d打印机 |
US10543640B2 (en) | 2016-09-06 | 2020-01-28 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber teasing |
US10589463B2 (en) | 2017-06-29 | 2020-03-17 | Continuous Composites Inc. | Print head for additive manufacturing system |
US10603840B2 (en) | 2016-09-06 | 2020-03-31 | Continuous Composites Inc. | Additive manufacturing system having adjustable energy shroud |
US10625467B2 (en) | 2016-09-06 | 2020-04-21 | Continuous Composites Inc. | Additive manufacturing system having adjustable curing |
CN111055490A (zh) * | 2018-10-12 | 2020-04-24 | 罗天珍 | 三维打印机专用增维式彩色成型方法 |
US10717512B2 (en) | 2016-11-03 | 2020-07-21 | Continuous Composites Inc. | Composite vehicle body |
US10723073B2 (en) | 2017-01-24 | 2020-07-28 | Continuous Composites Inc. | System and method for additively manufacturing a composite structure |
US10759114B2 (en) | 2017-12-29 | 2020-09-01 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US10759113B2 (en) | 2016-09-06 | 2020-09-01 | Continuous Composites Inc. | Additive manufacturing system having trailing cure mechanism |
US10798783B2 (en) | 2017-02-15 | 2020-10-06 | Continuous Composites Inc. | Additively manufactured composite heater |
US10814569B2 (en) | 2017-06-29 | 2020-10-27 | Continuous Composites Inc. | Method and material for additive manufacturing |
US10821720B2 (en) | 2016-11-04 | 2020-11-03 | Continuous Composites Inc. | Additive manufacturing system having gravity-fed matrix |
JP2020192777A (ja) * | 2019-05-30 | 2020-12-03 | セイコーエプソン株式会社 | 三次元造形物の製造方法および三次元造形装置 |
US10857729B2 (en) | 2017-12-29 | 2020-12-08 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10919222B2 (en) | 2017-12-29 | 2021-02-16 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
JP2021041661A (ja) * | 2019-09-13 | 2021-03-18 | セイコーエプソン株式会社 | 三次元造形物の製造方法、および、三次元造形装置 |
US20210086436A1 (en) * | 2019-09-24 | 2021-03-25 | Continuous Composites Inc. | System for additively manufacturing composite structure |
JP2021091110A (ja) * | 2019-12-06 | 2021-06-17 | 富士フイルムビジネスイノベーション株式会社 | 造形装置 |
US11052603B2 (en) | 2018-06-07 | 2021-07-06 | Continuous Composites Inc. | Additive manufacturing system having stowable cutting mechanism |
US11110654B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US11110656B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11161300B2 (en) | 2018-04-11 | 2021-11-02 | Continuous Composites Inc. | System and print head for additive manufacturing system |
US11161297B2 (en) | 2012-08-29 | 2021-11-02 | Continuous Composites Inc. | Control methods for additive manufacturing system |
US11167495B2 (en) | 2017-12-29 | 2021-11-09 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US11235522B2 (en) | 2018-10-04 | 2022-02-01 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11235539B2 (en) | 2018-09-13 | 2022-02-01 | Continuous Composites Inc. | Fiber management arrangement and method for additive manufacturing system |
US11247395B2 (en) | 2018-10-26 | 2022-02-15 | Continuous Composites Inc. | System for additive manufacturing |
US20220080659A1 (en) * | 2020-09-11 | 2022-03-17 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11292192B2 (en) | 2018-11-19 | 2022-04-05 | Continuous Composites Inc. | System for additive manufacturing |
US11312083B2 (en) | 2019-05-28 | 2022-04-26 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11338503B2 (en) | 2019-01-25 | 2022-05-24 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11358331B2 (en) * | 2018-11-19 | 2022-06-14 | Continuous Composites Inc. | System and head for continuously manufacturing composite structure |
