CN113322219B - 一种生物法催化合成姜黄素糖苷类化合物的方法 - Google Patents

一种生物法催化合成姜黄素糖苷类化合物的方法 Download PDF

Info

Publication number
CN113322219B
CN113322219B CN202110188213.1A CN202110188213A CN113322219B CN 113322219 B CN113322219 B CN 113322219B CN 202110188213 A CN202110188213 A CN 202110188213A CN 113322219 B CN113322219 B CN 113322219B
Authority
CN
China
Prior art keywords
curcumin
leu
glu
caugt2
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110188213.1A
Other languages
English (en)
Other versions
CN113322219A (zh
Inventor
李艳
贾红华
余杰
林磊
孙萍
徐娇娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202110188213.1A priority Critical patent/CN113322219B/zh
Publication of CN113322219A publication Critical patent/CN113322219A/zh
Application granted granted Critical
Publication of CN113322219B publication Critical patent/CN113322219B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1062Sucrose synthase (2.4.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01013Sucrose synthase (2.4.1.13)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种生物法催化合成姜黄素糖苷类化合物的方法。通过将糖基转移酶基因CaUGT2及蔗糖合成酶基因AtSUS1构建到表达载体上,导入到大肠杆菌中得到重组菌株,此重组菌株进行诱导表达后其可溶性表达量比其他植物来源糖基转移酶有所提高,可对底物姜黄素进行高效催化。所述重组质粒为pRSF‑CaUGT2‑AtSUS1,在Nco I和EcoR I插入蔗糖合成酶AtSUS1基因,在Xho I和NdeI插入糖基转移酶CaUGT2,构成共表达重组质粒pRSF‑CaUGT2‑AtSUS1,将重组质粒转化至大肠杆菌BL21(DE3)感受态细胞中得到重组菌株CaUGT2‑AtSUS1,重组菌株进行诱导表达后其糖基转移酶CaUGT2可溶性表达量比其他植物来源糖基转移酶有所提高,催化合成姜黄素糖苷类化合物转化率达到98%,催化姜黄素生成姜黄素单糖苷和姜黄素双糖苷,其水溶性优于姜黄素,解决姜黄素水溶性差的问题。底物姜黄素浓度75mM,催化底物浓度较高,更适用于工业化中食品及药品行业。

Description

一种生物法催化合成姜黄素糖苷类化合物的方法
技术领域
本发明属于生物工程技术领域,具体涉及到一种生物法催化合成姜黄素糖苷类化合物的方法。
背景技术
姜黄素是一种黄色素,最早在姜科植物中提取出,属于比较稀少的多酚类化合物。姜黄素的结晶为橙黄色,有苦味,不溶于水和乙醚,易溶于冰醋酸和碱溶液。姜黄素分子两端分别具有羟基,在碱性条件下,容易发生共轭效应,所以当 pH 大于 8 时,姜黄素会由黄变红。长期以来,姜黄素作为一种常用的天然植物染色素被广泛地研究和应用在食品工业中,主要广泛应用于食品罐头、肠类制品、酱油以及卤制品的加工染色。随着姜黄素研究的不断深入,研究人员发现姜黄素具有广泛的药理活性,比如抗炎、抗氧化、抗肿瘤、 抗癌、抗动脉粥样硬化等。低浓度的姜黄素通过其抗氧化特性抑制炎症的发生,高浓度的姜黄素通过其促氧化活性促使癌细胞凋亡。姜黄素通过非氧化还原机制来控制编码抗氧化剂过氧化氢酶 A 和 SOD 酶的基因的 mRNA 水平,降低细胞内抗氧化酶的含量,这些酶的减少反过来引起 ROS(活性氧)的积累,激活相关细胞信号通路,诱导癌细胞凋亡,从而发挥其抗癌作用。传统医学使用姜黄素治疗关节炎、溃疡、黄疸等疾病,随着现代医学的发展,姜黄素被越来越多地用于治疗肝脏疾病、炎症、肿瘤等。但由于其结构不稳定、水溶性差,导致姜黄素生物利用度低,从而限制了其大规模应用。
通过官能团修饰提高姜黄素的水溶性和稳定性,以提高其生物利用度,改善药代动力学,或是化学法被姜黄素形成复合物以保护活性、促进吸收、增强其抗癌能力是当前姜黄素相关研究的主攻方向。
糖苷化是提升姜黄素水溶性的一个有效手段,Yasuhisa Kaminaga 等人研究了姜黄素糖苷化物的水溶性并与天然姜黄素对比,发现姜黄素单葡萄糖苷的水溶性提高了 230倍。 相比之下,姜黄素环糊精复合物的水溶性相较于天然姜黄素的提升为 10 倍左右。因此,转化合成新的姜黄素糖苷化产物有望成为解决姜黄素水溶性差的问题的有效途径。
可以通过多种途径使姜黄素糖苷化:化学合成法、酶催化法(一锅法)、混合催化法等,其共同的难点在于控制反应的特异性和精确性。化学法采用基团保护策略以增加反应的精确性,需要耗费大量的成本与时间,且步骤繁琐。与之形成对比,使用酶催化反应具有更高的特异性以及更高的效率,且操作简单,易于自动化。
糖基转移酶(Glycosyltransferases, GTs)是催化化合物(如蛋白、核 酸、脂类、糖类等)与糖残基(如糖核苷酸等)偶联的酶。糖基转移酶具有高选择性和高效性,可实现多聚糖和糖缀合物的立体和区域选择性延伸和分支。根据其催化特性,糖基转移酶被分为Leloir 型和 Non-Leloir 型。Leloir 型糖基转移酶通常以糖核苷酸为糖基供体(如UDPG),Non-Leloir 型则常以糖-1-磷酸酯作为糖基供体。由于 UGT 需要以尿苷二磷酸葡萄糖(UDPG)作为底物,而直接向工业反应器中添加价格较高的 UDPG 不符合大规模生产的经济性原则,因此糖基转移酶的大规模应用受到了限制。Sayaka Masada 等率先报道了偶联蔗糖合酶(sucrose synthase, SuSy)与糖基转移酶的方法,并提出了 UDP 循环利用的可行性。利用 SuSy 与 UGT,建立双酶偶联体系。双酶催化时,首先由蔗糖合酶催化蔗糖裂解生成 UDPG 和果糖。随后由糖基转移酶催化进行糖基化反应。而糖基化过程中生成的UDP 又可被蔗糖合酶利用,再次转化为 UDPG,从而实现循环利用,同时也避免了 UDP 的积累对酶活性的抑制。采用双酶偶联体系,只需添加廉价的蔗糖作为底物,而不需昂贵的UDPG,因此可以达到控制生产成本的目的。一般植物来源的糖基转移酶多以包涵体的形式存在,包涵体较多其破碎上清液中酶较少,导致其催化效果较差。
发明内容
本发明目的是针对目前姜黄素生物利用度低、水溶性差的问题,提供一种一种生物法催化合成姜黄素糖苷类化合物的方法,同时解决植物来源的糖基转移酶在大肠杆菌中表达产生大量包涵体的问题,提供一种含糖基转移酶与蔗糖合酶的重组菌,采用将目标基因构建到表达载体pRSFDuet1上,得到重组质粒pRSF-CaUGT2-AtSUS1,后转化到宿主细胞大肠杆菌BL21(DE3)感受态细胞中得到重组菌CaUGT2-AtSUS1,重组菌进行诱导表达,经超声破碎后离心得上清液,得到最佳可溶性表达,最终高效催化底物姜黄素,提高其水溶性。
为了实现上述目的,本申请采用的技术方案为:
一种生物法催化合成姜黄素糖苷类化合物的方法,使用能表达蔗糖合成酶AtSUS1和糖基转移酶CaUGT2的重组菌催化姜黄素生成姜黄素单糖苷和姜黄素双糖苷,所述蔗糖合成酶AtSUS1基因序列如SEQ ID NO:1所示;所述糖基转移酶CaUGT2基因序列如SEQ ID NO:2所示;
所述的催化姜黄素的重组菌,在Nco I和EcoR I 插入蔗糖合成酶Atsus1基因,在Xho I和NdeI插入糖基转移酶基因CaUGT2,构建共表达重组质粒pRSF-CaUGT2-AtSUS1,后转化至宿主细胞大肠杆菌中得到重组菌。
一种催化姜黄素的重组菌,所述重组菌能共表达蔗糖合成酶AtSUS1和糖基转移酶CaUGT2,所述蔗糖合成酶AtSUS1基因(ACCESSION: NP_001031915.1),其优化后的核苷酸序列如SEQ ID NO:1所示、氨基酸序列如SEQ ID NO:2所示;所述糖基转移酶CaUGT2基因(GenBank: BAD29722.1),其优化后的核苷酸序列如SEQ ID NO:3所示、氨基酸序列SEQ IDNO:4所示,所述菌株能催化姜黄素生成姜黄素单糖苷和姜黄素双糖苷。
一种糖基转移酶与蔗糖合酶重组质粒,采用将目标基因构建到表达载体pRSFDuet1上,在Nco I和EcoR I 插入优化后的蔗糖合成酶基因AtSUS1,序列如SEQ ID NO:1所示;在Xho I和NdeI插入优化后的糖基转移酶基因CaUGT2,序列如SEQ ID NO:3所示,得到重组质粒pRSF-CaUGT2-AtSUS1。
所述重组质粒pRSF-CaUGT2-AtSUS1如图1所示。
重组质粒构建重组菌:将重组质粒转化到大肠杆菌BL21(DE3)感受态细胞中,将转化物涂布在含50 µg/L卡那霉素的LB固体平板(NaCl 10 g/L,酵母粉5 g/L,蛋白胨10 g/L,琼脂20 g/L)上,置于37℃培养箱过夜恒温培养,得到含双酶共表达体系的重组菌株。
所述重组菌株进行诱导培养条件和催化条件为:
将重组菌株活化,转接到LB培养基中,放入摇床中于25~40°C、100~300rpm,至其OD600达到0.4~0.8,添加诱导剂诱导培养,低温离心(2~8℃,4000~8000 rpm,5~15 min)并收集菌体,用磷酸钾缓冲液冲洗两遍。再加入适量磷酸钾缓冲液,放置在冰水混合物中,用超声破碎仪超声破碎菌体,参数设置为Ф6,300 W,10~30min。再用冷冻离心机离心,参数设置为2~8℃,4000~8000rpm,15~40 min,取上清即为粗酶液,放置4℃冰箱保存待用。
所述诱导剂为异丙基-β-D-硫代半乳糖苷,用量为0.1~1.0mM,诱导时间为20~48h。
重组菌催化姜黄素的方法:在催化反应体系中加入1mM~100mM姜黄素,3mM~1M蔗糖和3g/L~10g/L粗酶液,反应5-30h,甲醇灭活,离心得上清即为姜黄素单糖苷curcuminmonoglucoside和姜黄素双糖苷curcumin diglucoside。姜黄素单糖苷curcuminmonoglucoside结构式如图3所示,姜黄素双糖苷curcumin diglucoside结构式如图4所示。随着催化时间的延长,底物姜黄素基本被全部消耗,反应产物方向朝着姜黄素双糖苷进行,也可以使产物姜黄素单糖苷继续进行糖基化反应。姜黄素单糖苷和姜黄素双糖苷其水溶性较高,更适用于工业化食品以及药品行业。
进一步优选地,在催化反应体系中加入75mM姜黄素,750mM蔗糖和5g/L粗酶液,反应42h,甲醇灭活,离心得上清即为姜黄素单糖苷curcumin monoglucoside和姜黄素双糖苷curcumin diglucoside。姜黄素单糖苷和姜黄素双糖苷其水溶性都要明显优于姜黄素本身,解决姜黄素水溶性差的问题,随着催化时间的增加,催化产物姜黄素双糖苷明显增加,姜黄素双糖苷具有更优的食品或药物功能。
本发明采用将蔗糖合成酶基因AtSUS1和糖基转移酶基因CaUGT2构建到表达载体pRSFDuet1上,得到重组质粒pRSF-CaUGT2-AtSUS1,将重组质粒转化至大肠杆菌BL21(DE3)感受态细胞中得到重组菌株CaUGT2-AtSUS1,重组菌株进行诱导表达后经超声破碎后离心得上清液,其蛋白可溶性表达比其他植物来源糖基转移酶(如:甜叶菊来源的pRSF-UGT76G1-StSUS1)有明显提高。
本发明中重组菌株CaUGT2-AtSUS1催化姜黄素得到姜黄素单糖苷和姜黄素双糖苷,反应21h后,转化率达到98%,为重组菌株UGT76G1-StSUS1的2.5倍。本实验姜黄素底物浓度为75mM,底物浓度较高,更适用于工业化生产中。
本发明生物法催化合成姜黄素糖苷类化合物的方法,催化得到的姜黄素单糖苷和姜黄素双糖苷其水溶性都要明显优于姜黄素本身,解决姜黄素水溶性差的问题,随着催化时间的增加,催化产物姜黄素双糖苷明显增加,姜黄素双糖苷具有更优的食品或药物功能。
有益效果:本发明构建了一株催化姜黄素的重组菌CaUGT2-AtSUS1,底物姜黄素浓度较高,更适用于工业化食品及药品行业生产。反应24h内其转化率达到98%,重组菌株CaUGT2-AtSUS1催化效率较高,反应42h其转化率依旧维持在98%,重组菌株CaUGT2-AtSUS1中糖基转移酶以及蔗糖合酶较稳定。
附图说明:
图1:重组质粒图;
图2: 重组质粒CaUGT2-AtSUS1诱导培养表达的SDS-PAGE结果,M:Maker;泳道1:UGT76G1-StSUS1破碎沉淀;泳道2:UGT76G1-StSUS1破碎上清液;泳道3:UGT76G1-StSUS1破碎沉淀;泳道4:UGT76G1-StSUS1破碎上清液;泳道5:CaUGT2-AtSUS1破碎沉淀;泳道6:CaUGT2-AtSUS1破碎上清液;
图3:姜黄素单糖苷结构式;
图4:姜黄素双糖苷结构式;
图5: 重组菌CaUGT2-AtSUS1与UGT76G1-StSUS1催化姜黄素对比图。
具体实施方式
根据下述实施例,可以更好理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。下面结合实例对本发明的技术方案做进一步阐述,但本发明所保护的范围不限于此。
实施例1 重组质粒的构建
选择双基因表达载体pRSFDuet-1,重组质粒为pRSF-CaUGT2-AtSUS1,在Nco I和EcoR I 插入优化后的蔗糖合成酶基因AtSUS1,序列如SEQ ID NO:1所示;在Xho I和NdeI插入优化后的糖基转移酶基因CaUGT2,序列如SEQ ID NO:3所示,得到重组质粒pRSF-CaUGT2-AtSUS1,构成共表达重组质粒pRSF-CaUGT2-AtSUS1。该重组质粒合成由南京金斯瑞公司进行。蔗糖合成酶AtSUS1其氨基酸序列如SEQ ID NO:2所示,糖基转移酶CaUGT2其氨基酸序列如SEQ ID NO:4所示。
对比例:选择双基因表达载体pRSFDuet-1,重组质粒为pRSF-UGT76G1-StSUS1,在Nco I和EcoR I 插入蔗糖合成酶基因StSUS1,序列如SEQ ID NO:5所示,在Xho I和NdeI插入糖基转移酶基因UGT76G1,序列如SEQ ID NO:7所示,构成共表达重组质粒pRSF-UGT76G1-AtSUS1。该重组质粒合成由南京金斯瑞公司进行。蔗糖合成酶StSUS1其氨基酸序列如SEQ ID NO:6所示,糖基转移酶UGT76G1其氨基酸序列如SEQ ID NO:8所示。
实施例2 重组大肠杆菌菌株的获得
将上述重组质粒pRSF-CaUGT2-AtSUS1转化到大肠杆菌BL21(DE3)感受态细胞中,将转化物涂布在含50 µg/L卡那霉素的LB固体平板(NaCl 10 g/L,酵母粉5 g/L,蛋白胨10g/L,琼脂20 g/L)上,置于37℃培养箱过夜恒温培养,得到含双酶共表达体系的重组菌CaUGT2-AtSUS1。
将上述重组质粒pRSF-UGT76G1-StSUS1转化到大肠杆菌BL21(DE3)感受态细胞中,将转化物涂布在含50 µg/L卡那霉素的LB固体平板(NaCl 10 g/L,酵母粉5 g/L,蛋白胨10g/L,琼脂20 g/L)上,置于37℃培养箱过夜恒温培养,得到含双酶共表达体系的重组菌UGT76G1-StSUS1。
实施例3 重组菌株的诱导表达
将实施例2构建得到的两株重组菌株分别活化,转接到LB培养基中,放入摇床中于25~40°C、200rpm,至其OD600达到0.6,添加0.1mM诱导剂异丙基-β-D-硫代半乳糖苷诱导培养,低温离心(4℃,7000 rpm,6 min)并收集菌体,用磷酸钾缓冲液冲洗两遍。再加入适量磷酸钾缓冲液,放置在冰水混合物中,用超声破碎仪超声破碎菌体,参数设置为Ф6,300 W,30min。再用冷冻离心机离心,参数设置为4℃,8000rpm,30 min,取上清液即为粗酶液,放置4℃冰箱保存待用。
实施例4 重组菌株粗酶液的酶活检测
糖基转移酶酶活测定方法为:在500 µL的酶催化反应体系中加入0.5 mM底物姜黄素,5 mM UDPG,粗酶0.5 mg,DMSO 10%,再用100 mM pH 7.2磷酸钾缓冲液补充。反应条件是37℃,200 rpm取样时间为0 min、10 min、20 min。样品处理:每个时间点取一管500 µL反应体系,加入500 µL甲醇终止反应,离心取上清,过有机滤膜(0.45 µm)放入样品瓶中,待HPLC检测。酶活定义(U):1分钟内转化生成1 µmol产物所需的酶量为1个酶活单位。
蔗糖合酶的酶活测定方法:在3 mL的酶催化反应体系中加入500 mM底物蔗糖,10mM UDP·xNa,粗酶6 mg,再用100 mM pH 7.2磷酸钾缓冲液补充。反应条件是37℃,200rpm,取样时间为0 min、5min、30 min。样品处理:样品煮沸5 min,离心取500 µL,加入500 µL水,再加2 mL DNS,煮沸2 min,冷却后加入7 mL蒸馏水,测OD540对照DNS标曲,计算果糖含量。酶活定义(U):1分钟内转化生成1 µmol产物所需的酶量为1个酶活单位。
表1:糖基转移酶与蔗糖合酶酶活测定结果
CaUGT2-AtSUS1 比酶活(mU/mg)
CaUGT2 13.8±0.10
AtSUS1 2.9±0.12
UGT76G1-StSUS1 比酶活(mU/mg)
UGT76G1 6.9±0.15
StSUS1 2.3±0.22
测定结果,重组菌株pRSF-CaUGT2-AtSUS1中糖基转移酶CaUGT2比酶活要比pRSF-UGT76G1-StSUS1中糖基转移酶UGT76G1比酶活高出2倍。
实施例5 重组菌株催化姜黄素反应
催化反应体系(5 mL):底物姜黄素75 mM,蔗糖750 mM,粗酶液5 mg/mL,用100 mMpH 7.2磷酸钾缓冲补充。催化反应条件为30℃,200 rpm。按一定时间取样50 µL,样品经处理后,用高效液相色谱(HPLC)检测分析。样品处理:样品中加入450 µL,离心取上清液,过有机滤膜(0.45 µm)放入样品小瓶子,待HPLC检测分析。
姜黄素经催化后由最初淡黄色溶液变成橙红色溶液且溶解度明显增高,随着催化时间的延长,底物姜黄素基本被完全消耗,反应产物方向朝着姜黄素双糖苷进行,也可以使产物姜黄素单糖苷继续进行糖基化反应。重组菌CaUGT2-AtSUS1与UGT76G1-StSUS1催化姜黄素对比图见图5所示。从图中可以看出,重组菌CaUGT2-AtSUS1催化姜黄素的效果远远超过UGT76G1-StSUS1。
经过催化姜黄素反应体系,姜黄素能够在21h内被重组菌CaUGT2-AtSUS1基本全部转化,转化率达到98%,且随着时间的不断延长达到40h,其糖基转移酶酶活较高且稳定。然而对比重组菌UGT76G1-StSUS1催化姜黄素,在反应40h内催化姜黄素最高转化率不足40%,重组菌CaUGT2-AtSUS1是重组菌UGT76G1-StSUS1催化姜黄素转化率的2.5倍,证明重组菌CaUGT2-AtSUS1能够更优催化底物姜黄素。
序列表
<110> 南京工业大学
<120> 一种生物法催化合成姜黄素糖苷类化合物的方法
<141> 2021-02-18
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2430
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 1
atgggcgcga acgcggagcg tatgatcacc cgtgtgcaca gccagcgtga gcgtctgaac 60
gaaaccctgg ttagcgagcg taacgaagtg ctggcgctgc tgagccgtgt tgaagcgaaa 120
ggcaagggca ttctgcagca aaaccagatc attgcggagt tcgaagcgct gccggaacaa 180
acccgtaaga aactggaggg tggcccgttc tttgacctgc tgaaaagcac ccaggaagcg 240
attgttctgc cgccgtgggt tgcgctggcg gtgcgtccgc gtccgggtgt ttgggagtac 300
ctgcgtgtga acctgcacgc gctggttgtg gaggaactgc aaccggcgga gttcctgcac 360
tttaaagagg aactggttga tggtgtgaag aacggcaact tcaccctgga gctggacttc 420
gaaccgttta acgcgagcat tccgcgtccg accctgcaca aatacatcgg taacggcgtt 480
gatttcctga accgtcacct gagcgcgaaa ctgtttcacg acaaggagag cctgctgccg 540
ctgctgaagt ttctgcgtct gcacagccac cagggtaaaa acctgatgct gagcgaaaag 600
atccagaacc tgaacaccct gcaacacacc ctgcgtaaag cggaggaata tctggcggag 660
ctgaagagcg aaaccctgta cgaggagttc gaggcgaagt ttgaggaaat cggtctggaa 720
cgtggttggg gcgataacgc ggagcgtgtg ctggacatga ttcgtctgct gctggatctg 780
ctggaagcgc cggatccgtg caccctggag accttcctgg gtcgtgttcc gatggtgttt 840
aacgtggtta tcctgagccc gcacggttac ttcgcgcagg ataacgtgct gggctatccg 900
gacaccggtg gccaggtggt ttacatcctg gatcaagttc gtgcgctgga gatcgaaatg 960
ctgcaacgta ttaaacagca aggtctgaac attaagccgc gtatcctgat tctgacccgt 1020
ctgctgccgg atgcggtggg taccacctgc ggcgagcgtc tggaacgtgt ttacgatagc 1080
gaatattgcg acatcctgcg tgttccgttc cgtaccgaga aaggcatcgt gcgtaagtgg 1140
attagccgtt ttgaagtttg gccgtacctg gagacctata ccgaagatgc ggcggtggag 1200
ctgagcaaag aactgaacgg caagccggat ctgatcattg gtaactatag cgatggtaac 1260
ctggtggcga gcctgctggc gcacaaactg ggcgttaccc agtgcaccat cgcgcacgcg 1320
ctggagaaaa ccaagtaccc ggacagcgat atttattgga agaaactgga cgataagtac 1380
cacttcagct gccaatttac cgcggatatc ttcgcgatga accacaccga cttcatcatt 1440
accagcacct ttcaggagat tgcgggtagc aaagaaaccg ttggccaata tgagagccac 1500
accgcgttta ccctgccggg tctgtaccgt gtggttcacg gcattgacgt tttcgatccg 1560
aagtttaaca tcgtgagccc gggtgcggac atgagcattt acttcccgta taccgaggaa 1620
aaacgtcgtc tgaccaagtt tcacagcgaa atcgaggaac tgctgtatag cgatgttgag 1680
aacaaagaac acctgtgcgt gctgaaggac aagaaaaagc cgattctgtt cacgatggcg 1740
cgtctggatc gtgttaaaaa cctgagcggt ctggtggaat ggtacggcaa gaacacccgt 1800
ctgcgtgagc tggcgaacct ggtggttgtg ggtggcgatc gtcgtaaaga aagcaaggac 1860
aacgaggaaa aagcggagat gaaaaagatg tacgacctga tcgaggaata taagctgaac 1920
ggccagttcc gttggattag cagccaaatg gatcgtgtgc gtaacggcga gctgtaccgt 1980
tatatctgcg acaccaaagg cgcgttcgtt cagccggcgc tgtatgaagc gtttggtctg 2040
accgttgttg aagcgatgac ctgcggtctg ccgacctttg cgacctgcaa aggtggcccg 2100
gcggaaatca ttgtgcacgg taaaagcggc tttcacattg atccgtacca cggcgaccag 2160
gcggcggata ccctggcgga cttctttacc aaatgcaagg aagatccgag ccactgggac 2220
gagatcagca aaggtggcct gcaacgtatt gaggaaaagt acacctggca gatctatagc 2280
caacgtctgc tgaccctgac cggtgtttat ggcttctgga aacacgtgag caacctggac 2340
cgtctggaag cgcgtcgtta cctggagatg ttttacgcgc tgaagtatcg tccgctggcg 2400
caggcggttc cgctggcgca agacgattaa 2430
<210> 2
<211> 808
<212> PRT
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 2
Met Ala Asn Ala Glu Arg Met Ile Thr Arg Val His Ser Gln Arg Glu
1 5 10 15
Arg Leu Asn Glu Thr Leu Val Ser Glu Arg Asn Glu Val Leu Ala Leu
20 25 30
Leu Ser Arg Val Glu Ala Lys Gly Lys Gly Ile Leu Gln Gln Asn Gln
35 40 45
Ile Ile Ala Glu Phe Glu Ala Leu Pro Glu Gln Thr Arg Lys Lys Leu
50 55 60
Glu Gly Gly Pro Phe Phe Asp Leu Leu Lys Ser Thr Gln Glu Ala Ile
65 70 75 80
Val Leu Pro Pro Trp Val Ala Leu Ala Val Arg Pro Arg Pro Gly Val
85 90 95
Trp Glu Tyr Leu Arg Val Asn Leu His Ala Leu Val Val Glu Glu Leu
100 105 110
Gln Pro Ala Glu Phe Leu His Phe Lys Glu Glu Leu Val Asp Gly Val
115 120 125
Lys Asn Gly Asn Phe Thr Leu Glu Leu Asp Phe Glu Pro Phe Asn Ala
130 135 140
Ser Ile Pro Arg Pro Thr Leu His Lys Tyr Ile Gly Asn Gly Val Asp
145 150 155 160
Phe Leu Asn Arg His Leu Ser Ala Lys Leu Phe His Asp Lys Glu Ser
165 170 175
Leu Leu Pro Leu Leu Lys Phe Leu Arg Leu His Ser His Gln Gly Lys
180 185 190
Asn Leu Met Leu Ser Glu Lys Ile Gln Asn Leu Asn Thr Leu Gln His
195 200 205
Thr Leu Arg Lys Ala Glu Glu Tyr Leu Ala Glu Leu Lys Ser Glu Thr
210 215 220
Leu Tyr Glu Glu Phe Glu Ala Lys Phe Glu Glu Ile Gly Leu Glu Arg
225 230 235 240
Gly Trp Gly Asp Asn Ala Glu Arg Val Leu Asp Met Ile Arg Leu Leu
245 250 255
Leu Asp Leu Leu Glu Ala Pro Asp Pro Cys Thr Leu Glu Thr Phe Leu
260 265 270
Gly Arg Val Pro Met Val Phe Asn Val Val Ile Leu Ser Pro His Gly
275 280 285
Tyr Phe Ala Gln Asp Asn Val Leu Gly Tyr Pro Asp Thr Gly Gly Gln
290 295 300
Val Val Tyr Ile Leu Asp Gln Val Arg Ala Leu Glu Ile Glu Met Leu
305 310 315 320
Gln Arg Ile Lys Gln Gln Gly Leu Asn Ile Lys Pro Arg Ile Leu Ile
325 330 335
Leu Thr Arg Leu Leu Pro Asp Ala Val Gly Thr Thr Cys Gly Glu Arg
340 345 350
Leu Glu Arg Val Tyr Asp Ser Glu Tyr Cys Asp Ile Leu Arg Val Pro
355 360 365
Phe Arg Thr Glu Lys Gly Ile Val Arg Lys Trp Ile Ser Arg Phe Glu
370 375 380
Val Trp Pro Tyr Leu Glu Thr Tyr Thr Glu Asp Ala Ala Val Glu Leu
385 390 395 400
Ser Lys Glu Leu Asn Gly Lys Pro Asp Leu Ile Ile Gly Asn Tyr Ser
405 410 415
Asp Gly Asn Leu Val Ala Ser Leu Leu Ala His Lys Leu Gly Val Thr
420 425 430
Gln Cys Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr Pro Asp Ser
435 440 445
Asp Ile Tyr Trp Lys Lys Leu Asp Asp Lys Tyr His Phe Ser Cys Gln
450 455 460
Phe Thr Ala Asp Ile Phe Ala Met Asn His Thr Asp Phe Ile Ile Thr
465 470 475 480
Ser Thr Phe Gln Glu Ile Ala Gly Ser Lys Glu Thr Val Gly Gln Tyr
485 490 495
Glu Ser His Thr Ala Phe Thr Leu Pro Gly Leu Tyr Arg Val Val His
500 505 510
Gly Ile Asp Val Phe Asp Pro Lys Phe Asn Ile Val Ser Pro Gly Ala
515 520 525
Asp Met Ser Ile Tyr Phe Pro Tyr Thr Glu Glu Lys Arg Arg Leu Thr
530 535 540
Lys Phe His Ser Glu Ile Glu Glu Leu Leu Tyr Ser Asp Val Glu Asn
545 550 555 560
Lys Glu His Leu Cys Val Leu Lys Asp Lys Lys Lys Pro Ile Leu Phe
565 570 575
Thr Met Ala Arg Leu Asp Arg Val Lys Asn Leu Ser Gly Leu Val Glu
580 585 590
Trp Tyr Gly Lys Asn Thr Arg Leu Arg Glu Leu Ala Asn Leu Val Val
595 600 605
Val Gly Gly Asp Arg Arg Lys Glu Ser Lys Asp Asn Glu Glu Lys Ala
610 615 620
Glu Met Lys Lys Met Tyr Asp Leu Ile Glu Glu Tyr Lys Leu Asn Gly
625 630 635 640
Gln Phe Arg Trp Ile Ser Ser Gln Met Asp Arg Val Arg Asn Gly Glu
645 650 655
Leu Tyr Arg Tyr Ile Cys Asp Thr Lys Gly Ala Phe Val Gln Pro Ala
660 665 670
Leu Tyr Glu Ala Phe Gly Leu Thr Val Val Glu Ala Met Thr Cys Gly
675 680 685
Leu Pro Thr Phe Ala Thr Cys Lys Gly Gly Pro Ala Glu Ile Ile Val
690 695 700
His Gly Lys Ser Gly Phe His Ile Asp Pro Tyr His Gly Asp Gln Ala
705 710 715 720
Ala Asp Thr Leu Ala Asp Phe Phe Thr Lys Cys Lys Glu Asp Pro Ser
725 730 735
His Trp Asp Glu Ile Ser Lys Gly Gly Leu Gln Arg Ile Glu Glu Lys
740 745 750
Tyr Thr Trp Gln Ile Tyr Ser Gln Arg Leu Leu Thr Leu Thr Gly Val
755 760 765
Tyr Gly Phe Trp Lys His Val Ser Asn Leu Asp Arg Leu Glu Ala Arg
770 775 780
Arg Tyr Leu Glu Met Phe Tyr Ala Leu Lys Tyr Arg Pro Leu Ala Gln
785 790 795 800
Ala Val Pro Leu Ala Gln Asp Asp
805
<210> 3
<211> 1584
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 3
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60
atggtaaatc aactacacat atttaacttc ccgttcatgg cgcaaggtca catgctccca 120
gcgctggaca tggcgaactt gtttaccagc cgtggggtca aagtgacgct gattaccacc 180
caccagcatg ttccgatgtt tacgaagagc atcgagcgct cgcgcaactc tggttttgat 240
attagtattc agagcatcaa gttcccggct tccgaagtgg gcctgccaga gggcattgag 300
tctctggacc aggtttccgg tgatgacgaa atgctgccaa aatttatgcg tggtgtgaac 360
ctgctgcaac aaccgttgga gcagctactt caagaaagcc gtccgcactg cctgctgagc 420
gacatgttct tcccgtggac cactgaaagc gctgccaagt tcggcatccc gcgtctgctg 480
tttcatggtt cttgtagctt cgccttgagc gccgcggaat ctgttcgtcg taacaagccg 540
ttcgagaacg tgtctaccga taccgaagag ttcgttgtac cggacctgcc gcaccaaatc 600
aagctgaccc gcacacagat ctcgacgtac gagcgcgaaa acattgaaag cgactttacc 660
aaaatgctaa agaaagttcg tgacagcgaa tcaacgagct acggtgtggt ggttaactcg 720
ttctatgaac tggaaccgga ctacgcggac tattacatca acgtactggg ccgtaaggcg 780
tggcatatcg gccctttcct gctgtgtaat aaactgcagg cagaagataa agcacaacgt 840
ggcaaaaaaa gtgcgattga tgcagatgag tgcttaaatt ggctggatag caaacagccg 900
aacagcgtca tctatctgtg ctttggtagc atggcgaatc tgaacagcgc tcaactgcac 960
gaaattgcca ccgcgttgga gtccagcggc cagaatttta tatgggttgt gcgcaagtgc 1020
gttgatgagg agaactcttc caaatggttt ccggaaggtt tcgaggagcg taccaaagaa 1080
aaaggcctca tcattaaagg ttgggcaccg cagaccttaa tcctggagca cgagtccgtg 1140
ggtgcgtttg tcactcactg cggttggaac agcaccttgg aaggcatttg tgcaggcgtg 1200
ccgctggtta cctggccgtt cttcgcggaa caatttttca acgaaaagct gatcactgag 1260
gtcttgaaga ccggttacgg cgtgggtgct cgtcaatgga gccgcgtgag caccgaaatc 1320
atcaagggcg aggcgatcgc caatgcaatt aaccgcgtga tggttggcga cgaggcagtt 1380
gagatgagaa accgtgcgaa ggaccttaag gagaaagcgc gtaaggctct ggaggaagac 1440
ggtagcagct accgtgattt gaccgcgctg attgaggaac tcggtgcata tcgtagccag 1500
gttgagagaa agcagcaaga ttaatgactc gagtctggta aagaaaccgc tgctgcgaaa 1560
tttgaacgcc agcacatgga ctcg 1584
<210> 4
<211> 487
<212> PRT
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 4
Met Val Asn Gln Leu His Ile Phe Asn Phe Pro Phe Met Ala Gln Gly
1 5 10 15
His Met Leu Pro Ala Leu Asp Met Ala Asn Leu Phe Thr Ser Arg Gly
20 25 30
Val Lys Val Thr Leu Ile Thr Thr His Gln His Val Pro Met Phe Thr
35 40 45
Lys Ser Ile Glu Arg Ser Arg Asn Ser Gly Phe Asp Ile Ser Ile Gln
50 55 60
Ser Ile Lys Phe Pro Ala Ser Glu Val Gly Leu Pro Glu Gly Ile Glu
65 70 75 80
Ser Leu Asp Gln Val Ser Gly Asp Asp Glu Met Leu Pro Lys Phe Met
85 90 95
Arg Gly Val Asn Leu Leu Gln Gln Pro Leu Glu Gln Leu Leu Gln Glu
100 105 110
Ser Arg Pro His Cys Leu Leu Ser Asp Met Phe Phe Pro Trp Thr Thr
115 120 125
Glu Ser Ala Ala Lys Phe Gly Ile Pro Arg Leu Leu Phe His Gly Ser
130 135 140
Cys Ser Phe Ala Leu Ser Ala Ala Glu Ser Val Arg Arg Asn Lys Pro
145 150 155 160
Phe Glu Asn Val Ser Thr Asp Thr Glu Glu Phe Val Val Pro Asp Leu
165 170 175
Pro His Gln Ile Lys Leu Thr Arg Thr Gln Ile Ser Thr Tyr Glu Arg
180 185 190
Glu Asn Ile Glu Ser Asp Phe Thr Lys Met Leu Lys Lys Val Arg Asp
195 200 205
Ser Glu Ser Thr Ser Tyr Gly Val Val Val Asn Ser Phe Tyr Glu Leu
210 215 220
Glu Pro Asp Tyr Ala Asp Tyr Tyr Ile Asn Val Leu Gly Arg Lys Ala
225 230 235 240
Trp His Ile Gly Pro Phe Leu Leu Cys Asn Lys Leu Gln Ala Glu Asp
245 250 255
Lys Ala Gln Arg Gly Lys Lys Ser Ala Ile Asp Ala Asp Glu Cys Leu
260 265 270
Asn Trp Leu Asp Ser Lys Gln Pro Asn Ser Val Ile Tyr Leu Cys Phe
275 280 285
Gly Ser Met Ala Asn Leu Asn Ser Ala Gln Leu His Glu Ile Ala Thr
290 295 300
Ala Leu Glu Ser Ser Gly Gln Asn Phe Ile Trp Val Val Arg Lys Cys
305 310 315 320
Val Asp Glu Glu Asn Ser Ser Lys Trp Phe Pro Glu Gly Phe Glu Glu
325 330 335
Arg Thr Lys Glu Lys Gly Leu Ile Ile Lys Gly Trp Ala Pro Gln Thr
340 345 350
Leu Ile Leu Glu His Glu Ser Val Gly Ala Phe Val Thr His Cys Gly
355 360 365
Trp Asn Ser Thr Leu Glu Gly Ile Cys Ala Gly Val Pro Leu Val Thr
370 375 380
Trp Pro Phe Phe Ala Glu Gln Phe Phe Asn Glu Lys Leu Ile Thr Glu
385 390 395 400
Val Leu Lys Thr Gly Tyr Gly Val Gly Ala Arg Gln Trp Ser Arg Val
405 410 415
Ser Thr Glu Ile Ile Lys Gly Glu Ala Ile Ala Asn Ala Ile Asn Arg
420 425 430
Val Met Val Gly Asp Glu Ala Val Glu Met Arg Asn Arg Ala Lys Asp
435 440 445
Leu Lys Glu Lys Ala Arg Lys Ala Leu Glu Glu Asp Gly Ser Ser Tyr
450 455 460
Arg Asp Leu Thr Ala Leu Ile Glu Glu Leu Gly Ala Tyr Arg Ser Gln
465 470 475 480
Val Glu Arg Lys Gln Gln Asp
485
<210> 5
<211> 2418
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 5
atggccgaac gtgtcctgac ccgtgtccat agtctgcgtg aacgtgttga tgctaccctg 60
gctgcccacc gtaatgaaat cctgctgttt ctgagtcgta ttgaaagcca cggcaaaggt 120
atcctgaaac cgcacgaact gctggcagaa tttgatgcta ttcgccagga tgacaaaaac 180
aaactgaacg aacatgcatt cgaagaactg ctgaaaagca cccaagaagc tatcgtcctg 240
ccgccgtggg tggcactggc aattcgtctg cgcccgggcg tttgggaata catccgtgtt 300
aacgtcaatg cgctggttgt ggaagaactg agtgtgccgg aatatctgca gtttaaagaa 360
gaactggtcg atggcgcgtc caacggtaat ttcgtgctgg aactggactt tgaaccgttc 420
accgcctcat ttccgaaacc gaccctgacg aaatcgattg gcaacggtgt tgaatttctg 480
aatcgtcatc tgagcgccaa aatgttccac gataaagaat ctatgacccc gctgctggaa 540
tttctgcgcg cacatcacta taaaggtaaa accatgatgc tgaacgatcg tattcagaac 600
agcaatacgc tgcaaaatgt gctgcgcaaa gcggaagaat acctgatcat gctgccgccg 660
gaaaccccgt acttcgaatt tgaacataaa ttccaggaaa ttggcctgga aaaaggctgg 720
ggtgatacgg cagaacgtgt gctggaaatg gtttgcatgc tgctggatct gctggaagct 780
ccggacagct gtaccctgga aaaatttctg ggtcgcattc cgatggtttt caacgtcgtg 840
atcctgtctc cgcacggcta ttttgcgcag gaaaatgtcc tgggttaccc ggataccggc 900
ggtcaggttg tctatattct ggaccaagtg ccggccctgg aacgtgaaat gctgaaacgc 960
atcaaagaac agggcctgga tattatcccg cgtattctga tcgtcacccg tctgctgccg 1020
gacgcagtgg gcaccacgtg cggtcaacgt attgaaaaag tgtatggcgc tgaacattca 1080
cacatcctgc gtgttccgtt tcgcaccgaa aaaggtattg tccgtaaatg gatctcgcgc 1140
tttgaagtgt ggccgtacat ggaaacgttc attgaagatg ttgcaaaaga aatctcagcg 1200
gaactgcagg ccaaaccgga cctgattatc ggcaactata gcgaaggtaa tctggcggcc 1260
tctctgctgg cccataaact gggcgtgacc caatgtacga ttgcacacgc tctggaaaaa 1320
accaaatatc cggattcgga catctactgg aaaaaattcg atgaaaaata ccatttcagc 1380
tctcagttca ccgcagatct gattgctatg aaccacacgg actttattat caccagtacg 1440
ttccaggaaa tcgcgggctc caaagatacc gtgggtcaat acgaaagtca tatggccttt 1500
acgatgccgg gcctgtatcg cgtggttcac ggtatcaacg ttttcgatcc gaaattcaac 1560
attgtctccc cgggtgcaga catcaatctg tatttttcat actcggaaac cgaaaaacgt 1620
ctgacggctt tccatccgga aatcgatgaa ctgctgtata gcgatgtgga aaacgacgaa 1680
cacctgtgcg ttctgaaaga tcgcaccaaa ccgattctgt ttacgatggc gcgtctggac 1740
cgcgttaaaa atctgaccgg cctggtcgaa tggtacgcca aaaacccgcg tctgcgcggt 1800
ctggtgaatc tggtcgtggt tggcggtgat cgtcgcaaag aatctaaaga cctggaagaa 1860
caggcggaaa tgaagaaaat gtacgaactg atcgaaaccc ataacctgaa tggccagttc 1920
cgttggatca gttcccaaat gaaccgtgtt cgcaatggcg aactgtatcg ctacatcgca 1980
gatacgaaag gtgcttttgt ccagccggcg ttttacgaag ccttcggcct gaccgtcgtg 2040
gaagcgatga cgtgcggtct gccgaccttc gcaacgaatc atggcggccc ggcagaaatt 2100
atcgttcacg gcaaaagtgg ttttcatatt gatccgtatc acggcgaaca ggcagctgat 2160
ctgctggccg actttttcga aaaatgtaaa aaagacccgt cacattggga aaccatttcg 2220
atgggcggtc tgaaacgcat cgaagaaaaa tatacctggc aaatttacag cgaatctctg 2280
ctgacgctgg cggccgtgta cggtttctgg aaacacgttt ctaaactgga tcgtctggaa 2340
attcgtcgct atctggaaat gttttatgcg ctgaaatacc gcaaaatggc ggaagccgtg 2400
ccgctggcag ctgaataa 2418
<210> 6
<211> 805
<212> PRT
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 6
Met Ala Glu Arg Val Leu Thr Arg Val His Ser Leu Arg Glu Arg Val
1 5 10 15
Asp Ala Thr Leu Ala Ala His Arg Asn Glu Ile Leu Leu Phe Leu Ser
20 25 30
Arg Ile Glu Ser His Gly Lys Gly Ile Leu Lys Pro His Glu Leu Leu
35 40 45
Ala Glu Phe Asp Ala Ile Arg Gln Asp Asp Lys Asn Lys Leu Asn Glu
50 55 60
His Ala Phe Glu Glu Leu Leu Lys Ser Thr Gln Glu Ala Ile Val Leu
65 70 75 80
Pro Pro Trp Val Ala Leu Ala Ile Arg Leu Arg Pro Gly Val Trp Glu
85 90 95
Tyr Ile Arg Val Asn Val Asn Ala Leu Val Val Glu Glu Leu Ser Val
100 105 110
Pro Glu Tyr Leu Gln Phe Lys Glu Glu Leu Val Asp Gly Ala Ser Asn
115 120 125
Gly Asn Phe Val Leu Glu Leu Asp Phe Glu Pro Phe Thr Ala Ser Phe
130 135 140
Pro Lys Pro Thr Leu Thr Lys Ser Ile Gly Asn Gly Val Glu Phe Leu
145 150 155 160
Asn Arg His Leu Ser Ala Lys Met Phe His Asp Lys Glu Ser Met Thr
165 170 175
Pro Leu Leu Glu Phe Leu Arg Ala His His Tyr Lys Gly Lys Thr Met
180 185 190
Met Leu Asn Asp Arg Ile Gln Asn Ser Asn Thr Leu Gln Asn Val Leu
195 200 205
Arg Lys Ala Glu Glu Tyr Leu Ile Met Leu Pro Pro Glu Thr Pro Tyr
210 215 220
Phe Glu Phe Glu His Lys Phe Gln Glu Ile Gly Leu Glu Lys Gly Trp
225 230 235 240
Gly Asp Thr Ala Glu Arg Val Leu Glu Met Val Cys Met Leu Leu Asp
245 250 255
Leu Leu Glu Ala Pro Asp Ser Cys Thr Leu Glu Lys Phe Leu Gly Arg
260 265 270
Ile Pro Met Val Phe Asn Val Val Ile Leu Ser Pro His Gly Tyr Phe
275 280 285
Ala Gln Glu Asn Val Leu Gly Tyr Pro Asp Thr Gly Gly Gln Val Val
290 295 300
Tyr Ile Leu Asp Gln Val Pro Ala Leu Glu Arg Glu Met Leu Lys Arg
305 310 315 320
Ile Lys Glu Gln Gly Leu Asp Ile Ile Pro Arg Ile Leu Ile Val Thr
325 330 335
Arg Leu Leu Pro Asp Ala Val Gly Thr Thr Cys Gly Gln Arg Ile Glu
340 345 350
Lys Val Tyr Gly Ala Glu His Ser His Ile Leu Arg Val Pro Phe Arg
355 360 365
Thr Glu Lys Gly Ile Val Arg Lys Trp Ile Ser Arg Phe Glu Val Trp
370 375 380
Pro Tyr Met Glu Thr Phe Ile Glu Asp Val Ala Lys Glu Ile Ser Ala
385 390 395 400
Glu Leu Gln Ala Lys Pro Asp Leu Ile Ile Gly Asn Tyr Ser Glu Gly
405 410 415
Asn Leu Ala Ala Ser Leu Leu Ala His Lys Leu Gly Val Thr Gln Cys
420 425 430
Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr Pro Asp Ser Asp Ile
435 440 445
Tyr Trp Lys Lys Phe Asp Glu Lys Tyr His Phe Ser Ser Gln Phe Thr
450 455 460
Ala Asp Leu Ile Ala Met Asn His Thr Asp Phe Ile Ile Thr Ser Thr
465 470 475 480
Phe Gln Glu Ile Ala Gly Ser Lys Asp Thr Val Gly Gln Tyr Glu Ser
485 490 495
His Met Ala Phe Thr Met Pro Gly Leu Tyr Arg Val Val His Gly Ile
500 505 510
Asn Val Phe Asp Pro Lys Phe Asn Ile Val Ser Pro Gly Ala Asp Ile
515 520 525
Asn Leu Tyr Phe Ser Tyr Ser Glu Thr Glu Lys Arg Leu Thr Ala Phe
530 535 540
His Pro Glu Ile Asp Glu Leu Leu Tyr Ser Asp Val Glu Asn Asp Glu
545 550 555 560
His Leu Cys Val Leu Lys Asp Arg Thr Lys Pro Ile Leu Phe Thr Met
565 570 575
Ala Arg Leu Asp Arg Val Lys Asn Leu Thr Gly Leu Val Glu Trp Tyr
580 585 590
Ala Lys Asn Pro Arg Leu Arg Gly Leu Val Asn Leu Val Val Val Gly
595 600 605
Gly Asp Arg Arg Lys Glu Ser Lys Asp Leu Glu Glu Gln Ala Glu Met
610 615 620
Lys Lys Met Tyr Glu Leu Ile Glu Thr His Asn Leu Asn Gly Gln Phe
625 630 635 640
Arg Trp Ile Ser Ser Gln Met Asn Arg Val Arg Asn Gly Glu Leu Tyr
645 650 655
Arg Tyr Ile Ala Asp Thr Lys Gly Ala Phe Val Gln Pro Ala Phe Tyr
660 665 670
Glu Ala Phe Gly Leu Thr Val Val Glu Ala Met Thr Cys Gly Leu Pro
675 680 685
Thr Phe Ala Thr Asn His Gly Gly Pro Ala Glu Ile Ile Val His Gly
690 695 700
Lys Ser Gly Phe His Ile Asp Pro Tyr His Gly Glu Gln Ala Ala Asp
705 710 715 720
Leu Leu Ala Asp Phe Phe Glu Lys Cys Lys Lys Asp Pro Ser His Trp
725 730 735
Glu Thr Ile Ser Met Gly Gly Leu Lys Arg Ile Glu Glu Lys Tyr Thr
740 745 750
Trp Gln Ile Tyr Ser Glu Ser Leu Leu Thr Leu Ala Ala Val Tyr Gly
755 760 765
Phe Trp Lys His Val Ser Lys Leu Asp Arg Leu Glu Ile Arg Arg Tyr
770 775 780
Leu Glu Met Phe Tyr Ala Leu Lys Tyr Arg Lys Met Ala Glu Ala Val
785 790 795 800
Pro Leu Ala Ala Glu
805
<210> 7
<211> 1497
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 7
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60
atggaaaata aaaccgaaac caccgtccgc cgtcgtcgcc gtatcattct gttcccggtc 120
ccgttccagg gccacatcaa cccgattctg caactggcga acgtgctgta ttcgaaaggt 180
ttcagcatca ccatcttcca tacgaacttc aacaagccga agaccagcaa ttacccgcac 240
tttacgttcc gttttattct ggataacgac ccgcaggatg aacgcatctc taatctgccg 300
acccacggcc cgctggcggg tatgcgtatt ccgattatca acgaacacgg cgcagatgaa 360
ctgcgtcgcg aactggaact gctgatgctg gccagcgaag aagatgaaga agtttcttgc 420
ctgatcaccg acgcactgtg gtattttgcc cagtctgttg cagatagtct gaacctgcgt 480
cgcctggtcc tgatgaccag cagcctgttc aattttcatg cccacgttag tctgccgcag 540
ttcgatgaac tgggttatct ggacccggat gacaaaaccc gcctggaaga acaggcgagc 600
ggctttccga tgctgaaagt caaggatatt aagtcagcgt actcgaactg gcagattctg 660
aaagaaatcc tgggtaaaat gattaagcaa accaaagcaa gttccggcgt catctggaat 720
agtttcaaag aactggaaga atccgaactg gaaacggtga ttcgtgaaat cccggctccg 780
agttttctga ttccgctgcc gaagcatctg accgcgagca gcagcagcct gctggatcac 840
gaccgcacgg tgtttcagtg gctggatcag caaccgccga gttccgtgct gtatgttagc 900
ttcggtagta cctcggaagt ggatgaaaag gactttctgg aaatcgctcg tggcctggtt 960
gatagcaaac aatctttcct gtgggtggtt cgcccgggtt ttgtgaaggg ctctacgtgg 1020
gttgaaccgc tgccggacgg cttcctgggt gaacgtggcc gcattgtcaa atgggtgccg 1080
cagcaagaag tgctggcgca tggcgcgatt ggcgcgtttt ggacccactc cggttggaac 1140
tcaacgctgg aatcggtttg tgaaggtgtc ccgatgattt tctcagattt tggcctggac 1200
cagccgctga atgcacgtta tatgtcggat gttctgaaag tcggtgtgta cctggaaaac 1260
ggttgggaac gcggcgaaat tgcgaatgcc atccgtcgcg ttatggtcga tgaagaaggc 1320
gaatacattc gtcagaatgc tcgcgtcctg aaacaaaagg cggacgtgag cctgatgaaa 1380
ggcggttcat cgtatgaaag tctggaatcc ctggtttcat acatcagctc tctgtaatga 1440
ctcgagtctg gtaaagaaac cgctgctgcg aaatttgaac gccagcacat ggactcg 1497
<210> 8
<211> 458
<212> PRT
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 8
Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile
1 5 10 15
Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu
20 25 30
Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45
Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
50 55 60
Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro
65 70 75 80
Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95
Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
100 105 110
Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125
Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu
130 135 140
Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln
145 150 155 160
Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175
Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser
180 185 190
Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile
195 200 205
Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu
210 215 220
Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
225 230 235 240
Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255
Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro
260 265 270
Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp
275 280 285
Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln
290 295 300
Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp
305 310 315 320
Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335
Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala
340 345 350
Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu
355 360 365
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn
370 375 380
Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn
385 390 395 400
Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val
405 410 415
Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln
420 425 430
Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu
435 440 445
Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu
450 455

Claims (7)

1.一种生物法催化合成姜黄素单糖苷和姜黄素双糖苷化合物的方法,其特征在于,使用能表达蔗糖合成酶AtSUS1和糖基转移酶CaUGT2的重组大肠杆菌催化姜黄素生成姜黄素单糖苷和姜黄素双糖苷,所述蔗糖合成酶AtSUS1基因序列如SEQ ID NO:1所示;所述糖基转移酶CaUGT2基因序列如SEQ ID NO:3所示。
2.根据权利要求1所述一种生物法催化合成姜黄素单糖苷和姜黄素双糖苷化合物的方法,其特征在于,所述重组大肠杆菌是在Nco I和EcoR I 插入蔗糖合成酶Atsus1基因,在Xho I和NdeI插入糖基转移酶基因CaUGT2,构建共表达重组质粒pRSF-CaUGT2-AtSUS1,后转化至宿主细胞大肠杆菌中得到重组菌。
3.根据权利要求1所述一种生物法催化合成姜黄素单糖苷和姜黄素双糖苷化合物的方法,其特征在于,包括如下步骤:
1)、将重组菌株活化,转接到LB培养基中,放入摇床中于25~40°C、100~300rpm,至其OD600达到0.4~0.8,添加诱导剂诱导培养,低温离心并收集菌体,菌体重悬于适量缓冲液并破碎,离心收集上清液即为粗酶液;
2)、在催化反应体系中加入姜黄素,蔗糖和粗酶液,反应5-30h,甲醇灭活,离心得上清即为姜黄素单糖苷和姜黄素双糖苷。
4.根据权利要求3所述的一种生物法催化合成姜黄素单糖苷和姜黄素双糖苷化合物的方法,其特征在于,所述诱导剂为乳糖或异丙基-β-D-硫代半乳糖苷,用量为0.1~1.0mM,诱导时间为20~48h。
5.根据权利要求3所述的一种生物法催化合成姜黄素单糖苷和姜黄素双糖苷化合物的方法,其特征在于,姜黄素的浓度为1mM~100mM;蔗糖浓度为3mM~1M;粗酶添加量为3g/L~10g/L。
6.一种重组质粒,其特征在于,所述质粒同时连接有蔗糖合成酶AtSUS1基因和糖基转移酶CaUGT2基因,所述蔗糖合成酶AtSUS1基因,核苷酸序列如SEQ ID NO:1所示;糖基转移酶CaUGT2基因,核苷酸序列如SEQ ID NO:3所示。
7.一种催化姜黄素的重组菌,其特征在于,所述重组菌能共表达蔗糖合成酶AtSUS1和糖基转移酶CaUGT2,所述蔗糖合成酶AtSUS1基因,其优化后的核苷酸序列如SEQ ID NO:1所示,所述糖基转移酶CaUGT2基因,其优化后的核苷酸序列如SEQ ID NO:3所示,所述重组菌能催化姜黄素生成姜黄素单糖苷和姜黄素双糖苷。
CN202110188213.1A 2021-02-19 2021-02-19 一种生物法催化合成姜黄素糖苷类化合物的方法 Active CN113322219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110188213.1A CN113322219B (zh) 2021-02-19 2021-02-19 一种生物法催化合成姜黄素糖苷类化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110188213.1A CN113322219B (zh) 2021-02-19 2021-02-19 一种生物法催化合成姜黄素糖苷类化合物的方法

Publications (2)

Publication Number Publication Date
CN113322219A CN113322219A (zh) 2021-08-31
CN113322219B true CN113322219B (zh) 2023-01-17

Family

ID=77414212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110188213.1A Active CN113322219B (zh) 2021-02-19 2021-02-19 一种生物法催化合成姜黄素糖苷类化合物的方法

Country Status (1)

Country Link
CN (1) CN113322219B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790472B (zh) * 2022-03-25 2024-04-16 上海龙殷生物科技有限公司 一种果糖糖基化的姜黄素、制备方法及应用
CN114958796A (zh) * 2022-06-26 2022-08-30 上海龙殷生物科技有限公司 一种姜黄素的糖基化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834389B (zh) * 2016-12-13 2020-03-17 南京工业大学 一种重组菌催化莱鲍迪甙a制备莱鲍迪甙m2的方法
CN106754595B (zh) * 2016-12-13 2019-10-22 南京工业大学 一株重组菌及其在催化莱鲍迪甙a生成莱鲍迪甙d中的应用
CN109234337B (zh) * 2018-09-14 2021-09-03 南京工业大学 一种槲皮素糖苷的生物合成方法
CN109750071A (zh) * 2019-01-31 2019-05-14 南京工业大学 一种生物催化合成莱鲍迪苷m的方法
CN110029118B (zh) * 2019-04-19 2023-10-10 南京工业大学 一种合成槲皮素-4’-葡萄糖苷的方法
CN111041056B (zh) * 2019-12-13 2021-08-24 中国科学院植物研究所 用莲类黄酮c-糖基转移酶ugt708n2合成类黄酮c-糖苷的方法

Also Published As

Publication number Publication date
CN113322219A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN113322219B (zh) 一种生物法催化合成姜黄素糖苷类化合物的方法
CN105802897B (zh) 一种d-阿洛酮糖-3-差向异构酶生产菌株及其应用
CN109750071A (zh) 一种生物催化合成莱鲍迪苷m的方法
CN110699373B (zh) 尿苷二磷酸葡萄糖高产菌株及其应用
CN109371079B (zh) 一种尿苷二磷酸葡萄糖及尿苷二磷酸葡萄糖醛酸的生物合成方法
CN106834389A (zh) 一种重组菌催化莱鲍迪甙a制备莱鲍迪甙m2的方法
JP2022520791A (ja) マンノースの酵素的生産
EP2571983B1 (en) Biocatalytic production of glycosides
CN113265434A (zh) 一种合成udp-半乳糖及合成半乳糖基化合物的方法
CN109652481A (zh) 一种环糊精糖基转移酶在生产α-糖基橙皮苷中的应用
CN111690630A (zh) 一种β-葡萄糖苷酶、其编码基因及其表达和应用
CN104561195A (zh) 一种尿苷二磷酸葡萄糖的制备方法
Zou et al. One-pot three-enzyme synthesis of UDP-Glc, UDP-Gal, and their derivatives
WO2021131900A1 (ja) プレニルフラボノイド配糖体、その製造方法及びプレニルフラボノイドの水溶性を向上させる方法
CN106543243A (zh) 一种红景天苷衍生物及其制备方法
CN111394328B (zh) 一种产物特异性提高的环糊精葡萄糖基转移酶及制备方法
Naundorf et al. Substrate specificity of native dTDP-D-glucose-4, 6-dehydratase: chemo-enzymatic syntheses of artificial and naturally occurring deoxy sugars
KR100853353B1 (ko) α-이소말토실글루코 당질생성 효소 활성을 가진 폴리펩티드
CN109371080B (zh) 一种酶法制备单糖基甘草次酸半乳糖苷衍生物的方法
Bourgeaux et al. Two-step enzymatic synthesis of UDP-N-acetylgalactosamine
CN112010924A (zh) 新型诺西肽糖基化衍生物及其制备方法和应用
CN114164224B (zh) 一种低温脱苦酶的制备方法
CN109266708A (zh) 一种槲皮素糖苷的制备方法
Han et al. Study on the synthesis of sucrose-6-acetate catalyzed by fructosyltransferase from Aspergillus oryzae
CN109234337A (zh) 一种槲皮素糖苷的生物合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant