CN1133263C - 升压及降压变换软开关拓扑电路 - Google Patents

升压及降压变换软开关拓扑电路 Download PDF

Info

Publication number
CN1133263C
CN1133263C CN00114289A CN00114289A CN1133263C CN 1133263 C CN1133263 C CN 1133263C CN 00114289 A CN00114289 A CN 00114289A CN 00114289 A CN00114289 A CN 00114289A CN 1133263 C CN1133263 C CN 1133263C
Authority
CN
China
Prior art keywords
diode
switch
vma
main
vmm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN00114289A
Other languages
English (en)
Other versions
CN1278120A (zh
Inventor
章进法
赵林冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertiv Tech Co Ltd
Original Assignee
Emerson Network Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Network Power Co Ltd filed Critical Emerson Network Power Co Ltd
Priority to CN00114289A priority Critical patent/CN1133263C/zh
Publication of CN1278120A publication Critical patent/CN1278120A/zh
Application granted granted Critical
Publication of CN1133263C publication Critical patent/CN1133263C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

升压及降压变换软开关拓扑电路,谐振电容Cr和续流二极管VDf并联在辅开关VMa两端,谐振电感Lr同主开关VMm组成串联支路与所述谐振电容Cr并联,主、辅二极管VDm和VDa阴极或阳极相连。电路的控制逻辑是:开通主开关VMmδ1时间再开通辅开关VMa,两者同时导通T1时间后关断该主开关,经过δ2时间又关断所述辅开关,两者同时关断T2时间再从头开始。由于是软开关,实现了零电流、零电压开通和零电压关断,因而能降低开关损耗和EMI噪音,获得较高的变流效果。

Description

升压及降压变换软开关拓扑电路
技术领域  本发明涉及静止型电力变流电路,尤其涉及用于直流升压和降压变换的半导体软开关拓扑电路。
背景技术  现有用于电力静止变流的技术,例如常规的升压变换(Boost)电路,如图1所示,包括电压源Ui、储能电感Lm、MOSFET(电力场效应晶体管)开关器件Vs、快恢复二极管VD、输出滤波电容Co和负载电阻RL。在图2上绘出了该电路的工作时序。例如,在t=to时刻,开关器件Vs导通,二极管VD硬关断。由于二极管VD的载流子存储效应,造成它有很大的反向恢复电流。在t=t1时刻,二极管VD的电流IVD反向恢复达到最大值IR,通过开关器件Vs的电流Id-s=Ii+IR。正是这个很大的反向恢复电流,使得二极管VD的关断损耗和开关器件Vs的开通损耗都很大,以致电路效率低下,只能达到η=95.5%左右,EMI(电磁干扰)噪音也很大。图2上t=t2时刻,开关器件Vs关断,储能电感Lm的电流通过二极管VD向输出滤波电容Co充电,磁场储能转变为电场储能。目前单相整流电源的PFC(功率因数校正)技术大多采用这种升压型电路。
发明内容  本发明要解决的技术问题在于避免上述现有技术的不足之处而提出一种能降低电路开关损耗、抑制开关器件Vs关断时产生的尖峰电压和开关噪声,从而获得更高的电路变流效率和降低EMI噪音的用于电力变流的软开关拓扑电路。
本发明解决所述技术问题可以通过采用以下技术方案来实现:提出一种用于电力变流的软开关拓扑结构,借助半导体功率开关及其控制逻辑,再适当连接储能元件,来开关电力电路,变换输入电力使之具有所需电压、频率、相数或波形。本发明首先提供一种升压变换软开关拓扑电路,包括电压源Ui、储能电感Lm、辅开关VMa、主二极管VDm、滤波电容Co和负载电阻RL,尤其还包括谐振电感Lr、谐振电容Cr、续流二极管VDf、辅二极管VDa和主开关VMm。所述谐振电容Cr和续流二极管VDf均并联在辅开关VMa两端,续流二极管VDf的阳极连接电压源Ui负端,谐振电感Lr同主开关VMm组成串联支路与谐振电容Cr并联,所述主、辅二极管VDm和VDa阴极相连,接至滤波电容Co正极,辅二极管VDa的阳极连接谐振电感Lr同主开关VMm的串连连接点p1,主二极管VDm的阳极连接储能电感Lm同谐振电感Lr的连接点p2。所述电路的控制逻辑是,先开通主开关VMm,经过一小段时间δ1之后又开通辅开关VMa,在该两开关VMm和VMa同时导通T1时间后关断主开关VMm,接着经过δ2时间后又关断辅开关VMa,在此后的T2时间段两开关VMm和VMa均关断,至T2时间段末,令主开关(VMm)重新开通,如此周而复始。
本发明还提供一种降压变换(Buck)软开关拓扑电路,其电路结构和控制逻辑同升压变换软开关拓扑电路相似,在以下的”具体实施方式”一节将详细描述。
同现有技术相比较,本发明的升压及降压变换软开关拓扑电路,由于实现了主二极管VDm软关断,主开关VMm零电流开通和零电压关断,辅开关VMa零电压开通和零电压关断,因而能降低电路开关损耗和电磁干扰噪音,获得较高的变流效率。
附图说明  图1是现有技术升压变换(Boost)电路的原理图;
图2是图1电路工作时各部分电压、电流时序图;
图3是本发明软开关拓扑在升压变换电路中应用的原理图;
图4,a至f为图3电路工作时各部分电压、电流时序图;
图5是进一步完善的本发明软开关拓扑在升压变换电路中应用的原理图;
图6,a至f为图5电路工作时各部分电压、电流时序图;
图7是本发明软开关拓扑在降压变换(Buck)电路中应用的原理图;
图8是进一步完善的本发明软开关拓扑在降压变换电路中应用的原理图;
图9为图5电路用于PFC(功率因数校正)的一个最佳实施例原理电路图。
具体实施方式  以下结合附图所示各最佳实施例作进一步详述:
本发明软开关拓扑用于升压变换电路,如图3、图5所示,除包括电压源Ui 301(或501)、储能电感Lm 302(或502)、辅开关VMa 306(或506)、主二极管VDm 307(或507)、滤波电容Co 309(或509)和负载电阻RL 310(或510)等现有技术升压变换电路必须的元器件外,还包括谐振电感Lr 305(或505)、谐振电容Cr 304(或504)、续流二极管VDf 300(或500)、辅二极管VDa 308(或508)和主开关VMm 303(或503)。所述谐振电容Cr和续流二极管VDf均并联在辅开关VMa两端,续流二极管VDf的阳极连接电压源Ui负端,谐振电感Lr同主开关VMm组成串联支路与谐振电容Cr并联,所述主、辅二极管VDm和VDa阴极相连,接至滤波电容Co正极,辅二极管VDa的阳极连接谐振电感Lr同主开关VMm的串连连接点p1,主二极管VDm的阳极连接储能电感Lm同谐振电感Lr的连接点p2。所述电路的控制逻辑是,先开通主开关VMm,经过一小段时间δ1之后又开通辅开关VMa,在该两开关VMm和VMa同时导通T1时间后关断主开关VMm,接着经过δ2时间后又关断辅开关VMa,在此后的T2时间段两开关VMm和VMa均关断,至T2时间段末,令主开关VMm重新开通,如此周而复始。针对图3、图4所示升压变换软开关拓扑电路的两个时间参量δ1和δ2,可用数学式表达如下: δ 1 ≥ Vo / ( Lr · irl ) + π Lr · Cr / 2 ;
δ2=Vo/(Lr·ir2);式中:ir1是主开关VMm开通时流经谐振电感Lr的电流,
  ir2是主开关VMm关断时流经谐振电感Lr的电流,
  Vo是所述电路的输出电压,即滤波电容Co两端的电压。
图3实施例所用主、辅开关VMm和VMa都是场效应晶体管,其各部分工作时序见图4,其中图4a为主开关VMm的栅-源电压驱动波形,图4b为辅开关VMa的栅-源电压驱动波形,图4c为主开关VMm的漏-源电压波形,图4d是辅开关VMa的漏-源电压波形,图4e是谐振电感Lr的电流波形,图4f是主二极管VDm的电流波形。在to时刻,主开关VMm开通,借助谐振电感Lr实现主二极管VDm软关断。在t1时刻,主二极管VDm关断,谐振电感Lr与谐振电容Cr开始谐振,至t2时刻,谐振电容Cr上的电压等于零,续流二极管VDf开始导通续流。在续流期间至t3时刻,开通辅开关VMa,实现辅开关VMa零电压开通。在t3~t4期间,主开关VMm和辅开关VMa均开通,但电流仍只流过主开关VMm。在t4时刻关断主开关VMm,辅开关VMa仍处于导通状态,谐振电感Lr储能电流经辅二极管VDa流向输出滤波电容Co。流经谐振电感Lr的电流逐渐减小,但流过辅开关VMa的电流则逐渐增加。在t5时刻,谐振电感Lr的电流减小到零,此时关断辅开关VMa,储能电感Lm的电流开始向谐振电容Cr充电。显然,跨接在辅开关VMa两端的谐振电容Cr帮助实现了辅开关VMa零电压关断。在t6时刻,振电容Cr两端电压与滤波电容Co两端电压相等,此时主二极管VDm导通,储能电感Lm的磁场能量以电流形式经主二极管VDm流向滤波电容Co,供给负载RL。在t7时刻,主开关VMm再次开通,周期地重复上述过程。
相比现有技术,本发明图3软开关拓扑结构的优点在于:①实现了主二极管VDm的软关断;②实现了主开关VMm的零电流开通;③实现了辅开关VMa零电压开通和零电压关断。
图5展示进一步完善的本发明拓扑结构用于升压变换电路的原理图,它除了包括图3电路所有的元器件、使用同样的控制逻辑之外,还包括无损吸收二极管VDab 513和无损吸收电容Cab 512,该无损吸收二极管VDab与所述辅二极管VDa同方向串联,组成的串联支路与所述谐振电感Lr同主二极管VDm组成的串联支路相并联,所述无损吸收电容Cab跨接在主二极管VDm的阳极和辅二极管VDa的阳极之间。
图5实施例各部分工作时序见图6,其中图6a为主开关VMm的栅-源电压驱动波形,图6b为辅开关VMa的栅-源电压驱动波形,图6c为主开关VMm的漏-源电压波形,图6d是辅开关VMa的漏-源电压波形,图6e是谐振电感Lr的电流波形,图6f是主二极管VDm的电流波形。在to时刻,主开关VMm开通,借助谐振电感Lr实现主二极管VDm软关断。在t1时刻,主二极管VDm软关断,谐振电感Lr与谐振电容Cr开始谐振,至t2时刻,谐振电容Cr上的电压等于零,续流二极管VDf开始导通续流。在续流期间于t3时刻,开通辅开关VMa,实现辅开关VMa零电压开通。在t3~t4期间,主开关VMm和辅开关VMa均开通,但电流仍只流过主开关VMm。在t4时刻关断主开关VMm,辅开关VMa仍处于导通状态,谐振电感Lr的储能通过无损吸收二极管VDab逐步向无损吸收电容Cab转移,流经谐振电感Lr的电流逐渐减小,而在t4时刻,流过辅开关VMa的电流陡然增加,直至与流经储能电感Lm的电流相同。由于无损吸收电容Cab的电压是缓慢上升的,实现了主开关VMm的零电压关断。在t5时刻,流经谐振电感Lr的电流减小到零,此时辅开关VMa关断,由于此时无损吸收电容Cab两端的电压与输出滤波电容Co两端电压相同,辅开关VMa的电压上升速率受到无损吸收电容Cab通过辅二极管VDa放电的限制和并在辅开关VMa两端的谐振电容Cr充电的限制,实现了辅开关VMa的零电压关断。在t6时刻,辅开关VMa两端电压上升到与滤波电容Co的电压相同,主二极管VDm导通。至t7时刻,主开关VMm再次开通,周期地重复上述过程。
至此可以作如下归纳:如图5所示的进一步完善的本发明软开关拓扑应用于升压变换电路具有的优点是:①实现了主二极管VDm软关断;②实现了主开关VMm零电流开通和零电压关断;③实现了辅开关VMa零电压开通和零电压关断。
本发明软开关拓扑用于降压变换(Buck)电路的最佳实施例见图7和图8,它除包括电压源Ui 701(或801)、储能电感Lm 702(或802)、辅开关VMa 706(或806)、主二极管VDm 707(或807)、滤波电容Co 709(或809)和负载电阻RL 710(或810)等现有技术降压变换电路所必须的元器件外,还包括谐振电感Lr 705(或805)、谐振电容Cr 704(或804)、续流二极管VDf 700(或800)、辅二极管VDa 708(或808)和主开关VMm 703(或803)。所述电压源Ui、辅开关VMa、储能电感Lm和滤波电容Co连接成一串联回路,电压源Ui正端与辅开关VMa的一端相连,该辅开关VMa的另一端连接储能电感Lm、谐振电感Lr和主二极管VDm阴极的共同连结点q1,谐振电容Cr和续流二极管VDf同辅开关VMa相并联,主开关VMm则同谐振电感Lr组成串联支路再同该辅开关VMa相并联,主开关VMm与谐振电感Lr的连接点q2与辅二极管VDa阴极相连接,电压源Ui正端同时连接续流二极管VDf阴极。所述电路的控制逻辑是:先开通主开关VMm,经过一小段时间δ1之后,在二极管VDf续流导通期间开通辅开关VMa,待主、辅两开关VMm和VMa同时导通T1时间后又关断主开关VMm,接着经过δ2时间再关断辅开关VMa,在此后的T2时间段两开关VMm和VMa均关断,至T2时间段末,令主开关VMm重新开通,如此周而复始,其实现软开关的思想与图3的升压变换电路是一样的。
现在具体描述图7降压变换电路各部分电压、电流的时序,其中一些时间标识可参见图4.主开关VMm 703开通时,借助谐振电感Lr 705实现主二极管VDm 707软关断和主开关VMm零电流开通。在主二极管VDm软关断后,谐振电容Cr 704与谐振电感Lr谐振。当谐振电容Cr的电压谐振到零后,续流二极管VDf 700开始导通续流。在此VDf续流导通期间,开通辅开关VMa 706,实现辅开关零电压开通。此时间段T1,主开关VMm与辅开关VMa处于同时开通状态,但电流仍只流经主开关VMm。在辅开关VMa开通后经过T1时间,关断主开关VMm,而辅开关VMa仍处于开通状态。此时辅二极管VDa导通,给谐振电感Lr的电流提供续流通路。之后,流经谐振电感Lr的电流逐渐减小,流经辅开关VMa的电流逐渐增加,一俟谐振电感Lr的电流减小到零,辅二极管VDa随即软关断,同时关断辅开关VMa,并联在辅开关VMa两端的谐振电容Cr实现了辅开关VMa的零电压关断。当谐振电容Cr的电压上升到电压源Ui的电压时,主二极管VDm开通,给储能电感Lm提供续流通路。在这之后某一时刻,在主、辅开关VMm和VMa都关断的时间段T2末,重新开通主开关VMm,周期性地重复上述过程。
进一步完善的本发明拓扑结构用于降压变换电路的原理图见图8,它除了包括图7电路所有的元器件、使用同样的控制逻辑之外,还包括无损吸收二极管VDab 831和无损吸收电容Cab 812,该无损吸收二极管VDab与所述辅二极管VDa同方向串联,组成的串联支路与所述谐振电感Lr同主二极管VDm组成的串联支路相并联,所述无损吸收电容Cab跨接在主二极管VDm的阴极和辅二极管VDa的阴极之间。
图8电路实现软开关的思想同图5的升压变换电路是一样的,其具体工作过程如下:当主开关VMm 803开通时,借助谐振电感Lr 805实现主二极管VDm 807的软关断和主开关VMm零电流开通。在主二极管VDm软关断后,谐振电容Cr 804与谐振电感Lr谐振。当谐振电容Cr的电压谐振到零后,续流二极管VDf 800开始导通续流。在VDf续流导通期间,开通辅开关VMa 806,实现辅开关零电压开通。此T1时间段内,主、辅两开关VMm和VMa都处于开通状态,但电流仍只流经主开关VMm。在辅开关VMa开通后经过T1时间,主开关VMm关断,而辅开关VMa仍处于开通状态,此时无损吸收二极管VDab导通,借助无损吸收电容Cab给谐振电感Lr的电流提供续流通路,实现主开关VMm零电压关断。之后,流经谐振电感Lr的电流逐渐减小,但流经辅开关VMa的电流在主开关VMm关断时陡然增加,直至与流经储能电感Lm的电流相同。在谐振电感Lr的电流减小到零时,无损吸收二极管VDab软关断,同时也关断辅开关VMa,辅二极管VDa随即导通,通过无损吸收电容Cab放电和谐振电容Cr充电为储能电感Lm提供续流通路,从而实现辅开关VMa零电压关断。当无损吸收电容Cab的电压降为零时,辅二极管VDa关断,同时主二极管VDm开通,为储能电感Lm提供续流通路。在主、辅开关都关断经过T2时间后,再次开通主开关VMm,周期性地重复上述过程。
图9展示本发明进一步完善的软开关拓扑升压变换电路(图5)用于PFC(功率因数校正)的最佳实施例电原理图。该电路不仅易于控制、EMI(电磁干扰)噪音小,而且效率高达97%。用现有技术升压变换电路构成的PFC电路,虽然控制简单,但效率只有95.5%左右,并且EMI噪音大。
所述最佳实施例的电路,见图9,包括主电路9和控制电路96。主电路9包括EMI滤波器F 93、整流桥RB 94和一块印刷电路板90,该印刷电路板90上是本发明进一步完善的升压变换电路,所用各元器件见说明书末的明细表。图9中,单相交流电力自L、N端子输入,经抗电磁干扰滤波器F净化后输入整流桥RB变换为直流,再经电路板90上的电路,从端子F、G输出经电容Co 909滤波后的+415伏直流电力供给负载。
控制电路96也画在图9上,由功率因数校正主令控制电路MC 960发出45千赫控制脉冲,其中一路经驱动器D2 968后再经电阻R4 969,驱动主开关VMm 903,另一路经二极管VD2 963、电阻R2 964和电容C1 965组成的R_C延时网络,产生需要的前沿延时,经二极管VD1 961、电阻R1 962和电容C1 965组成的R_C延时网络,产生需要的后沿延时。所述经过前、后沿延时处理的控制脉冲,再经驱动器D1 966后,经电阻R3 967驱动辅开关VMa 906。
本发明最佳实施例所用元器件明细表如下:电路符号/零件标号    名称        型号、规格    性质说明    制造厂商VMm 903              主开关      IRG4PC50W     IGBTVMa 906              辅开关      IXFH20N60     MOSFETLm 902               储能电感    500μHLr 905               谐振电感    10μHVDm 907              主二极管    DSEI 60-06A电路符号/零件标号  名称            型号、规格    性质说明    制造广商VDa 908            辅二极管        MUR 8100VDab 913           无损吸收二极管  MUR 8100Cab 912            无损吸收电容    22nFCo 909             滤波电容        3×330μF/450VD1 966             驱动器          UC 3708                   UnitrodeD2 968             驱动器          UC 3708                   Unitrode

Claims (10)

1.一种升压变换软开关拓扑电路,包括电压源(Ui)、储能电感(Lm)、辅开关(VMa)、主二极管(VDm)、滤波电容(Co)和负载电阻(RL),其特征在于:
还包括谐振电感(Lr)、谐振电容(Cr)、续流二极管(VDf)、辅二极管(VDa)和主开关(VMm);所述谐振电容(Cr)和续流二极管(VDf)均并联在辅开关(VMa)两端,续流二极管(VDf)的阳极连接电压源(Ui)负端,谐振电感(Lr)同主开关(VMm)组成串联支路与谐振电容(Cr)并联,所述主、辅二极管(VDm)和(VDa)阴极相连,接至滤波电容(Co)正极,辅二极管(VDa)的阳极连接谐振电感(Lr)同主开关(VMm)的串连连接点p1,主二极管(VDm)的阳极连接储能电感(Lm)同谐振电感(Lr)的连接点p2;所述电路的控制逻辑是,先开通主开关(VMm),经过一小段时间δ1之后又开通辅开关(VMa),在该两开关(VMm)和(VMa)同时导通T1时间后关断主开关(VMm),接着经过δ2时间后又关断辅开关(VMa),在此后的T2时间段两开关(VMm)和(VMa)均关断,至T2时间段末,令主开关(VMm)重新开通,如此周而复始。
2.按照权利要求1所述的升压变换软开关拓扑电路,其特征在于:
还包括无损吸收二极管(VDab)和无损吸收电容(Cab),该无损吸收二极管(VDab)与所述辅二极管(VDa)同方向串联,组成的串联支路与所述谐振电感(Lr)同主二极管(VDm)组成的串联支路相并联,所述无损吸收电容(Cab)跨接在主二极管(VDm)的阳极和辅二极管(VDa)的阳极之间。
3.按照权利要求1所述的升压变换软开关拓扑电路,其特征在于:
所述辅开关(VMa)是MOSFET,所述主开关(VMm)是IGBT或者是MOSFET。
4.按照权利要求1所述的升压变换软开关拓扑电路,其特征在于:
所述主二极管(VDm)、辅二极管(VDa)无损吸收二极管(VDab)是快恢复二极管。
5.按照权利要求1所述的升压变换软开关拓扑电路,其特征在于:
所述滤波电容(Co)是电解电容。
6.一种降压变换软开关拓扑电路,包括电压源(Ui)、储能电感(Lm)、辅开关(VMa)、主二极管(VDm)、滤波电容(Co)和负载电阻(RL),其特征在于:
还包括谐振电感(Lr)、谐振电容(Cr)、续流二极管(VDf)、辅二极管(VDa)和主开关(VMm);所述电压源(Ui)、辅开关(VMa)、储能电感(Lm)和滤波电容(Co)连接成一串联回路,电压源(Ui)正端与辅开关(VMa)的一端相连,该辅开关(VMa)的另一端连接储能电感(Lm)、谐振电感(Lr)和主二极管(VDm)阴极的共同连结点q1,谐振电容(Cr)和续流二极管(VDf)同辅开关(VMa)相并联,主开关(VMm)则同谐振电感(Lr)组成串联支路再同该辅开关(VMa)相并联,主开关(VMm)与谐振电感(Lr)的连接点q2与辅二极管(VDa)阴极相连接,电压源(Ui)正端同时连接续流二极管(VDf)阴极;所述电路的控制逻辑是:先开通主开关(VMm),经过一小段时间δ1之后,在二极管(VDf)续流导通期间开通辅开关(VMa),待主、辅两开关(VMm)和(VMa)同时导通T1时间后又关断主开关(VMm),接着经过δ2时间再关断辅开关(VMa),在此后的T2时间段两开关(VMm)和(VMa)均关断,至T2时间段末,令主开关(VMm)重新开通,如此周而复始。
7.按照权利要求6所述的降压变换软开关拓扑电路,其特征在于:
还包括无损吸收二极管(VDab)和无损吸收电容(Cab),该无损吸收二极管(VDab)与所述辅二极管(VDa)同方向串联,组成的串联支路与所述谐振电感(Lr)同主二极管(VDm)组成的串联支路相并联,所述无损吸收电容(Cab)跨接在主二极管(VDm)的阴极和辅二极管(VDa)的阴极之间。
8.按照权利要求6所述的降压变换软开关拓扑电路,其特征在于:
所述辅开关(VMa)是MOSFET,所述主开关(VMm)是IGBT或者是MOSFET。
9.按照权利要求6所述的降压变换软开关拓扑电路,其特征在于:
所述主二极管(VDm)、辅二极管(VDa)和无损吸收二极管(VDab)是快恢复二极管。
10.按照权利要求6所述的降压变换软开关拓扑电路,其特征在于:
所述滤波电容(Co)是电解电容。
CN00114289A 2000-05-17 2000-05-17 升压及降压变换软开关拓扑电路 Expired - Fee Related CN1133263C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN00114289A CN1133263C (zh) 2000-05-17 2000-05-17 升压及降压变换软开关拓扑电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00114289A CN1133263C (zh) 2000-05-17 2000-05-17 升压及降压变换软开关拓扑电路

Publications (2)

Publication Number Publication Date
CN1278120A CN1278120A (zh) 2000-12-27
CN1133263C true CN1133263C (zh) 2003-12-31

Family

ID=4583992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00114289A Expired - Fee Related CN1133263C (zh) 2000-05-17 2000-05-17 升压及降压变换软开关拓扑电路

Country Status (1)

Country Link
CN (1) CN1133263C (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399688C (zh) * 2004-08-20 2008-07-02 艾默生网络能源有限公司 一种变换软开关电路
JP4861040B2 (ja) * 2006-04-06 2012-01-25 株式会社日立製作所 単方向dc−dcコンバータ
CN101154888B (zh) * 2006-09-28 2010-12-22 立锜科技股份有限公司 切换式电源供应器及其控制电路与方法
CN101459378B (zh) * 2007-12-14 2011-03-09 英业达股份有限公司 线性降压调节器
JP5321124B2 (ja) * 2009-02-23 2013-10-23 三菱電機株式会社 半導体スイッチング装置
CN102696169B (zh) * 2010-01-05 2015-06-10 株式会社日立制作所 Ac-dc变换器及其控制方法
DE202011102068U1 (de) * 2011-06-07 2012-09-10 Voltwerk Electronics Gmbh Hochsetzsteller
KR101288201B1 (ko) * 2011-09-16 2013-07-18 삼성전기주식회사 역률 보정 회로, 이를 갖는 전원 장치 및 모터 구동 장치
KR20140062997A (ko) * 2012-11-15 2014-05-27 삼성전기주식회사 역률 보정 장치, 이를 갖는 전원 공급 장치 및 모터 구동 장치
CN103023322A (zh) * 2012-12-18 2013-04-03 黄文辉 一种软开关的降压式变换电路及其控制策略
CN105991017A (zh) * 2015-02-12 2016-10-05 广东易事特电源股份有限公司 一种boost软开关的控制方法和控制装置
US10177658B2 (en) 2016-04-14 2019-01-08 Texas Instruments Incorporated Methods and apparatus for adaptive timing for zero voltage transition power converters
US10141846B2 (en) * 2016-04-15 2018-11-27 Texas Instruments Incorporated Methods and apparatus for adaptive timing for zero voltage transition power converters
CN105827128B (zh) * 2016-05-11 2019-02-12 武汉衡伟信息技术有限公司 一种变频器
CN106452088B (zh) * 2016-11-18 2019-02-01 佛山市新光宏锐电源设备有限公司 一种隔离型双向dc-dc变换装置及其控制方法
CN110350783A (zh) * 2018-04-08 2019-10-18 佛山科学技术学院 一种用于ups的升压模块

Also Published As

Publication number Publication date
CN1278120A (zh) 2000-12-27

Similar Documents

Publication Publication Date Title
CN1055804C (zh) 一种软开关拓扑电路
CN1133263C (zh) 升压及降压变换软开关拓扑电路
CN100576707C (zh) 单向dc-dc变换器
CN201146458Y (zh) 低噪声的无桥单极隔离变换器
CN107968471B (zh) Lclc谐振电路、宽范围恒功率输出直流充电机及控制方法
CN101039075A (zh) 新型谐振复位正激变换器的同步整流自驱动电路
CN104901536A (zh) 双向dc-dc升降压系统及储能系统
CN103618444A (zh) 三绕组耦合电感zvs/zcs双管升压变换器
CN102723869A (zh) 功率变换器
CN114123763B (zh) 一种低纹波软开关Cuk变换器电路及调制方法
CN101355305A (zh) 多功能有源箝位变结构型双管正反激直流变流器
CN104300780B (zh) 大功率非隔离dc/dc软开关电路
CN100433529C (zh) Zcs-pwm开关单元电路
CN101662209B (zh) 一种软开关降压型dc-dc变换器
CN103812373A (zh) 一种直流-交流变换电路及其控制方法
CN1049537C (zh) 用于电力变换的软开关电路拓扑方法及电路
CN105871202B (zh) 一种单管buck-boost软开关装置
CN106374746A (zh) 一种非隔离的三电平Buck变换器及其控制方法
CN208174543U (zh) 一种高增益零电压转换器电路
CN2652035Y (zh) 软开关升压变换器
CN201328083Y (zh) 一种移相全桥软开关电路的原边箝位电路
CN113659822B (zh) 一种基于饱和电感降低软开关功率变换器损耗的方法
CN113315384B (zh) 一种互补有源钳位软开关推挽变换器及其调制方法
CN220173103U (zh) 一种用于直流充电桩的全桥准谐振电路
CN113014096B (zh) 同步整流Buck变换器全软开关电路及调制方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 518057 Nanshan District science and Technology Industrial Park, Guangdong, Shenzhen Branch Road, No.

Patentee after: Vitamin Technology Co., Ltd.

Address before: 518057 Nanshan District science and Technology Industrial Park, Guangdong, Shenzhen Branch Road, No.

Patentee before: Aimosheng Network Energy Source Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20031231

Termination date: 20190517