US11420390B2 (en) | 2018-11-19 | 2022-08-23 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11760029B2 (en) | 2020-06-23 | 2023-09-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11760021B2 (en) | 2021-04-27 | 2023-09-19 | Continuous Composites Inc. | Additive manufacturing system |
US11840022B2 (en) | 2019-12-30 | 2023-12-12 | Continuous Composites Inc. | System and method for additive manufacturing |
US11904534B2 (en) | 2020-02-25 | 2024-02-20 | Continuous Composites Inc. | Additive manufacturing system |
DE102022125491A1 (de) | 2022-10-04 | 2024-04-04 | Simona Aktiengesellschaft | Vorrichtung und Verfahren zur additiven Bauteilherstellung |
JP7528559B2 (ja) | 2020-06-26 | 2024-08-06 | セイコーエプソン株式会社 | 三次元造形装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002103488A (ja) * | 2000-09-27 | 2002-04-09 | Toyoda Mach Works Ltd | シート積層式3次元造形装置 |
US20140291886A1 (en) * | 2013-03-22 | 2014-10-02 | Gregory Thomas Mark | Three dimensional printing |
JP2015189024A (ja) * | 2014-03-27 | 2015-11-02 | セイコーエプソン株式会社 | 造形物の製造方法 |
WO2015182675A1 (ja) * | 2014-05-27 | 2015-12-03 | 学校法人日本大学 | 三次元プリンティングシステム、三次元プリンティング方法、成形装置、繊維入りオブジェクト及びその製造方法 |
US20150367576A1 (en) * | 2014-06-19 | 2015-12-24 | Autodesk, Inc. | Automated systems for composite part fabrication |
-
2017
- 2017-02-15 WO PCT/JP2017/005440 patent/WO2017150186A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002103488A (ja) * | 2000-09-27 | 2002-04-09 | Toyoda Mach Works Ltd | シート積層式3次元造形装置 |
US20140291886A1 (en) * | 2013-03-22 | 2014-10-02 | Gregory Thomas Mark | Three dimensional printing |
JP2015189024A (ja) * | 2014-03-27 | 2015-11-02 | セイコーエプソン株式会社 | 造形物の製造方法 |
WO2015182675A1 (ja) * | 2014-05-27 | 2015-12-03 | 学校法人日本大学 | 三次元プリンティングシステム、三次元プリンティング方法、成形装置、繊維入りオブジェクト及びその製造方法 |
US20150367576A1 (en) * | 2014-06-19 | 2015-12-24 | Autodesk, Inc. | Automated systems for composite part fabrication |
Cited By (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11161297B2 (en) | 2012-08-29 | 2021-11-02 | Continuous Composites Inc. | Control methods for additive manufacturing system |
US10864715B2 (en) | 2016-09-06 | 2020-12-15 | Continuous Composites Inc. | Additive manufacturing system having multi-channel nozzle |
US10901386B2 (en) | 2016-09-06 | 2021-01-26 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10994481B2 (en) | 2016-09-06 | 2021-05-04 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber-teasing |
US10216165B2 (en) | 2016-09-06 | 2019-02-26 | Cc3D Llc | Systems and methods for controlling additive manufacturing |
US10543640B2 (en) | 2016-09-06 | 2020-01-28 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber teasing |
US10895858B2 (en) | 2016-09-06 | 2021-01-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10884388B2 (en) | 2016-09-06 | 2021-01-05 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10766191B2 (en) | 2016-09-06 | 2020-09-08 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber weaving |
US11579579B2 (en) | 2016-09-06 | 2023-02-14 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10908576B2 (en) | 2016-09-06 | 2021-02-02 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11000998B2 (en) | 2016-09-06 | 2021-05-11 | Continous Composites Inc. | Additive manufacturing system having in-head fiber-teasing |
US10603840B2 (en) | 2016-09-06 | 2020-03-31 | Continuous Composites Inc. | Additive manufacturing system having adjustable energy shroud |
US10625467B2 (en) | 2016-09-06 | 2020-04-21 | Continuous Composites Inc. | Additive manufacturing system having adjustable curing |
US11029658B2 (en) | 2016-09-06 | 2021-06-08 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10632673B2 (en) | 2016-09-06 | 2020-04-28 | Continuous Composites Inc. | Additive manufacturing system having shutter mechanism |
