CN113307610B - 高致密度石英-氧化锆复相陶瓷及其制备方法 - Google Patents

高致密度石英-氧化锆复相陶瓷及其制备方法 Download PDF

Info

Publication number
CN113307610B
CN113307610B CN202110652549.9A CN202110652549A CN113307610B CN 113307610 B CN113307610 B CN 113307610B CN 202110652549 A CN202110652549 A CN 202110652549A CN 113307610 B CN113307610 B CN 113307610B
Authority
CN
China
Prior art keywords
phase
zirconia
content
ceramic
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110652549.9A
Other languages
English (en)
Other versions
CN113307610A (zh
Inventor
史志铭
张勇
闫华
王文彬
雒宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Zhanhua Technology Co ltd
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia Zhanhua Technology Co ltd
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Zhanhua Technology Co ltd, Inner Mongolia University of Technology filed Critical Inner Mongolia Zhanhua Technology Co ltd
Priority to CN202110652549.9A priority Critical patent/CN113307610B/zh
Publication of CN113307610A publication Critical patent/CN113307610A/zh
Application granted granted Critical
Publication of CN113307610B publication Critical patent/CN113307610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开高致密度石英‑氧化锆复相陶瓷及其制备方法,复相陶瓷主要由石英相、氧化锆相、锆英石相和玻璃相组成;在所述高致密度石英‑氧化锆复相陶瓷中:所述石英相的含量为4.7‑67.1wt%,所述氧化锆相的含量为6.5‑60.5wt%,所述锆英石相的含量为5.0‑63.2wt%;所述玻璃相的含量为15.1‑28.3wt%;其制备方法包括如下步骤:将风积沙和氧化锆混合后球磨,得到混合原料;将混合原料干燥后粉碎;将粉碎后的混合原料压制成型,得到复相陶瓷坯体;复相陶瓷坯体烧结后即制备得到高致密度石英‑氧化锆复相陶瓷。本发明通过调节氧化锆的添加量、烧结温度和保温时间,调节陶瓷中石英、氧化锆、锆英石以及玻璃相含量,得到不同力学性能的复相陶瓷,这种系列化的陶瓷适应多种场合(成本、性能)的应用要求。

Description

高致密度石英-氧化锆复相陶瓷及其制备方法
技术领域
本发明涉及复相陶瓷技术领域。具体地说是高致密度石英-氧化锆复相陶瓷及其制备方法。
背景技术
石英质陶瓷在工业和民用的耐磨损、耐高温和耐腐蚀场合应用广泛,它通常以石英砂或者熔融石英为原料,通过添加烧结助剂或者在高温高压下合成高致密度坯体。但是与氧化铝陶瓷和莫来石陶瓷相比,石英质陶瓷的硬度和强度均偏低。
有报道以工业氧化锆、纯石英为原料,加入氟化钠、氟化钙和含硼的低温熔块烧结助剂,实现了1150℃+5h的低温烧结,但也只能获得含有不同气孔率的锆英石质多孔陶瓷;也有技术人员通过在高纯度熔融石英玻璃颗粒中直接掺加6-14wt%的ZrSiO4微细粉,并将坯体在1100℃以上烧结,制得了密度为1.90-1.95 g/cm3、显气孔率为14. 2-18.7%、抗压强度为27.8-41.4 MPa 的 SiO2-ZrO2复合陶瓷;也有学者利用高温固相法制备锆英石,这种方法通常是采用ZrO2和纯SiO2 为原料直接合成,合成温度通常在1315~1700℃之间。有报道以ZrO2和SiO2粉体为原料,通过研磨、烘干、压制成型,在1550℃下保温8~72 h,样品的致密化程度随着烧结时间的延长逐渐增强,且以纯度大于99wt%的SiO2和ZrO2粉体为原料,在1500℃条件下保温4.5-6h合成了锆英石微粉。
另有报道以ZrO2和H2SiO3为原料,采用高温固相法合成ZrSiO4,最佳工艺条件为:球磨时间24h,保温时间3h,煅烧温度1500℃,ZrSiO4粉体的含量达到84.18wt%。而以分析纯氯氧化锆、工业纯硅胶、化学纯氨水、分析纯尿素为原料,采用溶胶-凝胶法,添加适量的化学纯矿化剂V205在1300℃以下烧结合成微米级锆英石涂层。
有报道以锆英石为原料、Y2O3为稳定剂,采用常压烧结工艺制备硅酸锆陶瓷,物相由ZrSiO4和ZrO2组成,随着Y2O3添加量的增加样品的维氏硬度先增大后减小,这说明温度升高有助于硬度的提高。以高纯超细锆英石粉体为原料,在25MPa压力和1600℃高温下烧结1小时,得到相对密度为99.1%的锆英石陶瓷,其抗折强度可达350MPa。
另外一种锆英石陶瓷的制备方法中,原料配比为锆英砂78~90wt%,二氧化锆 8~20wt%,钛白粉 0.5~2wt%;将锆英石和烧结助剂球磨混合,烧结助剂与锆英石的质量比为5%~10%;混合料中添加聚乙烯醇后进行喷雾造粒并冷等静压成型,成型压力80~120MPa,并于1100~1600℃烧制2~8h,得到锆英石陶瓷。
专利CN201410590302.9公开了一种合成锆英石陶瓷粉体的方法,由下列重量份的原料制成:二氧化钛2-3、锆英石70-80、伊利石粘土23-26、醋酸丁酯1-2、硅烷偶联剂1-2、烧结莫来石粉13-17、氧化锆粉5-7、纳米氧化铝3-4、六钛酸钾晶须5-8、正硅酸乙酯3-4、去离子水适量、氢氧化钾1-2、乙醇适量、助剂4-6;所述助剂由下列重量份的原料制成:高岭土3-4、稀土1-2、四盐基铬酸锌0.3-0.4、纳米氮化硅0.8-1.2、纳米硼纤维0.6-0.9、纳米碳0.3-0.4、硅烷偶联剂kh-550 0.6-0.8、聚乙二醇0.3-0.4、水7-11。其制备方法为:将聚乙二醇加入水中,搅拌均匀,加入高岭土,搅拌20-30分钟,再加入一半重量份的硅烷偶联剂kh-550,搅拌10-15分钟,再加入稀土,搅拌反应20-30分钟,再加入剩余重量份的硅烷偶联剂kh-550,搅拌10-15分钟,再加入其他剩余成分,搅拌反应20-30分钟,超声分散6-8分钟,过滤、烘干、粉碎、过40目筛,在氮气氛围下,1380-1440℃下煅烧2-3个小时,粉碎、过40目筛,即得锆英石粉体。
上述合成方法中存在以下缺点:氧化硅-氧化锆复相陶瓷以及锆英石陶瓷的合成使用了高纯度的氧化硅、硅酸和纯硅胶等原料,原料成本高;为了提高致密度,采用了较高的烧结温度和较长的烧结时间;或者添加了多种烧结助剂,还采用压力烧结工艺;这些都增加了烧结难度,也增加制造成本和工艺复杂性。
发明内容
为此,本发明所要解决的技术问题在于提供一种原料丰富、制造工艺简单、成本低、陶瓷综合性能优良的高致密度石英-氧化锆复相陶瓷及其制备方法,以适合于用作高档次建筑材料和冶金、火力发电厂、化工等的耐热、耐磨、耐腐蚀部件。
为解决上述技术问题,本发明提供如下技术方案:
高致密度石英-氧化锆复相陶瓷,由石英相、氧化锆相、锆英石相和玻璃相组成;所述石英相的含量为4.7-67.1wt%,所述氧化锆相的含量为6.5-60.5wt%,所述锆英石相的含量为5.0-63.2wt%;所述玻璃相的含量为15.1-28.3wt%。
高致密度石英-氧化锆复相陶瓷的制备方法,包括如下步骤:
步骤A:将风积沙和氧化锆混合后球磨,得到混合原料;
步骤B:将混合原料干燥后粉碎;
步骤C:将粉碎后的混合原料压制成型,得到复相陶瓷坯体;
步骤D:复相陶瓷坯体烧结后即制备得到高致密度石英-氧化锆复相陶瓷。
上述高致密度石英-氧化锆复相陶瓷的制备方法,在步骤A中:所述风积沙为沙漠风积沙,且所述风积沙中SiO2的含量为79-82wt%、长石相的含量为15-20wt%;所述氧化锆为工业氧化锆,所述氧化锆的纯度大于或等于99.0wt%。
上述高致密度石英-氧化锆复相陶瓷的制备方法,所述长石相中各金属元素以氧化物计的含量为:K2O的含量为0.5-2.5wt%,Na2O的含量为0.2-1.0wt%,CaO的含量为0.5-2.0wt%,Fe2O3的含量为0.3-2.6wt%,TiO2的含量为0.3-0.5wt%,Al2O3的含量为7.0-10.4wt%,MgO的含量为1.0-3.0wt%。
上述高致密度石英-氧化锆复相陶瓷的制备方法,在步骤A中,所述风积沙与所述氧化锆的重量比为3:7~9:1。
上述高致密度石英-氧化锆复相陶瓷的制备方法,在步骤A中,球磨时间为1-3h。
上述高致密度石英-氧化锆复相陶瓷的制备方法,在步骤B中,粉碎后所述混合原料的平均粒径范围是5-15μm。
上述高致密度石英-氧化锆复相陶瓷的制备方法,在步骤C中,压成成型的压力为25-35MPa。
上述高致密度石英-氧化锆复相陶瓷的制备方法,在步骤D中,烧结温度为1100-1600℃,保温时间为1-3h。
上述高致密度石英-氧化锆复相陶瓷的制备方法,在步骤A中:所述风积沙为沙漠风积沙,且所述风积沙中SiO2的含量为79-82wt%、长石相的含量为15-20wt%;所述长石相中各金属元素以氧化物计的含量为:K2O的含量为0.5-2.5wt%, Na2O的含量为0.2-1.0wt%,CaO的含量为0.5-2.0wt%,Fe2O3的含量为0.3-2.6wt%,TiO2的含量为0.3-0.5wtwt%,Al2O3的含量为7.0-10.4wt%,MgO的含量为1.0-3.0wt%;
所述氧化锆为工业氧化锆,所述氧化锆的纯度大于或等于99.0wt%;所述风积沙与所述氧化锆的重量比为3:7~9:1;球磨时间为1-3h;
在步骤B中,粉碎后所述混合原料的平均粒径范围是5-15μm;
在步骤C中,压成成型的压力为25-35MPa;
在步骤D中,烧结温度为1100-1600℃,保温时间为1-3h。
本发明的技术方案取得了如下有益的技术效果:
(1)氧化锆(ZrO2)具有更高的硬度和断裂韧性,锆英石(ZrSiO4)具有较高的硬度、化学稳定性和抗热震性能。本发明借助氧化锆和锆英石的这些优点,使用低纯度的沙漠风积沙和工业级氧化锆粉体为原料,利用常压高温合成方法制备高致密度石英-氧化锆系复相陶瓷。本发明的高致密度复相陶瓷,通过调节氧化锆的添加量、烧结温度和保温时间,可以相应地调节陶瓷中石英、氧化锆、锆英石以及玻璃相含量,得到不同力学性能的复相陶瓷,这种系列化的陶瓷适应多种场合(成本、性能)的应用要求。
(2)沙漠风积沙在我国西北地区储量丰富,在一定区域内化学成分相对稳定。以风积沙代替纯石英沙,其优点在于原料成本低廉,且不需要额外添加烧结助剂或压力烧结,就能得到致密度高,强度高的复相陶瓷。这是因为风积沙中除了石英相之外还含有低熔点的长石相,其总含量为15-20wt%,长石相中含有钾、钙、铁、钛、铝和镁等元素,相当于在陶瓷原料中引入了天然烧结助剂;另外,这些低熔点物质使坯体在较低的温度下形成液相,有利于坯体的烧结收缩和致密化,因而不需要像使用高纯度石英那样额外添加较多的烧结助剂来达到致密化的目的。此外,由于风积沙中含有较多的长石相,且钾、钙、铁、钛、铝和镁等金属离子的离子场强度较低,Zr4+的离子场强度很高,因而Zr4+在高温下适量溶入液相中,后续形成玻璃相,起到显著提高玻璃网络的致密度和强度的作用,最终导致陶瓷致密度和强度的提高。本发明复合陶瓷中的玻璃相的强度和热膨胀系数均最低,较多的玻璃相有利于降低陶瓷的热膨胀系数;未反应完全的细小氧化锆颗粒位于玻璃相之中,作为硬质第二相强化玻璃相,对改善陶瓷的强度有正面效果;而氧化硅和氧化锆通过高温反应形成的锆英石相在受到温度冲击时能起到稳定陶瓷结构的作用。
(3)在本发明的实施条件下,锆英石形成温度约为1100℃,比使用高纯度石英砂时的形成温度低200℃。这是由于天然风积沙中的石英晶体中有微量铝、镁、铁、钛等离子固溶,它们引起了石英晶格的畸变,非常有利于锆离子扩散进入石英晶格形成锆英石相,这是高纯度石英砂所不具备的。
附图说明
图1 本发明实施例1制备的复相陶瓷的微观形貌图;
图2 本发明实施例2制备的复相陶瓷的微观形貌图;
图3 本发明实施例3制备的复相陶瓷的微观形貌图;
图4 本发明实施例4制备的复相陶瓷的微观形貌图;
图5 本发明对比例1制备的复相陶瓷的微观形貌图;
图6 本发明对比例2制备的复相陶瓷的微观形貌图;
图7 本发明实施例1-4和对比例1-2制备的陶瓷的XRD图,图中:(a)实施例1,(b)实施例2,(c)实施例3,(d)实施例4,(e)对比例1,(f)对比例2。
具体实施方式
实施例1
高致密度石英-氧化锆复相陶瓷的制备方法,包括如下步骤:
步骤A:将90g沙漠风积沙和10g氧化锆混合后球磨1h,得到混合原料;风积沙中SiO2含量为79.0wt%、长石相的含量为16.5wt%;氧化锆为纯度为大于或等于99.0wt%的工业氧化锆;长石相中各金属元素以氧化物计的含量为:K2O的含量为1.5wt%,Na2O的含量为0.8wt%,CaO的含量为1.0wt%,Fe2O3的含量为0. 6wt%,TiO2的含量为0.3wt%,Al2O3的含量为7.4wt%,MgO的含量为2.3wt%;
步骤B:将混合原料干燥后粉碎,粉碎后混合原料的平均粒径是14.7μm;
步骤C:将粉碎后的混合原料压制成型,成型压力为30MPa,得到复相陶瓷坯体;
步骤D:复相陶瓷坯体烧结后即制备得到高致密度石英-氧化锆复相陶瓷;烧结温度为1100℃,保温3小时。
上述制备的高致密度石英-氧化锆复相陶瓷由67.1wt%的石英相、6.5wt%的氧化锆相、5.0wt%的锆英石相和21.4wt%玻璃相组成。
经测定,本实施例所制备的高致密度石英-氧化锆复相陶瓷的密度为2.58 g/cm3,显气孔率为0.28%,弯曲强度达到95.2 MPa,维氏硬度达725.5 HV,热膨胀系数为4.5×10-6/℃。
实施例2
高致密度石英-氧化锆复相陶瓷的制备方法,包括如下步骤:
步骤A:将70g沙漠风积沙和30g氧化锆混合后球磨2h,得到混合原料;风积沙中SiO2含量为80.1wt%、长石相的含量为15.3wt%;氧化锆为纯度大于或等于99.0wt%的工业氧化锆;长石相中各金属元素以氧化物计的含量为:K2O的含量为2.5wt%,Na2O的含量为0.4wt%,CaO的含量为1.2wt%,Fe2O3的含量为1.3wt%,TiO2的含量为0.5wt%,Al2O3的含量为7.1wt%,MgO的含量为1.3wt%;
步骤B:将混合原料干燥后粉碎,粉碎后混合原料的平均粒径是9.3μm;
步骤C:将粉碎后的混合原料压制成型,成型压力为30MPa,得到复相陶瓷坯体;
步骤D:复相陶瓷坯体烧结后即制备得到高致密度石英-氧化锆复相陶瓷;烧结温度为1150℃,保温2小时。
上述制备的高致密度石英-氧化锆复相陶瓷由46.1wt%的锆英石相、16.8wt%的氧化锆相、20.5wt%的石英相和16.6wt%玻璃相组成。
经测定,本实施例所制备的高致密度石英-氧化锆复相陶瓷的密度为2.72 g/cm3,显气孔率为0.38%,弯曲强度达到92.3 MPa,维氏硬度达794.2 HV,热膨胀系数为5.6×10-6/℃。
实施例3
高致密度石英-氧化锆复相陶瓷的制备方法,包括如下步骤:
步骤A:将50g沙漠风积沙和50g氧化锆混合后球磨3h,得到混合原料;风积沙中SiO2含量为81.6wt%、长石相的含量为17.4wt%氧化锆为纯度为大于或等于99.0wt%的工业氧化锆;长石相中各金属元素以氧化物计的含量为:K2O的含量为1.6wt%,Na2O的含量为0.5wt%,CaO的含量为1.4wt%,Fe2O3的含量为1.9wt%,TiO2的含量为0.4wt%,Al2O3的含量为9.8wt%,MgO的含量为2.1wt%;
步骤B:将混合原料干燥后粉碎,粉碎后混合原料的粒径是5.7μm;
步骤C:将粉碎后的混合原料压制成型,成型压力为30MPa,得到复相陶瓷坯体;
步骤D:复相陶瓷坯体烧结后即制备得到高致密度石英-氧化锆复相陶瓷;烧结温度为1500℃,保温2小时。
上述制备的高致密度石英-氧化锆复相陶瓷由63.2wt%的锆英石相、12.3wt%的石英相、9.4wt%的氧化锆相和15.1wt%玻璃相组成。
经测定,本实施例所制备的高致密度石英-氧化锆复相陶瓷的密度为3.33 g/cm3,显气孔率为0.45%,弯曲强度达到109.3 MPa,维氏硬度达835.7 HV,热膨胀系数为4.8×10-6/℃。
实施例4
高致密度石英-氧化锆复相陶瓷的制备方法,包括如下步骤:
步骤A:将32.5g沙漠风积沙和67.5g氧化锆混合后球磨2h,得到混合原料;风积沙中SiO2含量为82.0wt%、长石相的含量为17.6wt%;氧化锆为纯度为大于或等于99.0wt%的工业氧化锆;长石相中各金属元素以氧化物计的含量为:K2O的含量为1.1wt%,Na2O的含量为1.0wt%,CaO的含量为1.8wt%,Fe2O3的含量为1.5wt%,TiO2的含量为0.3wt%,Al2O3的含量为8.2wt%,MgO的含量为2.2wt%;
步骤B:将混合原料干燥后粉碎,粉碎后混合原料的平均粒径是5.9μm;
步骤C:将粉碎后的混合原料压制成型,成型压力为30MPa,得到复相陶瓷坯体;
步骤D:复相陶瓷坯体烧结后即制备得到高致密度石英-氧化锆复相陶瓷;烧结温度为1600℃,保温1小时。
上述制备的高致密度石英-氧化锆复相陶瓷由60.5wt%的氧化锆相、6.5wt%的锆英石相、4.7wt%的石英相和28.3wt%玻璃相组成,玻璃相较多是因为在此温度下,风积沙粉体大多形成液相,少量氧化锆也会溶入液体,冷却后液相固化成玻璃相。锆离子进入少量残留的氧化硅晶格从而形成较少锆英石。
经测定,本实施例所制备的高致密度石英-氧化锆复相陶瓷的密度为3.64 g/cm3,显气孔率为0.63%,弯曲强度达到97.6 MPa,维氏硬度达900.5 HV,热膨胀系数为4.3×10-6/℃。
对比例1
本对比例的制备方法,包括如下步骤:
步骤A:将100g沙漠风积沙球磨2h,得到球磨原料;风积沙中SiO2含量为79.7wt%;长石相中各金属元素以氧化物计的含量为:K2O的含量为0.7wt%,Na2O的含量为0.3wt%,CaO的含量为0.5wt%,Fe2O3的含量为0.6wt%,TiO2的含量为0.3wt%,Al2O3的含量为9.1wt%,MgO的含量为1.6wt%;
步骤B:将球磨后的原料干燥并粉碎,粉碎后原料的平均粒径是9.5μm;
步骤C:将粉碎后的原料压制成型,成型压力为30MPa,得到陶瓷坯体;
步骤D:陶瓷坯体烧结后即制备得到陶瓷;烧结温度为1150℃,保温2小时。
上述制备的陶瓷由65.2wt%的石英相和34.8 wt%的玻璃相组成。
经测定,本对比例所制备的陶瓷的密度为2.43 g/cm3,显气孔率为0.56%,弯曲强度达到71.2 MPa,维氏硬度达650 HV,热膨胀系数为3.8×10-6/℃。
对比例2
本对比例的制备方法,包括如下步骤:
步骤A:将70g氧化硅和30g氧化锆混合后球磨2h,得到混合原料;氧化硅和氧化锆的纯度均高于99.6wt%;
步骤B:将混合原料干燥并粉碎,粉碎后混合原料的平均粒径是7.1μm;
步骤C:将粉碎后的混合原料压制成型,成型压力为30MPa,得到陶瓷坯体;
步骤D:陶瓷坯体烧结后即制备得到陶瓷;烧结温度为1300℃,保温4小时。
上述制备的陶瓷由70wt%的石英相和30wt%的氧化锆相组成,无锆英石相和玻璃相形成。在此烧结温度下,由于烧结温度过低,在高纯度原料、无烧结助剂、无液相的烧结中,各成分之间基本不发生化学反应,仅仅依靠固相扩散反应形成锆英石新相极为困难,因此并无锆英石相和玻璃相形成。
经测定,本对比例所制备的陶瓷的密度为1.38 g/cm3,显气孔率达到40.7%,由于制备的成品疏松多孔,且为连通气孔,基本没有烧结,其硬度和强度都比较低,呈现出较“酥”的状态,因此其弯曲强度测量不准,维氏硬度和热膨胀系数也无法测量。
从图7中可以看出,实施例1的陶瓷的晶体主要为α-石英相,其次还有少量氧化锆和锆英石、微量方石英相;实施例2的陶瓷的晶体主要为锆英石相、氧化锆和α-石英相;实施例3的陶瓷的晶体为锆英石相、氧化锆和α-石英相;实施例4的陶瓷晶体为氧化锆和少量锆英石和α-石英相;对比例1的晶体主要为α-石英相以及少量方石英和长石相;对比例2的晶体为α-石英、氧化锆和少量方石英相;方石英相的存在是由于离子在石英晶格中固溶阻碍其向α-石英相转变。
图1-4分别为实施例1-4所制备的复相陶瓷的微观形貌图,图5-6分别为对比例1-2制备的陶瓷的微观形貌图。结合图1-7和实施例1-4以及对比例1-2所制备的陶瓷的各项测试结果可知:以沙漠风积沙和工业氧化锆为原料,采用本发明的方法可以制备得到高致密度的石英-氧化锆复相陶瓷,且制备的复相陶瓷由石英相、氧化锆相、锆英石相和玻璃相组成;每种相在复相陶瓷中的所占比例与氧化锆的添加量、烧结温度和保温时间有关。本发明制备的复相陶瓷其密度在2.58-3.64g/cm3之间,显气孔率均小于1.0%;其弯曲强度为92-110 MPa,硬度为725-900 HV,热膨胀系数为(4.3-5.6)×10-6/℃,说明这种方法制备的石英-氧化锆复相陶瓷致密性较好、强度和硬度较高。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本专利申请权利要求的保护范围之中。

Claims (6)

1.高致密度石英-氧化锆复相陶瓷,其特征在于,复相陶瓷以风积沙和氧化锆为原料制备,所制备的复相陶瓷由石英相、氧化锆相、锆英石相和玻璃相组成;所述石英相的含量为4.7-67.1wt%,所述氧化锆相的含量为6.5-60.5wt%,所述锆英石相的含量为5.0-63.2wt%;所述玻璃相的含量为15.1-28.3wt%;
所述风积沙为沙漠风积沙,且所述风积沙中SiO2的含量为79-82wt%、长石相的含量为15-20wt%;所述氧化锆为工业氧化锆,所述氧化锆的纯度大于或等于99.0wt%;其中,所述长石相中各金属元素以氧化物计的含量为:K2O的含量为0.5-2.5wt%,Na2O的含量为0.2-1.0wt%,CaO的含量为0.5-2.0wt%,Fe2O3的含量为0.3-2.6wt%,TiO2的含量为0.3-0.5wt%,Al2O3的含量为7.0-10.4wt%,MgO的含量为1.0-3.0wt%;所述风积沙与所述氧化锆的重量比为3:7~9:1。
2.高致密度石英-氧化锆复相陶瓷的制备方法,其特征在于,包括如下步骤:
步骤A:将风积沙和氧化锆混合后球磨,得到混合原料;
所述风积沙为沙漠风积沙,且所述风积沙中SiO2的含量为79-82wt%、长石相的含量为15-20wt%;所述氧化锆为工业氧化锆,所述氧化锆的纯度大于或等于99.0wt%;
所述长石相中各金属元素以氧化物计的含量为:K2O的含量为0.5-2.5wt%,Na2O的含量为0.2-1.0wt%,CaO的含量为0.5-2.0wt%,Fe2O3的含量为0.3-2.6wt%,TiO2的含量为0.3-0.5wt%,Al2O3的含量为7.0-10.4wt%,MgO的含量为1.0-3.0wt%;所述风积沙与所述氧化锆的重量比为3:7~9:1;
步骤B:将混合原料干燥后粉碎;
步骤C:将粉碎后的混合原料压制成型,得到复相陶瓷坯体;
步骤D:复相陶瓷坯体烧结后即制备得到高致密度石英-氧化锆复相陶瓷。
3.根据权利要求2所述的高致密度石英-氧化锆复相陶瓷的制备方法,其特征在于,在步骤A中,球磨时间为1-3h。
4.根据权利要求2所述的高致密度石英-氧化锆复相陶瓷的制备方法,其特征在于,在步骤B中,粉碎后所述混合原料的平均粒径范围是5-15μm。
5.根据权利要求2所述的高致密度石英-氧化锆复相陶瓷的制备方法,其特征在于,在步骤C中,压成成型的压力为25-35MPa。
6.根据权利要求2所述的高致密度石英-氧化锆复相陶瓷的制备方法,其特征在于,在步骤D中,烧结温度为1100-1600℃,保温时间为1-3h。
CN202110652549.9A 2021-06-11 2021-06-11 高致密度石英-氧化锆复相陶瓷及其制备方法 Active CN113307610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110652549.9A CN113307610B (zh) 2021-06-11 2021-06-11 高致密度石英-氧化锆复相陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110652549.9A CN113307610B (zh) 2021-06-11 2021-06-11 高致密度石英-氧化锆复相陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113307610A CN113307610A (zh) 2021-08-27
CN113307610B true CN113307610B (zh) 2022-05-31

Family

ID=77378456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110652549.9A Active CN113307610B (zh) 2021-06-11 2021-06-11 高致密度石英-氧化锆复相陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113307610B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394849A (zh) * 2021-12-29 2022-04-26 深圳市吉迩科技有限公司 一种多孔陶瓷复合材料及多孔陶瓷复合材料的制备方法
CN114538921B (zh) * 2022-03-18 2022-11-29 中钢集团洛阳耐火材料研究院有限公司 一种玻璃相结合的大尺寸氧化锆致密烧结制品

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331058A (zh) * 2000-06-26 2002-01-16 樊晓东 用沙漠风积沙生产微晶玻璃板
CN1418848A (zh) * 2002-12-25 2003-05-21 天津大学 含硅相四元系氧化锆复相陶瓷材料
CN103342468A (zh) * 2013-06-28 2013-10-09 北京晶雅石科技有限公司 泡沫微晶玻璃和纯微晶玻璃的复合板材及其制作方法
KR20140004014A (ko) * 2012-06-29 2014-01-10 한국에너지기술연구원 세라믹 다공체의 제조방법 및 세라믹 다공체 제조용 조성물
CN103508726A (zh) * 2012-06-15 2014-01-15 咸阳陶瓷研究设计院 一种利用风积沙生产新型建筑保温材料组合物及制备方法
CN103755330A (zh) * 2013-12-30 2014-04-30 内蒙古工业大学 利用沙漠风积沙制备石英质陶瓷的方法
CN103755332A (zh) * 2013-12-30 2014-04-30 内蒙古工业大学 利用沙漠风积沙制备堇青石质陶瓷的方法
CN104108883A (zh) * 2014-08-11 2014-10-22 中国地质大学(北京) 一种高强度二硅酸锂玻璃陶瓷及其制备方法
CN106927803A (zh) * 2017-04-07 2017-07-07 咸阳陶瓷研究设计院 一种利用风积沙制备陶瓷透水材料的方法
CN109265036A (zh) * 2018-10-26 2019-01-25 田丰 一种建筑用透气沙的制备方法
CN111099913A (zh) * 2020-01-03 2020-05-05 内蒙古工业大学 一种制备多孔陶瓷材料的原料及多孔陶瓷材料制备方法
CN111377747A (zh) * 2020-03-24 2020-07-07 共享智能铸造产业创新中心有限公司 3d打印用精密铸造粉末材料及其制备方法
CN111892413A (zh) * 2020-08-26 2020-11-06 郑州中科耐火材料有限公司 铝电解槽内衬专用防渗砖及其制备方法
CN112624619A (zh) * 2021-01-05 2021-04-09 内蒙古工业大学 利用沙漠风积沙合成的石英纳米晶微晶玻璃及其合成方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331058A (zh) * 2000-06-26 2002-01-16 樊晓东 用沙漠风积沙生产微晶玻璃板
CN1418848A (zh) * 2002-12-25 2003-05-21 天津大学 含硅相四元系氧化锆复相陶瓷材料
CN103508726A (zh) * 2012-06-15 2014-01-15 咸阳陶瓷研究设计院 一种利用风积沙生产新型建筑保温材料组合物及制备方法
KR20140004014A (ko) * 2012-06-29 2014-01-10 한국에너지기술연구원 세라믹 다공체의 제조방법 및 세라믹 다공체 제조용 조성물
CN103342468A (zh) * 2013-06-28 2013-10-09 北京晶雅石科技有限公司 泡沫微晶玻璃和纯微晶玻璃的复合板材及其制作方法
CN103755332A (zh) * 2013-12-30 2014-04-30 内蒙古工业大学 利用沙漠风积沙制备堇青石质陶瓷的方法
CN103755330A (zh) * 2013-12-30 2014-04-30 内蒙古工业大学 利用沙漠风积沙制备石英质陶瓷的方法
CN104108883A (zh) * 2014-08-11 2014-10-22 中国地质大学(北京) 一种高强度二硅酸锂玻璃陶瓷及其制备方法
CN106927803A (zh) * 2017-04-07 2017-07-07 咸阳陶瓷研究设计院 一种利用风积沙制备陶瓷透水材料的方法
CN109265036A (zh) * 2018-10-26 2019-01-25 田丰 一种建筑用透气沙的制备方法
CN111099913A (zh) * 2020-01-03 2020-05-05 内蒙古工业大学 一种制备多孔陶瓷材料的原料及多孔陶瓷材料制备方法
CN111377747A (zh) * 2020-03-24 2020-07-07 共享智能铸造产业创新中心有限公司 3d打印用精密铸造粉末材料及其制备方法
CN111892413A (zh) * 2020-08-26 2020-11-06 郑州中科耐火材料有限公司 铝电解槽内衬专用防渗砖及其制备方法
CN112624619A (zh) * 2021-01-05 2021-04-09 内蒙古工业大学 利用沙漠风积沙合成的石英纳米晶微晶玻璃及其合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Wei Wan等."High-temperature ablation properties of nano zirconia reinforced fused silica ceramics".《Ceramics International》.2019, *
Y Shi等."Dataset of wind blow sand erosion test on ultrasonic surface treated cementitious composites ".《Data in Brief》.2020, *
刘婷等."不同颗粒级配的风积沙对陶瓷透水砖性能的影响".《新型建筑材料》.2021, *
赵旭光."ZrO2-SiO2复合陶瓷的研制".《耐火材料》.2001, *
黄芯红等."硅酸锆在传统陶瓷中的应用现状及发展前景".《佛山陶瓷》.2010, *

Also Published As

Publication number Publication date
CN113307610A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN113307610B (zh) 高致密度石英-氧化锆复相陶瓷及其制备方法
CN111620679B (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
JPH07277814A (ja) アルミナ基セラミックス焼結体
CN102757222B (zh) 复合稳定微晶氧化锆陶瓷混合粉体及制作工艺
CN107522404B (zh) 一种牙科用锂铝硅系微晶玻璃及其制备方法
CN112125651A (zh) 一种致密六铝酸钙-刚玉复相陶瓷的制备方法
CN101935877A (zh) 一种常压烧结合成莫来石晶须的方法
CN111410523A (zh) 一种超轻质多孔熔融石英泡沫及其制备方法
CN113845361A (zh) 一种高性能碱性特种陶瓷及其制备方法
JP2939535B2 (ja) 透明酸化イットリウム焼結体の製造法
Debsikdar et al. Effect of zirconia addition on crystallinity, hardness, and microstructure of gel-derived barium aluminosilicate, BaAl 2 Si 2 O 8
CN111807834A (zh) 一种铸造用钛酸铝陶瓷及其制备方法
CN100519469C (zh) 一种低温制备大块致密高纯单相Y2SiO5陶瓷块体材料的方法
CN109811415B (zh) 一种从高岭土低温制备莫来石晶须的方法
CN115417669A (zh) 高硅氧玻璃纤维增强焦磷酸锆基复合材料及其制备方法
CN109437143A (zh) 一种负热膨胀填料Zr2(WO4)(PO4)2的制备方法及其应用
JPH0640763A (ja) 高度結晶質品の製造方法
US2678282A (en) Process for manufacturing synthetic inorganic silicates or the like
CN102219386A (zh) SiO2基复合氧化物体系玻璃的超微细粉体的制备方法
Arcaro et al. LZS/Al2O3 nanostructured composites obtained by colloidal processing and spark plasma sintering
JPH0826815A (ja) 希土類複合酸化物系焼結体及びその製造方法
CN111499380A (zh) 一种锆铝基多相复合陶瓷及其制备方法
JPS6357383B2 (zh)
JPH03215348A (ja) ジルコン焼結体及びその製造方法
KR0137092B1 (ko) 인공치아의 치관용 도재의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant