CN113319288A - 一种空心Pt四足纳米材料的制备方法及其应用 - Google Patents

一种空心Pt四足纳米材料的制备方法及其应用 Download PDF

Info

Publication number
CN113319288A
CN113319288A CN202110467834.3A CN202110467834A CN113319288A CN 113319288 A CN113319288 A CN 113319288A CN 202110467834 A CN202110467834 A CN 202110467834A CN 113319288 A CN113319288 A CN 113319288A
Authority
CN
China
Prior art keywords
hollow
quadruped
nano material
footed
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110467834.3A
Other languages
English (en)
Inventor
邱晓雨
李蒙蒙
杨安洲
唐亚文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202110467834.3A priority Critical patent/CN113319288A/zh
Publication of CN113319288A publication Critical patent/CN113319288A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种空心Pt四足纳米材料的制备方法及其应用,该方法以Pd四足为晶种,K2PtCl6为前驱体、聚乙烯吡咯烷酮(PVP)为稳定剂、抗坏血酸(AA)为还原剂制备Pd@Pt的四足核‑壳结构,然后以Fe3+/Br为刻蚀剂,除去核‑壳结构中的Pd四足核,最终得到平均壁厚为6个原子层的空心结构的Pt四足纳米晶材料。本发明方法制备的空心Pt四足能够大大的提高Pt的利用率,并且保证其稳定性,对酸性氧还原反应具有良好的电催化活性和稳定性。

Description

一种空心Pt四足纳米材料的制备方法及其应用
技术领域
本发明涉及氧还原反应用催化剂领域,具体涉及一种空心Pt四足纳米材料的制备方法及其应用。
背景技术
氧还原反应(ORR)是燃料电池和金属-空气电池等能量转换和储存装置中典型的电化学反应之一,近年来引起了人们的广泛研究。设计用于ORR的高性能电催化剂,对于燃料电池、金属-空气电池等电化学能量转换和储存装置具有至关重要的意义。贵金属Pt是目前最为常用的ORR催化剂,基于几何形貌与ORR性能之间的密切相关性,人们致力于调控Pt基纳米材料的形貌、组成和结构,以降低高昂的成本,提高其电催化活性和稳定性。其中,多枝结构的Pt基催化剂由于其具有较高的可接触面积,因而具备了丰富的有效活性位点以提高Pt的原子利用率,从而引起了广泛的关注。其三维互联的空心结构在电催化过程中也有助提高耐腐蚀性和长程稳定性。
然而,目前报道的多枝结构的Pt基催化剂的尺寸普遍较大,通常能达到30nm及以上。这种尺寸的多枝结构相比于其他几何构型的电催化剂,其质量比活性不占优势。因此,探索具有中空结构和超薄壁厚(<2nm)的多枝结构的Pt基催化剂可以有效地增加表面可解除的Pt原子数量,从而提高质量比活性。此外,由于空心结构具有较高的比表面积和开放的结构,还可以通过调控其表面性质和组成进一步优化它们的催化活性。
发明内容
针对现有技术的不足,本发明提供了一种空心Pt四足纳米材料的制备方法及其应用,该方法采用Pd四足作为晶种,通过晶种生长法在其表面沉积上Pt薄壳,然后通过刻蚀Pd核,可以得到空心Pt四足,制得的空心Pt四足具有独特的四足形貌,超薄壁和丰富的台阶原子等优点,对酸性ORR展现出优异的电催化活性和稳定性,满足了有关领域应用和发展的要求。
为解决现有技术问题,本发明采取的技术方案为:
一种空心Pt四足纳米材料的制备方法,以Pd四足为晶种,K2PtCl6为前驱体、PVP为稳定剂、AA为还原剂制备Pd@Pt的四足核-壳结构,然后以Fe3+/Br-为刻蚀剂,除去核-壳结构中的Pd四足核,最终得到平均壁厚为6个原子层的空心四足结构的Pt纳米材料。Pd四足为晶种;K2PtCl6为前驱体;PVP为稳定剂;AA为还原剂;Fe3+/Br-为刻蚀剂。
一种空心Pt四足纳米材料的制备方法,包括以下步骤:
(1)制备Pd四足种子溶液
将0.01g PVP,1.8mL 0.05M的乙二胺四亚甲基膦酸(EDTMPA),1.8mL 0.05M的PdCl2加入到7mL的去离子水中进行连续搅拌,然后将溶液pH值调整为7.0,加入0.5mL的HCHO溶液后,将混合物转移到四氟乙烯内衬的不锈钢高压釜中,在140℃下反应6h后,自然冷却至室温,再用去离子水离心洗涤几次,然后再分散在EG中得到1mg•mL-1 Pd四足种子溶液;
(2)制备Pd@Pt核-壳四足纳米材料
取100mL三颈烧瓶,依次加入108mg KBr、64mg AA、70mg PVP、18mL EG,然后加入0.2mL Pd四足种子溶液得混合溶液,并将混合液放入110℃的油浴锅内磁力搅拌1h,然后逐步升温至160℃,当温度稳定后,使用注射泵以11.1-44.4μL/min的速度均匀的速度向烧瓶中注射5-15mL 0.0667mg/mL的K2PtCl6/EG溶液,注射完成后,在140-180℃下继续反应5-20min,再取出三颈烧瓶,反应液呈深棕色,冷却后离心,使用乙醇洗涤,得到产物;
(3)Pd@Pt核-壳四足纳米材料的刻蚀
将步骤(2)中所得产物用7mL去离子水溶解,在超声机中超声0.5h后,依次加入300mg KBr、50mg PVP、8-24mg FeCl3、0.08mL浓盐酸,然后置于80℃的油浴锅内加热10min后,用乙醇洗涤数次,得到空心Pt四足纳米材料。
作为优选,所述注射速度为33.3μL/min。
作为优选,所述K2PtCl6/EG溶液的用量为10mL。
作为优选,所述注射完成后的反应温度为160℃。
作为优选,所述注射完成后的反应时间为10min。
作为优选,所述FeCl3的用量为16mg。
上述空心Pt四足纳米材料在酸性氧还原反应上的应用。
有益效果:
与现有技术相比,本发明一种空心Pt四足纳米材料的制备方法及其应用,具有如下优势:
本发明制备的空心Pt四足,形貌规整、纯度高,可实现规模化生产。与基于均匀成核的传统方法相比,晶种介导生长和化学刻蚀已成为发展良好形状的空心结构的一种通用方法,在厚度、组成和形貌方面具有高度的实验可控性。在晶种介导的多枝结构生长过程中,可以很好地保留独特的性质,包括明确的晶面、缺陷和表面结构。本发明方法制备得到的空心Pt四足具有比表面积大、活性位点多、金属利用效率高等优点,在酸性溶液中显示出对ORR优异的电催化活性。
具有以下几种优势:
Figure DEST_PATH_IMAGE002
具有超薄壁厚(平均壁厚为6个原子层)、丰富台阶原子和中空多孔的开放结构,因而提供了更大的电催化可接近表面,这有利于电子的转移和质子传输,以增强ORR动力学;
Figure DEST_PATH_IMAGE004
独特的四足形貌不仅可以降低相邻Pt催化剂之间的界面电阻,而且可以作为坚固的自支撑骨架,保证电催化稳定性;
Figure DEST_PATH_IMAGE006
在酸性溶液中,Pt(111)晶面对ORR具有很高的催化活性。
附图说明
图1 为本发明实施例3制备的空心Pt四足纳米材料的HADDF-STEM图谱和HRTEM图谱;
图2 为本发明实施例3制备的空心Pt四足纳米材料进一步放大后的HRTEM图谱;
图3 为本发明实施例3制备的空心Pt四足纳米材料的XRD图谱;
图4 为本发明实施例3制备的空心Pt四足纳米材料的XPS图谱;
图5 为本发明实施例3制备的空心Pt四足纳米材料与Pt/C、Pd@Pt核-壳四足纳米材料对比的在0.5M H2SO4溶液中的ORR极化曲线(a)和三者的面积比活性(b)的比较;
图6 为本发明实施例3制备的空心Pt四足纳米材料在经过加速耐久力测试前后的ORR极化曲线。
具体实施方案
下面通过具体实施例对本发明所述的技术方案给予进一步详细的说明,但有必要指出以下实施例只用于对发明内容的描述,并不构成对本发明保护范围的限制。
实施例1
一种空心Pt四足纳米材料的制备方法,包括以下步骤:
(1)制备Pd四足种子溶液:
将0.01g PVP,1.8mL 0.05M的乙二胺四亚甲基膦酸(EDTMPA),1.8mL 0.05M的PdCl2加入到7mL的去离子水中进行连续搅拌,然后将溶液pH值调整为7.0,加入0.5mL的HCHO溶液后,将混合物转移到四氟乙烯内衬的不锈钢高压釜中,在140℃下反应6h,冷却至室温后,用去离子水离心洗涤几次,然后再分散在EG中得到Pd四足种子溶液(1mg•mL-1)。
(2)制备Pd@Pt核-壳四足纳米材料:
取100mL三颈烧瓶,依次加入108mg KBr、64mg AA、70mg PVP、18mL EG,然后加入0.2mL Pd四足种子溶液。将混合液放入110℃的油浴锅内磁力搅拌1h,然后逐步升温至160℃,当温度稳定后,使用注射泵以11.1μL/min的速度均匀地向烧瓶中注射10mL 0.0667mg/mL的K2PtCl6/EG溶液。注射完成后,继续在160℃下反应10min。然后取出三颈烧瓶,反应液呈深棕色,冷却后离心,使用乙醇洗涤,得到产物;
(3)Pd@Pt核-壳四足纳米材料的刻蚀:
将步骤(2)中所得产物用7mL去离子水溶解,在超声机中超声0.5h后,依次加入300mg KBr、50mg PVP、16mg FeCl3、0.08mL浓盐酸,然后置于80℃的油浴锅内加热10min后,用乙醇洗涤数次,得到空心Pt四足纳米材料。
实施例2
除步骤(2)中注射的K2PtCl6/EG溶液的速度更改为22.2μL/min外,其余同实施例1。
实施例3
除步骤(2)中注射的K2PtCl6/EG溶液的速度更改为33.3μL/min外,其余同实施例1。
利用实施例3的材料应用在酸性ORR反应中,具体步骤为:
在CHI 760E电化学工作站上进行,采用传统的三电极系统,碳棒作为辅助电极,饱和甘汞电极(SCE)作为参比电极,工作电极为旋转圆盘电极(RDE)。酸性氧还原反应测试是在O2饱和的0.5M H2SO4溶液中进行的,扫描速率为5mV•s-1,转速为1600rpm。
实施例4
除步骤(2)中注射的K2PtCl6/EG溶液的速度更改为44.4μL/min外,其余同实施例3。
总结实施例3和实施例4的空心Pt四足纳米材料可知,本发明注射的K2PtCl6/EG溶液的速度可影响还原速率,从而控制Pt的沉积速率。
实施例5
除步骤(2)中注射的K2PtCl6/EG溶液的体积更改为5mL以外,其余同实施例3。
实施例6
除步骤(2)中注射的K2PtCl6/EG溶液的体积更改为15mL以外,其余同实施例3。
无论如何调节K2PtCl6/EG溶液的注入体积,都可以很好地保留Pt壳层的整体共形生长模式,从而形成一系列具有不同分支直径的Pd@Pt核-壳四足纳米材料。因此,在注入特定体积的K2PtCl6/EG溶液时可以得到平均壁厚为6个原子层的空心结构的Pt四足纳米晶材料。
实施例7
除步骤(2)中注射的K2PtCl6/EG溶液后,继续加热的温度由160℃变为140℃后,其余同实施例3。
实施例8
除步骤(2)中注射的K2PtCl6/EG溶液后,继续加热的温度由160℃变为150℃后,其余同实施例3。
实施例9
除步骤(2)中注射的K2PtCl6/EG溶液后,继续加热的温度由160℃变为170℃后,其余同实施例3。
实施例10
除步骤(2)中注射的K2PtCl6/EG溶液后,继续加热的温度由160℃变为180℃后,其余同实施例3。
较高的反应温度有利于提高表面扩散速率,比较实施例3、实施例7-10可知,160℃很适宜,可以实现了在Pd四足上沉积晶粒细密的Pt壳层。
实施例11
除步骤(2)中注射的K2PtCl6/EG溶液后,继续加热的时间由10min变为5min后,其余同实施例3。
实施例12
除步骤(2)中注射的K2PtCl6/EG溶液后,继续加热的时间由10min变为15min后,其余同实施例3。
实施例13
除步骤(2)中注射的K2PtCl6/EG溶液后,继续加热的时间由10min变为20min后,其余同实施例3。
比较实施例3、实施例11-13可知,反应时间过短不易生成Pd@Pt核-壳四足纳米材料,反应时间过长生成的Pd@Pt核-壳四足纳米材料尺寸较大,在反应时间为10min时生成的Pd@Pt核-壳四足纳米材料尺寸较小,形貌最好。
实施例14
除步骤(3)中FeCl3的用量为更改为8mg,其余同实施例3。
实施例15
除步骤(3)中FeCl3的用量为更改为24mg,其余同实施例3。
比较实施例3、实施例14-15外,不同用量的FeCl3对Pd@Pt核-壳四足纳米材料的刻蚀效果不同,当FeCl3的用量为16mg时,对Pd@Pt核-壳四足纳米材料的刻蚀效果最好。
采用HRTEM、HADDF-STEM、XRD和XPS等途径对以上实施例制备的空心Pt四足进行物理表征。从HADDF-STEM图谱(图1(a))和HRTEM图谱(图1(b))可以看出,产品为尺寸均一的中空多孔四足结构。从进一步放大的HRTEM图谱(图2(a))可以看出,测得的晶格间距为0.23nm,该间距分配给面心立方(fcc)Pt的{111}晶面,表明在去除Pd核后,空心四足仍被{111}晶面包围。从边缘测量了超薄Pt壁(图2(b))的平均厚度为1.3nm,对应于Pt的6个原子层。此外,进一步放大的HRTEM图谱(图2(c)-2(d))显示了晶面上具有高密度的台阶原子和扭结原子,进而表现出更加优越的高催化活性和稳定性。从XRD图谱(图3)可以看出,通过与标准图谱比对,其与Pt的面心立方晶体的标准衍射图(JCPDS no. 04-0802)吻合较好。从XPS图谱(图4)可以看出,两个不同的特征峰分别位于69.88eV和73.15eV,它对应于Pt的4f7/2和4f5/2区域的结合能标准值,表明产物是定义良好的高纯度空心Pt四足纳米材料。ORR性能测试曲线(图5(a))和面积比活性的比较(图5(b))表明空心Pt四足纳米材料分别与Pt/C、Pd@Pt核-壳四足纳米材料对比具有非常优异的ORR性能,在经过1000圈加速耐久力测试(图6)后,空心Pt四足纳米材料的半波电位仅负移3mV,说明空心Pt四足纳米材料具有良好的稳定性。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (8)

1.一种空心Pt四足纳米材料的制备方法,其特征在于,以Pd四足为晶种,K2PtCl6为前驱体、PVP为稳定剂、AA为还原剂制备Pd@Pt的四足核-壳结构,再以Fe3+/Br-为刻蚀剂,除去核-壳结构中的Pd四足核,最终得到平均壁厚为6个原子层的空心四足结构的Pt纳米材料。
2.根据权利要求1所述的一种空心Pt四足纳米材料的制备方法,其特征在于,包括以下步骤:
(1) 制备Pd四足种子溶液
将0.01g PVP,1.8mL 0.05M的乙二胺四亚甲基膦酸,1.8mL 0.05M的PdCl2加入到7mL的去离子水中进行连续搅拌,然后将溶液pH值调整为7.0,加入0.5mL的HCHO溶液后,将混合物转移到四氟乙烯内衬的不锈钢高压釜中,在140℃下反应6h后,自然冷却至室温,再用去离子水离心洗涤几次,然后再分散在EG中得到1mg•mL-1 Pd四足种子溶液;
(2) 制备Pd@Pt核-壳四足纳米材料
取100mL三颈烧瓶,依次加入108mg KBr、64mg AA、70mg PVP、18mL EG,然后加入0.2mLPd四足种子溶液得混合溶液,并将混合液放入110℃的油浴锅内磁力搅拌1h,然后逐步升温至160℃,当温度稳定后,使用注射泵以11.1-44.4μL/min的速度均匀的速度向烧瓶中注射5-15mL 0.0667mg/mL的K2PtCl6/EG溶液,注射完成后,在140-180℃下继续反应5-20min,再取出三颈烧瓶,反应液呈深棕色,冷却后离心,使用乙醇洗涤,得到产物;
(3) Pd@Pt核-壳四足纳米材料的刻蚀
将步骤(2)中所得产物用7mL去离子水溶解,在超声机中超声0.5h后,依次加入300mgKBr、50mg PVP、8-24mg FeCl3、0.08mL浓盐酸,然后置于80℃的油浴锅内加热10min后,用乙醇洗涤数次,得到空心Pt四足纳米材料。
3.根据权利要求2所述的一种空心Pt四足纳米材料的制备方法,其特征在于,所述注射速度为33.3μL/min。
4.根据权利要求2所述的一种空心Pt四足纳米材料的制备方法,其特征在于,所述K2PtCl6/EG溶液的用量为10mL。
5.根据权利要求2所述的一种空心Pt四足纳米材料的制备方法,其特征在于,所述注射完成后的反应温度为160℃。
6.根据权利要求2所述的一种空心Pt四足纳米材料的制备方法,其特征在于,所述注射完成后的反应时间为10min。
7.根据权利要求2所述的一种空心Pt四足纳米材料的制备方法,其特征在于,所述FeCl3的用量为16mg。
8.基于权利要求1或2制备的空心Pt四足纳米材料在酸性氧还原反应上的应用。
CN202110467834.3A 2021-04-28 2021-04-28 一种空心Pt四足纳米材料的制备方法及其应用 Pending CN113319288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110467834.3A CN113319288A (zh) 2021-04-28 2021-04-28 一种空心Pt四足纳米材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110467834.3A CN113319288A (zh) 2021-04-28 2021-04-28 一种空心Pt四足纳米材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113319288A true CN113319288A (zh) 2021-08-31

Family

ID=77413908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110467834.3A Pending CN113319288A (zh) 2021-04-28 2021-04-28 一种空心Pt四足纳米材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113319288A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883588A (zh) * 2022-05-07 2022-08-09 贵州大学 一种用于室温氢燃料电池的超高稳定性氧还原催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120211670A1 (en) * 2009-07-28 2012-08-23 The Regents Of The University Of California Systems and Methods of Detecting Force and Stress Using Tetrapod Nanocrystal
CN105032412A (zh) * 2015-08-06 2015-11-11 厦门大学 一种多孔空心结构的银/铂合金纳米材料及其制备方法
CN108161025A (zh) * 2018-02-07 2018-06-15 中南民族大学 一种八足形Pt-Cu合金纳米材料及其合成方法和应用
KR20180076446A (ko) * 2016-12-28 2018-07-06 한림대학교 산학협력단 다중가지 금 나노입자 코어 실리카 쉘 나노입자 및 그 합성방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120211670A1 (en) * 2009-07-28 2012-08-23 The Regents Of The University Of California Systems and Methods of Detecting Force and Stress Using Tetrapod Nanocrystal
CN105032412A (zh) * 2015-08-06 2015-11-11 厦门大学 一种多孔空心结构的银/铂合金纳米材料及其制备方法
KR20180076446A (ko) * 2016-12-28 2018-07-06 한림대학교 산학협력단 다중가지 금 나노입자 코어 실리카 쉘 나노입자 및 그 합성방법
CN108161025A (zh) * 2018-02-07 2018-06-15 中南民族大学 一种八足形Pt-Cu合金纳米材料及其合成方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENGMENG LI等: "Hollow platinum tetrapods: using a combination of {111} facets, surface concave topology, and ultrathin walls to boost their oxygen reduction reactivity", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883588A (zh) * 2022-05-07 2022-08-09 贵州大学 一种用于室温氢燃料电池的超高稳定性氧还原催化剂
CN114883588B (zh) * 2022-05-07 2023-10-20 贵州大学 一种用于室温氢燃料电池的超高稳定性氧还原催化剂

Similar Documents

Publication Publication Date Title
CN110890558B (zh) 一种负载型铂基核壳催化剂及其制备方法
CN106694018A (zh) 一种具有梯度孔结构的钴、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN112886030B (zh) 一种多孔凹形立方体CoNP@CoSA-N-C催化剂及其制备方法和应用
CN113594483B (zh) PtCo金属间化合物催化剂的制备方法以及燃料电池
CN112563523A (zh) 一种石墨化碳层限域的多元铂合金催化剂及其制备方法
CN109742415B (zh) 一种高载量负载金属单原子石墨烯材料及其制备方法
CN113363507B (zh) 一种碳化钛负载铂钯纳米花电极催化剂的制备方法
CN113319288A (zh) 一种空心Pt四足纳米材料的制备方法及其应用
CN108950597B (zh) 一种复合结构纳米颗粒材料及其制备方法和应用
CN112038647B (zh) 一种基于COFs衍生纳米碳管催化ORR反应的方法
CN114618551A (zh) 一种负载型纳米合金催化剂及普适性制备方法
CN113889632A (zh) 氮掺杂中空介孔碳壳载PtNi合金八面体催化剂的制备方法
KR20110015774A (ko) 새로운 백금/카본 촉매의 제조방법, 이를 이용하여 제조된 촉매 및 양성자 교환막 연료전지
CN113235108A (zh) 一种MXene负载贵金属团簇催化剂及其制备方法和应用
KR20220103288A (ko) 인터메탈릭 촉매 및 이의 제조 방법
WO2023241152A1 (zh) 一种空心氮掺杂碳包裹二氧化钛光催化剂的制备方法
CN116837410A (zh) 一种析氧催化剂及其制备方法、膜电极和电化学装置
CN111298790B (zh) 一种Pt原子簇负载WO3纳米片析氢反应催化剂及其制备方法
CN109317205B (zh) 富含氰基空位的镍铁基金属有机框架材料、制备方法及其应用
CN114752947B (zh) 一种高活性及稳定性的负载型析氧催化剂的制备方法
CN113809341B (zh) 一种Cu-N-C氧还原催化剂及其制备方法
CN111313044B (zh) 一种双金属原子中空碳纳米球催化剂及其制备方法
CN116618071B (zh) 一种氨硼烷水解析氢用催化剂的制备方法
Meng et al. Ultralow‐Loading Ruthenium–Iridium Fuel Cell Catalysts Dispersed on Zn–N Species‐Doped Carbon
CN114100630B (zh) 铂钴双金属纳米花催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210831