US10647058B2 (en) | 2016-09-06 | 2020-05-12 | Continuous Composites Inc. | Control methods for additive manufacturing system |
US10759113B2 (en) | 2016-09-06 | 2020-09-01 | Continuous Composites Inc. | Additive manufacturing system having trailing cure mechanism |
US10766595B2 (en) | 2016-11-03 | 2020-09-08 | Continuous Composites Inc. | Composite vehicle body |
US10773783B2 (en) | 2016-11-03 | 2020-09-15 | Continuous Composites Inc. | Composite vehicle body |
US10717512B2 (en) | 2016-11-03 | 2020-07-21 | Continuous Composites Inc. | Composite vehicle body |
US11383819B2 (en) | 2016-11-03 | 2022-07-12 | Continuous Composites Inc. | Composite vehicle body |
US10766594B2 (en) | 2016-11-03 | 2020-09-08 | Continuous Composites Inc. | Composite vehicle body |
US10787240B2 (en) | 2016-11-03 | 2020-09-29 | Continuous Composites Inc. | Composite vehicle body |
US10933584B2 (en) | 2016-11-04 | 2021-03-02 | Continuous Composites Inc. | Additive manufacturing system having dynamically variable matrix supply |
US10828829B2 (en) | 2016-11-04 | 2020-11-10 | Continuous Composites Inc. | Additive manufacturing system having adjustable nozzle configuration |
US10864677B2 (en) | 2016-11-04 | 2020-12-15 | Continuous Composites Inc. | Additive manufacturing system implementing in-situ anchor-point fabrication |
US10967569B2 (en) | 2016-11-04 | 2021-04-06 | Continuous Composites Inc. | Additive manufacturing system having interchangeable nozzle tips |
US10953598B2 (en) | 2016-11-04 | 2021-03-23 | Continuous Composites Inc. | Additive manufacturing system having vibrating nozzle |
US10870233B2 (en) | 2016-11-04 | 2020-12-22 | Continuous Composites Inc. | Additive manufacturing system having feed-tensioner |
US10843406B2 (en) | 2016-11-04 | 2020-11-24 | Continuous Composites Inc. | Additive manufacturing system having multi-flex nozzle |
US10821720B2 (en) | 2016-11-04 | 2020-11-03 | Continuous Composites Inc. | Additive manufacturing system having gravity-fed matrix |
US10040240B1 (en) | 2017-01-24 | 2018-08-07 | Cc3D Llc | Additive manufacturing system having fiber-cutting mechanism |
US10919204B2 (en) | 2017-01-24 | 2021-02-16 | Continuous Composites Inc. | Continuous reinforcement for use in additive manufacturing |
US10843396B2 (en) | 2017-01-24 | 2020-11-24 | Continuous Composites Inc. | Additive manufacturing system |
US10850445B2 (en) | 2017-01-24 | 2020-12-01 | Continuous Composites Inc. | Additive manufacturing system configured for sheet-printing composite material |
US10857726B2 (en) | 2017-01-24 | 2020-12-08 | Continuous Composites Inc. | Additive manufacturing system implementing anchor curing |
US10723073B2 (en) | 2017-01-24 | 2020-07-28 | Continuous Composites Inc. | System and method for additively manufacturing a composite structure |
US10940638B2 (en) | 2017-01-24 | 2021-03-09 | Continuous Composites Inc. | Additive manufacturing system having finish-follower |
US11014290B2 (en) | 2017-01-24 | 2021-05-25 | Continuous Composites Inc. | Additive manufacturing system having automated reinforcement threading |
US10794650B2 (en) | 2017-02-13 | 2020-10-06 | Continuous Composites | Composite sporting equipment |
US10345068B2 (en) | 2017-02-13 | 2019-07-09 | Cc3D Llc | Composite sporting equipment |
US10798783B2 (en) | 2017-02-15 | 2020-10-06 | Continuous Composites Inc. | Additively manufactured composite heater |
US10993289B2 (en) | 2017-02-15 | 2021-04-27 | Continuous Composites Inc. | Additive manufacturing system for fabricating custom support structure |
US10932325B2 (en) | 2017-02-15 | 2021-02-23 | Continuous Composites Inc. | Additive manufacturing system and method for discharging coated continuous composites |
US11130285B2 (en) | 2017-06-29 | 2021-09-28 | Continuous Composites Inc. | Print head and method for printing composite structure and temporary support |
US11135769B2 (en) | 2017-06-29 | 2021-10-05 | Continuous Composites Inc. | In-situ curing oven for additive manufacturing system |
US11052602B2 (en) | 2017-06-29 | 2021-07-06 | Continuous Composites Inc. | Print head for additively manufacturing composite tubes |
US10906240B2 (en) | 2017-06-29 | 2021-02-02 | Continuous Composites Inc. | Print head for additive manufacturing system |
US10814569B2 (en) | 2017-06-29 | 2020-10-27 | Continuous Composites Inc. | Method and material for additive manufacturing |
US10589463B2 (en) | 2017-06-29 | 2020-03-17 | Continuous Composites Inc. | Print head for additive manufacturing system |
US20210178680A1 (en) * | 2017-10-23 | 2021-06-17 | General Electric Company | Moveable Molding Assembly for Use with Additive Manufacturing |
EP3473441A1 (en) * | 2017-10-23 | 2019-04-24 | General Electric Company | Moveable molding assembly for use with additive manufacturing |
US10319499B1 (en) | 2017-11-30 | 2019-06-11 | Cc3D Llc | System and method for additively manufacturing composite wiring harness |
US10131088B1 (en) | 2017-12-19 | 2018-11-20 | Cc3D Llc | Additive manufacturing method for discharging interlocking continuous reinforcement |
US10807303B2 (en) | 2017-12-29 | 2020-10-20 | Continuous Composites, Inc. | Additive manufacturing system implementing hardener pre-impregnation |
US10919222B2 (en) | 2017-12-29 | 2021-02-16 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US11167495B2 (en) | 2017-12-29 | 2021-11-09 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10759114B2 (en) | 2017-12-29 | 2020-09-01 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US10081129B1 (en) | 2017-12-29 | 2018-09-25 | Cc3D Llc | Additive manufacturing system implementing hardener pre-impregnation |
US11623394B2 (en) | 2017-12-29 | 2023-04-11 | Continuous Composites Inc. | System, print head, and compactor for continuously manufacturing composite structure |
US11135764B2 (en) | 2017-12-29 | 2021-10-05 | Continuous Composites Inc. | Additive manufacturing system implementing hardener pre-impregnation |
US10857729B2 (en) | 2017-12-29 | 2020-12-08 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US11623393B2 (en) | 2017-12-29 | 2023-04-11 | Continuous Composites Inc. | System, print head, and compactor for continuously manufacturing composite structure |
US11135770B2 (en) | 2017-12-29 | 2021-10-05 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11110655B2 (en) | 2017-12-29 | 2021-09-07 | Continuous Composites Inc. | System, print head, and compactor for continuously manufacturing composite structure |
US11161300B2 (en) | 2018-04-11 | 2021-11-02 | Continuous Composites Inc. | System and print head for additive manufacturing system |
US11110654B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US11110656B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11130284B2 (en) | 2018-04-12 | 2021-09-28 | Continuous Composites Inc. | System and head for continuously manufacturing composite structure |
US11958243B2 (en) | 2018-04-12 | 2024-04-16 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11052603B2 (en) | 2018-06-07 | 2021-07-06 | Continuous Composites Inc. | Additive manufacturing system having stowable cutting mechanism |
CN109016493A (zh) * | 2018-08-22 | 2018-12-18 | 大连理工大学 | 一种压力调控的连续纤维复合材料fdm 3d打印方法 |
US11338528B2 (en) | 2018-09-13 | 2022-05-24 | Continouos Composites Inc. | System for additively manufacturing composite structures |
US11235539B2 (en) | 2018-09-13 | 2022-02-01 | Continuous Composites Inc. | Fiber management arrangement and method for additive manufacturing system |
US11235522B2 (en) | 2018-10-04 | 2022-02-01 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11752696B2 (en) | 2018-10-04 | 2023-09-12 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11760013B2 (en) | 2018-10-04 | 2023-09-19 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11787112B2 (en) | 2018-10-04 | 2023-10-17 | Continuous Composites Inc. | System for additively manufacturing composite structures |
CN111055490A (zh) * | 2018-10-12 | 2020-04-24 | 罗天珍 | 三维打印机专用增维式彩色成型方法 |
US11247395B2 (en) | 2018-10-26 | 2022-02-15 | Continuous Composites Inc. | System for additive manufacturing |
US11279085B2 (en) | 2018-10-26 | 2022-03-22 | Continuous Composites Inc. | System for additive manufacturing |
US11607839B2 (en) | 2018-10-26 | 2023-03-21 | Continuous Composites Inc. | System for additive manufacturing |
US11325304B2 (en) | 2018-10-26 | 2022-05-10 | Continuous Composites Inc. | System and method for additive manufacturing |
US11511480B2 (en) | 2018-10-26 | 2022-11-29 | Continuous Composites Inc. | System for additive manufacturing |
US11806923B2 (en) | 2018-10-26 | 2023-11-07 | Continuous Composites Inc. | System for additive manufacturing |
US11420390B2 (en) | 2018-11-19 | 2022-08-23 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11358331B2 (en) * | 2018-11-19 | 2022-06-14 | Continuous Composites Inc. | System and head for continuously manufacturing composite structure |
US11292192B2 (en) | 2018-11-19 | 2022-04-05 | Continuous Composites Inc. | System for additive manufacturing |
US11338503B2 (en) | 2019-01-25 | 2022-05-24 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11958238B2 (en) | 2019-01-25 | 2024-04-16 | Continuous Composites Inc. | System for additively manufacturing composite structure utilizing comparison of data cloud and virtual model of structure during discharging material |
US11478980B2 (en) | 2019-01-25 | 2022-10-25 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11485070B2 (en) | 2019-01-25 | 2022-11-01 | Continuous Composites Inc. | System for additively manufacturing composite structure |
CN109532010B (zh) * | 2019-01-25 | 2023-06-16 | 南京航空航天大学 | 一种碳纤维复材变角度电损耗自加热原位固化装置及方法 |
US11400643B2 (en) | 2019-01-25 | 2022-08-02 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11618208B2 (en) | 2019-01-25 | 2023-04-04 | Continuous Composites Inc. | System for additively manufacturing composite structure |
CN109532010A (zh) * | 2019-01-25 | 2019-03-29 | 南京航空航天大学 | 一种碳纤维复材变角度电损耗自加热3d打印装置及方法 |
US11958245B2 (en) | 2019-05-28 | 2024-04-16 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11541603B2 (en) | 2019-05-28 | 2023-01-03 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11312083B2 (en) | 2019-05-28 | 2022-04-26 | Continuous Composites Inc. | System for additively manufacturing composite structure |
JP2020192777A (ja) * | 2019-05-30 | 2020-12-03 | セイコーエプソン株式会社 | 三次元造形物の製造方法および三次元造形装置 |
JP7306065B2 (ja) | 2019-05-30 | 2023-07-11 | セイコーエプソン株式会社 | 三次元造形物の製造方法および三次元造形装置 |
US11845215B2 (en) | 2019-09-13 | 2023-12-19 | Seiko Epson Corporation | Method for manufacturing three-dimensional shaped object and three-dimensional shaping device |
JP2021041661A (ja) * | 2019-09-13 | 2021-03-18 | セイコーエプソン株式会社 | 三次元造形物の製造方法、および、三次元造形装置 |
JP7395894B2 (ja) | 2019-09-13 | 2023-12-12 | セイコーエプソン株式会社 | 三次元造形物の製造方法、および、三次元造形装置 |
US20210086436A1 (en) * | 2019-09-24 | 2021-03-25 | Continuous Composites Inc. | System for additively manufacturing composite structure |
CN110696361A (zh) * | 2019-10-14 | 2020-01-17 | 华育昌(肇庆)智能科技研究有限公司 | 一种3d打印机 |
CN110696361B (zh) * | 2019-10-14 | 2020-06-23 | 华育昌(肇庆)智能科技研究有限公司 | 一种3d打印机 |
JP2021091110A (ja) * | 2019-12-06 | 2021-06-17 | 富士フイルムビジネスイノベーション株式会社 | 造形装置 |
JP7434864B2 (ja) | 2019-12-06 | 2024-02-21 | 富士フイルムビジネスイノベーション株式会社 | 造形装置 |
US11840022B2 (en) | 2019-12-30 | 2023-12-12 | Continuous Composites Inc. | System and method for additive manufacturing |
US11904534B2 (en) | 2020-02-25 | 2024-02-20 | Continuous Composites Inc. | Additive manufacturing system |
US11760030B2 (en) | 2020-06-23 | 2023-09-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11926100B2 (en) | 2020-06-23 | 2024-03-12 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11760029B2 (en) | 2020-06-23 | 2023-09-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
JP7528559B2 (ja) | 2020-06-26 | 2024-08-06 | セイコーエプソン株式会社 | 三次元造形装置 |
US20220080659A1 (en) * | 2020-09-11 | 2022-03-17 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11813793B2 (en) | 2020-09-11 | 2023-11-14 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11465348B2 (en) | 2020-09-11 | 2022-10-11 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11613080B2 (en) | 2020-09-11 | 2023-03-28 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11541598B2 (en) | 2020-09-11 | 2023-01-03 | Continuous Composites Inc. | Print head for additive manufacturing system |
US12083741B2 (en) | 2020-09-11 | 2024-09-10 | Continous Composites Inc. | Print heads for additive manufacturing systems |
US11958247B2 (en) | 2021-04-27 | 2024-04-16 | Continuous Composites Inc. | Additive manufacturing system |
US11760021B2 (en) | 2021-04-27 | 2023-09-19 | Continuous Composites Inc. | Additive manufacturing system |
US12030252B2 (en) | 2021-04-27 | 2024-07-09 | Continuous Composites Inc. | Additive manufacturing system |
DE102022125491A1 (de) | 2022-10-04 | 2024-04-04 | Simona Aktiengesellschaft | Vorrichtung und Verfahren zur additiven Bauteilherstellung |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017150186A1 (ja) | 3次元プリンティング装置及び3次元プリンティング方法 | |
US11104120B2 (en) | Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof | |
JP6730387B2 (ja) | 三次元印刷法 | |
JP6902812B2 (ja) | 物品の付加製造用プリントヘッド | |
JP7148943B2 (ja) | 繊維強化複合材構造物の製造方法及び3dプリンタ | |
JP6117337B2 (ja) | レイングヘッド、及び、繊維複合材料から構造部品用立体プリフォームを製造するための装置と方法 | |
JP6969753B2 (ja) | 3次元プリンティング装置 | |
CN106255584B (zh) | 用于形成三维物体的装置及方法 | |
JP4933584B2 (ja) | 樹脂含浸処理された複数の配向を有する複合材料の製造法 | |
KR20210150379A (ko) | 3d 집적 복합 구조체를 위한 다중-재료 구조체를 제조하는 방법 | |
KR20210150381A (ko) | 지지 구조체의 평활화를 구비하는 3d 복합 구조체를 제조하는 방법 | |
KR20210150380A (ko) | 3d 집적 복합 구조체의 증착 및 제조를 위한 방법 | |
WO2018203768A1 (ru) | Способ аддитивного производства изделий из композитных материалов, армированных непрерывными волокнами | |
JP2005219373A (ja) | 強化繊維の自動積層装置及び強化繊維プリフォームの製造方法 | |
US11465336B2 (en) | Manufacturing apparatus | |
CN115139520A (zh) | 增材制造系统以及增材制造方法 | |
US20240351279A1 (en) | Print head design for additive manufacturing using continuous fibers and thermoplastic matrix materials for cutting in the hot zone of the print head by an axial or rotational movement | |
JP7484296B2 (ja) | 造形材接続装置及び造形装置 | |
US11911965B2 (en) | Ultrasonic consolidation of continuous filament materials for additive manufacturing | |
RU2776061C2 (ru) | Способ изготовления изделий, армированных непрерывным волокном, с помощью аддитивных технологий и печатающая головка 3D-принтера для его осуществления | |
JP2011236361A (ja) | 繊維強化樹脂シートの製造装置及びその製造方法 | |
JP2024047484A (ja) | プリフォームの製造方法及び複合材成形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17759657 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17759657 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |