CN113332998A - 一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用 - Google Patents

一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用 Download PDF

Info

Publication number
CN113332998A
CN113332998A CN202110591074.7A CN202110591074A CN113332998A CN 113332998 A CN113332998 A CN 113332998A CN 202110591074 A CN202110591074 A CN 202110591074A CN 113332998 A CN113332998 A CN 113332998A
Authority
CN
China
Prior art keywords
brucite
nanoparticle catalyst
ruthenium
solution
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110591074.7A
Other languages
English (en)
Other versions
CN113332998B (zh
Inventor
张法智
丁虹艺
运学海
戚祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110591074.7A priority Critical patent/CN113332998B/zh
Publication of CN113332998A publication Critical patent/CN113332998A/zh
Application granted granted Critical
Publication of CN113332998B publication Critical patent/CN113332998B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用。本发明以双滴法合成的MgFeRu三元水滑石作为前驱体,在氢气气氛中采用程序升温还原制得负载在水镁铁石上的高分散钌纳米颗粒催化剂。本发明制备的负载在水镁铁石上的高分散钌纳米颗粒催化剂中的Ru和Mg、Fe的协同效应促进了对O2的活化和对乙醇的吸附能力,不仅提高了乙醇的转化率,而且大大提高了乙酸的选择性。并且该催化剂制备过程无需使用高锰酸钾,重铬酸钾等无机强氧化剂,制备方法简便,环境友好,可重复使用。

Description

一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化 乙醇液相氧化制乙酸的应用
技术领域
本发明属于催化剂制备技术领域,具体涉及一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用。
背景技术
由于能源的需求增加,化石原料的持续消耗,替代能源和可再生能源引起了最近研究的兴趣。生物质具有低二氧化碳排放的可再生性且价格比化石燃料便宜,其中生物乙醇是最常见的生物燃料之一,已作为燃料和燃料添加剂使用多年,其产量增长迅速达到每年46×109升。因此,从生物质中生产已被深入研究。醇类氧化反应是催化中较为重要的反应。将生物乙醇转化为其他化学物质可以有效解决化石能源带来的环境问题,从而得到人们的关注,其中生物乙醇氧化到高附加值的乙酸有重要价值。目前75%工业乙酸通过甲醇的羰基化制得。以甲醇为原料合成醋酸,不但原料价格低廉,容易得到,而且对醋酸的选择性在99%以上。但反应有副反应发生,且对反应温度要求高(150℃-200℃)。因此,迫切需要开发高效的催化剂来促进生物乙醇的转化。常用浸渍等方法负载贵金属得到催化剂进行反应,但是制备过程中不容易控制贵金属的尺寸和形貌,活性位暴露的面积小,不利于催化反应的进行,所以制备多相且绿色的催化剂一直是人们研究的方向。
在多相催化剂的制备过程中,控制固体表面活性纳米颗粒的分散仍然是重要的挑战之一,这种催化剂具有制备简单和存在大量催化活性位点的优势。LDHs(也称为类水滑石材料)属于二维(2D)化合物,其通式为[M2+ 1-xM3+ x(OH)2]x+(An-)x/nmH2O。M2+和M3+分别为二价和三价金属阳离子,分别位于主体层板上;An-为层间阴离子;x是M2+/(M2++M3+)的摩尔比;m是层间水分子的数目。LDHs结构与水镁石Mg(OH)2相似,主要层板由MO6八面体的边缘形成。在各种固体载体中,层状双氢氧化物(LDHs)由于其表面碱度、吸附能力和阴阳离子交换能力成为纳米非均相催化剂的潜在候选材料,而备受关注。LDHs的这些独特特性将为纳米级非均相催化剂的设计提供一条有吸引力的思路,以实现环境友好型有机合成。
发明内容
本发明的目的是提供一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用。
本发明以双滴法合成的MgFeRu三元水滑石作为前驱体,在氢气气氛中采用程序升温还原制得负载在水镁铁石上的高分散钌纳米颗粒催化剂。
所述的负载在水镁铁石上的高分散钌纳米颗粒催化剂的结构为:金属钌颗粒均匀分散在水镁铁石片层载体中,该催化剂为黑色粉末状物质,单个颗粒粒径在1-2nm。
所述的负载在水镁铁石上的高分散钌纳米颗粒催化剂的制备方法为:
(1)双滴法制备MgFeRu三元水滑石前体:室温下,将可溶镁盐、可溶铁盐、可溶钌盐配制成混合盐溶液与碱溶液一起滴加至四口烧瓶中,维持四口烧瓶中混合液的pH值为9-10,滴加完成后将混合液转入高压水热釜中,100-150℃下水热晶化12-48h,冷却至室温,用去离子水洗涤至中性,干燥后获得MgFeRu三元水滑石前体;
(2)将步骤(1)制备的MgFeRu三元水滑石前体在氢气气氛中还原,还原温度为180-220℃,还原时间为2-5h,还原完成后降至室温,最后在氮气氛中钝化0.5-1h。
所述的可溶镁盐、可溶铁盐、可溶钌盐分别为硝酸镁、硝酸铁、氯化钌。
所述的碱溶液为氢氧化钠溶液、或氢氧化钠和碳酸钠的混合碱溶液。
所述的混合盐溶液中Mg和Fe的摩尔比为2-4:1,Mg和Ru的摩尔比为30-70:1。
将上述制备得到的负载在水镁铁石上的高分散钌纳米颗粒催化剂应用于催化醇氧化反应中。
所述的醇为苯环醇、长链醇中的一种或几种。
所述的醇为乙醇时,催化乙醇液相氧化制乙酸的催化反应条件为:将负载在水镁铁石上的高分散钌纳米颗粒催化剂和乙醇溶液混合置于高压反应釜中,反应温度为100-150℃,空气压力为0.5-2MPa,反应时间3-5h,搅拌速度为300-1000r/min。
本发明制备的负载在水镁铁石上的高分散钌纳米颗粒催化剂中,水镁铁石是一种良好的载体,对金属钌颗粒进行固定,使得贵金属Ru的分散更均匀,贵金属与载体之间相互作用更强,防止了贵金属的聚集,并且为反应物提供了反应的活性位点,增加了底物与活性位点的有效接触。该催化剂中的Ru和Mg,Fe的协同效应促进了对O2的活化和对乙醇的吸附能力,不仅提高了乙醇的转化率,而且大大提高了乙酸的选择性,其在120℃、1MPa空气压力、反应物/催化剂为10:1的条件下,乙醇液相氧化到乙酸的转化率为95.62%,乙酸产率为91.23%。并且该催化剂制备过程无需使用高锰酸钾,重铬酸钾等无机强氧化剂,制备方法简便,环境友好,可重复使用。
附图说明
图1是实施例1制得的MgFeRu-LDHs前驱体的XRD(a)和SEM(b)图。
图2是实施例1制得的MgFeRu-LDHs前驱体以及在氢气气氛中不同温度下还原后得到的催化剂样品的XRD图。
图3是实施例1制得的MgFeRu-LDHs的H2-TPR曲线。
图4是实施例1中200℃还原制得的催化剂样品的高分辨透射电镜的照片以及相应的颗粒尺寸分布图。
图5是实施例1制得的Ru/sjoegrenite催化剂的CO2-TPD曲线。
具体实施方式
实施例1
A.采用双滴法制备了Mg/Fe摩尔比3.0、Mg/Ru摩尔比50.0的MgFeRu-LDHs前体:首先,将6.35g Mg(NO3)2·6H2O、3.33g Fe(NO3)3·9H2O和0.129g RuCl3·3H2O溶于50mL去离子水中得到混合盐溶液,总金属离子浓度为0.66mol/L。再将2.96g NaOH和2.45g Na2CO3溶于70mL去离子得到混合碱溶液。将两个溶液超声,使药品充分溶解。然后利用双通道注射器将盐溶液和碱性溶液加入四口烧瓶中,通过调节两种溶液的流速,将浆液的pH控制在10.0±0.1。滴加完毕后,将浆液倒入内衬为聚四氟乙烯的高压釜中,在120℃干燥箱中老化24h。之后取出冷却至室温,用低速离心机离心,去离子水洗至中性,80℃烘干得到结晶良好的MgFeRu-LDHs,前体的XRD、SEM见图1。
B.将步骤A制备的MgFeRu-LDHs放置于气氛管式炉中,常压下通入高纯氢气进行还原,氢气流速为20mL/min,还原温度为200℃,还原时间为3h,升温速率为5℃·min-1。样品还原后待温度降至室温后换成N2钝化1h后取出,得到200℃下还原的催化剂样品Ru/sjoegrenite。
不同温度处理的水滑石样品的XRD见图2。由图2可以看出,当温度从室温升高到200℃时,MgFeRu-LDHs的特征峰消失,出现了几个新的峰,表明LDHs结构发生了转变,水镁铁石是由于温度升高LDHs脱水得到的。图3为水滑石前体的H2-TPR曲线,可以看出Ru的加入促进了金属Fe的还原,降低了铁的还原温度。图4为还原样品的HRTEM图,可以看到金属钌颗粒均匀分散在水镁铁石上,钌颗粒平均粒径不大。图5是200℃还原样品的CO2-TPD曲线,催化剂有很强的中等碱性位,中等强度的碱性位有利于醇在有氧氧化中O-H键的断裂。
应用例1
利用50mL高压反应釜进行实验。反应釜中加入5wt%的乙醇溶液10mL,0.15g实施例1制得的催化剂和磁子。然后将高压反应釜密封并充入空气至压力为1MPa(室温下),插入热电偶并开加热电流。温度设置为120℃,搅拌速度为500r/min。反应结束后将反应釜置于冰水浴中冷却,再将釜中气体放空,开釜取样。氧化反应产物定量分析使用岛津气相色谱分析,色谱柱采用InertCap FFAP型,检测器为离子火焰检测器(反应结果见表1)。表1为MgFeRu-LDHs前驱体和实施例1还原制备的催化剂样品对催化乙醇氧化制乙酸的转化率,选择性与产率的数据表。
表1
Figure BDA0003089317450000041

Claims (9)

1.一种负载在水镁铁石上的高分散钌纳米颗粒催化剂,其特征在于,所述催化剂的结构为:金属钌颗粒均匀分散在水镁铁石片层载体中,该催化剂为黑色粉末状物质,单个颗粒粒径在1-2nm。
2.一种负载在水镁铁石上的高分散钌纳米颗粒催化剂的制备方法,其特征在于,所述制备方法为:以双滴法合成的MgFeRu三元水滑石作为前驱体,在氢气气氛中采用程序升温还原制得负载在水镁铁石上的高分散钌纳米颗粒催化剂。
3.根据权利要求2所述的负载在水镁铁石上的高分散钌纳米颗粒催化剂的制备方法,其特征在于,所述制备方法的具体步骤为:
(1)双滴法制备MgFeRu三元水滑石前体:室温下,将可溶镁盐、可溶铁盐、可溶钌盐配制成混合盐溶液与碱溶液一起滴加至四口烧瓶中,维持四口烧瓶中混合液的pH值为9-10,滴加完成后将混合液转入高压水热釜中,100-150℃下水热晶化12-48h,冷却至室温,用去离子水洗涤至中性,干燥后获得MgFeRu三元水滑石前体;
(2)将步骤(1)制备的MgFeRu三元水滑石前体在氢气气氛中还原,还原温度为180-220℃,还原时间为2-5h,还原完成后降至室温,最后在氮气氛中钝化0.5-1h。
4.根据权利要求3所述的制备方法,其特征在于,所述的可溶镁盐、可溶铁盐、可溶钌盐分别为硝酸镁、硝酸铁、氯化钌。
5.根据权利要求3所述的制备方法,其特征在于,所述的碱溶液为氢氧化钠溶液、或氢氧化钠和碳酸钠的混合碱溶液。
6.根据权利要求3所述的制备方法,其特征在于,所述的混合盐溶液中Mg和Fe的摩尔比为2-4:1,Mg和Ru的摩尔比为30-70:1。
7.根据权利要求2-6任意一项所述的方法制备得到的负载在水镁铁石上的高分散钌纳米颗粒催化剂催化醇氧化反应的应用。
8.根据权利要求7所述的应用,其特征在于,所述的醇为苯环醇、长链醇中的一种或几种。
9.根据权利要求7所述的应用,其特征在于,所述的醇为乙醇时,即为负载在水镁铁石上的高分散钌纳米颗粒催化剂催化乙醇液相氧化制乙酸的催化反应,该催化反应的条件为:将负载在水镁铁石上的高分散钌纳米颗粒催化剂和乙醇溶液混合置于高压反应釜中,反应温度为100-150℃,空气压力为0.5-2MPa,反应时间3-5h,搅拌速度为300-1000r/min。
CN202110591074.7A 2021-05-28 2021-05-28 一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用 Active CN113332998B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110591074.7A CN113332998B (zh) 2021-05-28 2021-05-28 一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110591074.7A CN113332998B (zh) 2021-05-28 2021-05-28 一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用

Publications (2)

Publication Number Publication Date
CN113332998A true CN113332998A (zh) 2021-09-03
CN113332998B CN113332998B (zh) 2023-05-26

Family

ID=77472007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110591074.7A Active CN113332998B (zh) 2021-05-28 2021-05-28 一种负载在水镁铁石上的高分散钌纳米颗粒催化剂及其催化乙醇液相氧化制乙酸的应用

Country Status (1)

Country Link
CN (1) CN113332998B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030812A2 (en) * 2002-10-04 2004-04-15 Johnson Matthey Plc Oxidation process and catalysts for the oxidation of alcohols to aldehides
JP2004217444A (ja) * 2003-01-10 2004-08-05 Japan Science & Technology Agency ハイドロタルサイト様化合物由来の多孔質複合体、その製造方法、および該多孔質複合体から成る窒素酸化物の常温還元触媒
CN1522176A (zh) * 2002-04-26 2004-08-18 ס�ѻ�ѧ��ҵ��ʽ���� 氧化铝载钌的制备方法和使醇氧化的方法
JP2009101298A (ja) * 2007-10-23 2009-05-14 Idemitsu Kosan Co Ltd 炭化水素または酸素を含む炭化水素の改質処理用触媒およびそれを用いた水素含有ガスの製造方法
CN101455964A (zh) * 2008-12-18 2009-06-17 浙江工业大学 一种镍基金属负载型催化剂的制备方法
CN103301840A (zh) * 2013-06-04 2013-09-18 北京化工大学 一种负载型高分散费托合成金属催化剂、制备方法及应用
CN104768910A (zh) * 2012-10-29 2015-07-08 阿肯马法国公司 由醇混合物直接合成不饱和醛的方法
CN105170161A (zh) * 2015-09-29 2015-12-23 北京化工大学 水滑石负载Au25-xPdx簇催化剂及其制备方法
CN105921155A (zh) * 2016-05-16 2016-09-07 北京化工大学 一种高分散负载型二氧化钌催化剂及其制备方法
CN106423199A (zh) * 2016-09-06 2017-02-22 北京化工大学 一种负载型的高分散NiRu双金属催化剂的制备方法及其催化应用
CN109364944A (zh) * 2018-09-20 2019-02-22 北京化工大学 一种单分散贵金属负载的单层水滑石材料及其制备方法和应用
CN110102313A (zh) * 2019-05-20 2019-08-09 北京化工大学 一种限域结构钌镍核壳双金属纳米催化剂的制备及其催化对苯二甲酸二甲酯选择加氢的应用
CN112341312A (zh) * 2020-11-13 2021-02-09 华南理工大学 一种木质素选择性氢解制备环己醇及其衍生物的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1522176A (zh) * 2002-04-26 2004-08-18 ס�ѻ�ѧ��ҵ��ʽ���� 氧化铝载钌的制备方法和使醇氧化的方法
WO2004030812A2 (en) * 2002-10-04 2004-04-15 Johnson Matthey Plc Oxidation process and catalysts for the oxidation of alcohols to aldehides
JP2004217444A (ja) * 2003-01-10 2004-08-05 Japan Science & Technology Agency ハイドロタルサイト様化合物由来の多孔質複合体、その製造方法、および該多孔質複合体から成る窒素酸化物の常温還元触媒
JP2009101298A (ja) * 2007-10-23 2009-05-14 Idemitsu Kosan Co Ltd 炭化水素または酸素を含む炭化水素の改質処理用触媒およびそれを用いた水素含有ガスの製造方法
CN101455964A (zh) * 2008-12-18 2009-06-17 浙江工业大学 一种镍基金属负载型催化剂的制备方法
CN104768910A (zh) * 2012-10-29 2015-07-08 阿肯马法国公司 由醇混合物直接合成不饱和醛的方法
US20150266800A1 (en) * 2012-10-29 2015-09-24 Arkema France Method for Directly Synthesizing Unsaturated Aldehydes from Alcohol Mixtures
CN103301840A (zh) * 2013-06-04 2013-09-18 北京化工大学 一种负载型高分散费托合成金属催化剂、制备方法及应用
CN105170161A (zh) * 2015-09-29 2015-12-23 北京化工大学 水滑石负载Au25-xPdx簇催化剂及其制备方法
CN105921155A (zh) * 2016-05-16 2016-09-07 北京化工大学 一种高分散负载型二氧化钌催化剂及其制备方法
CN106423199A (zh) * 2016-09-06 2017-02-22 北京化工大学 一种负载型的高分散NiRu双金属催化剂的制备方法及其催化应用
CN109364944A (zh) * 2018-09-20 2019-02-22 北京化工大学 一种单分散贵金属负载的单层水滑石材料及其制备方法和应用
CN110102313A (zh) * 2019-05-20 2019-08-09 北京化工大学 一种限域结构钌镍核壳双金属纳米催化剂的制备及其催化对苯二甲酸二甲酯选择加氢的应用
CN112341312A (zh) * 2020-11-13 2021-02-09 华南理工大学 一种木质素选择性氢解制备环己醇及其衍生物的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGYI DING ET AL: ""Confined Ruthenium Nanoparticles as an Effective Catalyst for Aerobic Oxidation of Aqueous Ethanol to Acetic Acid"" *
贾会敏: ""限域结构催化剂的制备及其催化性能研究"" *

Also Published As

Publication number Publication date
CN113332998B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
Bi et al. Research progress on photocatalytic reduction of CO 2 based on LDH materials
Hu et al. Mechanochemical preparation of single atom catalysts for versatile catalytic applications: A perspective review
Liu et al. Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural
CN109225233B (zh) 一种层状双金属氢氧化物/碳量子点电催化剂及其制备方法
WO2017190553A1 (zh) 一种双重限域结构的过渡金属纳米粒子催化剂及其催化对苯二甲酸二甲酯选择加氢的应用
CN108654625B (zh) 一种片层限域结构镍铁基纳米复合电催化剂及其制备方法和应用
Yang et al. Utilization of biomass waste: Facile synthesis high nitrogen-doped porous carbon from pomelo peel and used as catalyst support for aerobic oxidation of 5-hydroxymethylfurfural
Ma et al. Au@ h-Al 2 O 3 analogic yolk–shell nanocatalyst for highly selective synthesis of biomass-derived d-xylonic acid via regulation of structure effects
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
WO2018036183A1 (zh) 一种水分解催化剂及其制备方法和应用
CN108517537A (zh) 一种氮掺杂碳负载双尺度过渡金属磷化物及其制备方法和应用
CN114405505B (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN115518668B (zh) 一种氧氮化合物异质结及其制备方法和应用
CN110292939B (zh) 一种双碳限域的铱纳米团簇及其制备方法和应用
Lamba et al. ZnO catalyzed transesterification of Madhuca indica oil in supercritical methanol
CN105921155A (zh) 一种高分散负载型二氧化钌催化剂及其制备方法
Wang et al. Layered double hydroxide and related catalysts for hydrogen production and a biorefinery
Zheng et al. Hydrogenolysis of glycerol over Cu-substituted hydrocalumite mediated catalysts
CN108273488B (zh) 一种纳米片状二氧化铈/多孔炭复合材料的制备方法
CN109174143B (zh) 一种钙钛矿基复合纳米光催化材料及制备方法与用途
CN114592213B (zh) 单原子金属掺杂α-氢氧化钴纳米片及其制备方法和应用
CN111790390A (zh) 一种具有界面协同作用的铜基催化剂的制备方法及其应用
Tang et al. Ultrahigh efficiency CH 4 photocatalytic conversion to C1 liquid products over cheap and vacancy-rich CeO 2 at 30 C
CN109847756B (zh) 一种中空结构的镍基纳米催化剂及其制备方法与应用
CN111871461A (zh) 一种海胆状钴基光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant