CN113300586B - Power tube soft start circuit applied to power management chip - Google Patents

Power tube soft start circuit applied to power management chip Download PDF

Info

Publication number
CN113300586B
CN113300586B CN202110649943.7A CN202110649943A CN113300586B CN 113300586 B CN113300586 B CN 113300586B CN 202110649943 A CN202110649943 A CN 202110649943A CN 113300586 B CN113300586 B CN 113300586B
Authority
CN
China
Prior art keywords
power tube
control power
capacitor
tube
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110649943.7A
Other languages
Chinese (zh)
Other versions
CN113300586A (en
Inventor
戴兴科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Weiyuan Semiconductor Co ltd
Original Assignee
Shenzhen Weiyuan Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Weiyuan Semiconductor Co ltd filed Critical Shenzhen Weiyuan Semiconductor Co ltd
Priority to CN202110649943.7A priority Critical patent/CN113300586B/en
Publication of CN113300586A publication Critical patent/CN113300586A/en
Application granted granted Critical
Publication of CN113300586B publication Critical patent/CN113300586B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention discloses a power tube soft start circuit applied to a power management chip, which comprises a first power tube to be started, a current source I, a capacitor C, a start control power tube and a resistor R, wherein the current source I is connected with the capacitor C; the current source I is connected with the capacitor C, and the start control power tube is connected with the common connecting end of the current source I and the capacitor C; the starting control power tube is also connected with the resistor R, and the first power tube is connected with the common connecting end of the starting control power tube and the resistor R; the current source I is used for charging the capacitor C so as to enable the grid voltage of the starting control power tube to slowly rise, further enable the current flowing through the resistor R to increase, and further reduce the grid voltage of the first power tube so as to carry out soft starting on the first power tube. The invention has simple principle and convenient use, can solve the problems of chip burnout or soft start failure and the like caused by overlarge starting current when the power management chip is started, and ensures the stability of chip starting.

Description

Power tube soft start circuit applied to power management chip
Technical Field
The invention relates to the technical field of power tube soft start, in particular to a power tube soft start circuit applied to a power management chip.
Background
In order to drive large current, a power management chip has a large power transistor inside to ensure sufficient output current. However, during the startup of the chip, since the potential of the output capacitor does not reach the set voltage yet, if no processing is performed, the power tube in the chip is fully opened, and the output capacitor is charged with the maximum current until the set voltage. However, when the charging current is too large, the chip itself may be burned out due to too large power, and in addition, the too large charging current indicates that a large current is drawn from the input power, and may also cause the input power to be burned out or cause abnormal voltage, thereby causing a failed start-up. Therefore, the power management chip usually adds a soft start circuit during the start-up to reduce the charging current during the start-up.
As shown in fig. 1, the output voltage VOUT of the circuit is set by resistors R1 and R2, and VOUT is VREF/R1 (R1+ R2). The circuit is divided into two stages during operation, wherein in the first stage, P2 and P3 are closed, P1 and N1 are opened, and the voltage of VC1 is charged to VDD voltage; in the second stage, P1 and N1 are turned off, P2 and P3 are turned on, the voltage of VC2 is decreased to VDD, the voltage of VC1 is decreased to VOUT, at this time, the voltage of VC1 is 2 times VDD voltage because the voltage across VC1 and VC2 is VDD and VC2 is decreased to VDD, and the excess charges are dumped to COUT, so that VOUT voltage is increased. In addition, the P1 CTRL block (control block) determines whether the voltage of P1_ ON is high or low according to the FB and VREF voltages in the first stage, and when the FB voltage is higher than the VREF voltage, which means that VOUT voltage is higher than the set voltage, and P1_ ON voltage is low, the CK _ P1 voltage is high, and P1 is not turned ON; when the FB voltage is lower than VREF voltage, indicating that VOUT voltage is lower than the set voltage, P1_ ON voltage is high, CK _ P1 voltage is pulled low, and P1 can be turned ON to charge capacitor CFLY, while in the second stage, the charge ON capacitor CFLY is dumped to COUT to replenish VOUT. In brief, when the FB voltage is greater than the VREF voltage, P1 will not turn on, and therefore, charge will not be replenished to VOUT, and if VOUT is pumped down, FB will drop; when the FB voltage is lower than the VREF voltage, P1 turns on during the first phase and supplements VOUT with charge during the second phase until the FB voltage rises above the VREF voltage.
It can be seen from the above description that if the voltage VOUT is 0V and the voltage FB is lower than VREF voltage when the circuit is just started, P1 will be turned on in the first stage and output at full power, which may cause the VDD current to be too large and cause the chip to be burned, so a soft start circuit needs to be added to avoid the start current of the chip to be too large.
At present, the principle of the common soft start mode is to make the VREF voltage rise slowly when starting up, so as to disperse the current for charging VOUT, and there are two implementation modes:
1) as shown in fig. 2, implemented in a digital manner, the VREF voltage is increased by one step to one step, and one step per liter, since the FB voltage is lower than the VREF voltage, P1 will start until the FB voltage rises to the VREF voltage, and when the VREF voltage rises by one step again, P1 will turn on again, so that it can be seen that IVDD current (current flowing through VDD) is concentrated in the rising of the VREF voltage, and no current exists at other times;
2) as shown in fig. 3, the VREF voltage rises upward at a constant speed in an analog manner, when the FB voltage is lower than the VREF voltage, P1 is turned on to charge VOUT until the FB voltage catches up with the VREF voltage, compared to a digital manner, in the analog manner, although the analog manner also has a current dispersion effect, the IVDD current is not consistent, and the FB voltage also has a high or low and irregular height each time the FB voltage rises.
Although both of the above-mentioned methods can disperse the charging current during starting, when VOUT is charged, P1 is in a fully open state, so that there is a transient large current, and if the transient large current is too large, the chip may be burned or the soft start failure may still occur.
Disclosure of Invention
The invention aims to provide a power tube soft start circuit applied to a power management chip, which is used for solving the problems of chip burnout or soft start failure and the like caused by overlarge start current when the power management chip is started.
In order to realize the purpose, the following technical scheme is adopted:
a power tube soft start circuit applied to a power management chip comprises a first power tube to be started, a current source I, a capacitor C, a start control power tube and a resistor R; the current source I is connected with the capacitor C, and the start control power tube is connected with the common connecting end of the current source I and the capacitor C; the starting control power tube is also connected with the resistor R, and the first power tube is connected with the common connecting end of the starting control power tube and the resistor R; the current source I is used for charging the capacitor C so as to enable the grid voltage of the starting control power tube to slowly rise, further enable the current flowing through the resistor R to increase, and further reduce the grid voltage of the first power tube so as to carry out soft starting on the first power tube.
Furthermore, a signal control power tube is connected between the current source I and the capacitor C, and a start control power tube is connected with a common connecting end of the capacitor C and the signal control power tube; the grid electrode of the signal control power tube is used for being connected to an external signal controller, so that the signal control power tube is started once every a period of time, and further the charging time of the current source I to the capacitor C is prolonged.
Furthermore, a switch control power tube is connected between the starting control power tube and the resistor R, and the first power tube is connected with a common connecting end of the switch control power tube and the resistor R; the grid electrode of the switch control power tube is used for being connected with an external switch starter so as to control the switch control power tube to be turned on or turned off.
Furthermore, the first power tube is a P-type MOS tube, and the start control power tube is an N-type MOS tube.
Furthermore, the first power tube is a P-type MOS tube, and the start control power tube is an N-type MOS tube.
Furthermore, the first power tube is an N-type MOS tube, and the start control power tube is a P-type MOS tube.
Furthermore, the first power tube is an N-type MOS tube, and the start control power tube is a P-type MOS tube.
By adopting the scheme, the invention has the beneficial effects that:
the circuit principle is simple, convenient to use, and when can solving the power management chip and starting, starting current is too big and leads to the chip to burn out or soft start failure scheduling problem, guarantees the stability that the chip started, simultaneously, provides a plurality of specific implementation circuit, and the user can select by oneself according to the in-service use demand, and is applicable to the soft start of N type MOS pipe or P type MOS pipe, and the commonality is strong.
Drawings
FIG. 1 is a circuit diagram of a conventional charge pump in the prior art;
FIG. 2 is a diagram illustrating a digital soft start in the prior art;
FIG. 3 is a diagram illustrating an analog soft start in the prior art;
FIG. 4 is a circuit diagram of embodiment 1 of the present invention;
FIG. 5 is a circuit diagram of embodiment 2 of the present invention;
FIG. 6 is a circuit diagram of embodiment 3 of the present invention;
FIG. 7 is a circuit diagram of embodiment 4 of the present invention;
FIG. 8 is a circuit diagram of embodiment 5 of the present invention;
FIG. 9 is a circuit diagram of embodiment 6 of the present invention;
FIG. 10 is a circuit diagram of embodiment 7 of the present invention;
FIG. 11 is a circuit diagram of embodiment 8 of the present invention;
wherein the figures identify the description:
1-a first power tube; 2-starting the control power tube;
3-signal control power tube; and 4, switching the control power tube.
Detailed Description
The invention is described in detail below with reference to the figures and the specific embodiments.
Referring to fig. 4 to 11, the invention provides a power tube soft start circuit applied to a power management chip, which includes a first power tube 1 to be started, a current source I, a capacitor C, a start control power tube 2, and a resistor R; the current source I is connected with the capacitor C, and the start control power tube 2 is connected with a common connecting end of the current source I and the capacitor C; the starting control power tube 2 is also connected with a resistor R, and the first power tube 1 is connected with the common connecting end of the starting control power tube 2 and the resistor R; the current source I is used for charging the capacitor C, so that the gate voltage of the start control power tube 2 is slowly increased, the current flowing through the resistor R is increased, and the gate voltage of the first power tube 1 is reduced to perform soft start.
Example 1: as shown in fig. 4, the first power transistor 1 is a P-type MOS transistor, and the start control power transistor 2 is an N-type MOS transistor; utilize current source I to charge electric capacity C, the voltage of node VGN department (the grid voltage of start control power tube 2) of messenger slowly rises, and then makes start control power tube 2 slowly open, and IN the opening process, can make the electric current IN of flowing through resistance R slowly increase, again because the grid voltage VGP of first power tube 1 is VDD-IN R, so when electric current IN slowly increases, VGP can slowly descend, can realize slowly starting the purpose of first power tube 1.
Example 2: as shown in fig. 5, in this embodiment, on the basis of embodiment 1, a signal control power tube 3 is added between a current source I and a capacitor C, and a start control power tube 2 is connected to a common connection end of the capacitor C and the signal control power tube 3; the gate of the signal control power transistor 3 is connected to an external signal controller, so that the signal control power transistor 3 is turned on at intervals, and further the charging time of the current source I to the capacitor C can be prolonged, so that the first power transistor 1 is turned on slowly, and in addition, the signal control power transistor 3 can be an NMOS transistor or a PMOS transistor.
Example 3: as shown in fig. 6, in this embodiment, on the basis of embodiment 1, a switch control power tube 4 (N-type MOS tube) is added between a start control power tube 2 and a resistor R, and a first power tube 1 is connected to a common connection end of the switch control power tube 4 and the resistor R; the grid electrode of the switch control power tube 4 is used for connecting an external switch starter so as to be used as a switch.
Example 4: as shown in fig. 7, in this embodiment, on the basis of embodiment 3, a signal control power tube 3 is added between a current source I and a capacitor C, and a start control power tube 2 is connected to a common connection end of the capacitor C and the signal control power tube 3; the gate of the signal control power transistor 3 is connected to an external signal controller, so that the signal control power transistor 3 is turned on at intervals, and further the charging time of the current source I to the capacitor C can be prolonged, so that the first power transistor 1 is turned on slowly, and in addition, the signal control power transistor 3 can be an NMOS transistor or a PMOS transistor.
Example 5: as shown in fig. 8, the principle of this embodiment is similar to that of embodiment 1, except that in this embodiment, the first power transistor 1 is an N-type MOS transistor, and the start-up control power transistor 2 is a P-type MOS transistor.
Example 6: as shown in fig. 9, the principle of this embodiment is similar to that of embodiment 2, in embodiment 5, a signal control power transistor 3 is added between a current source I and a capacitor C, the start control power transistor 2 is connected to a common connection terminal of the capacitor C and the signal control power transistor 3, and the signal control power transistor 3 may be an NMOS transistor or a PMOS transistor.
Example 7: as shown in fig. 10, the principle of this embodiment is similar to that of embodiment 3, and on the basis of embodiment 5, a switch control power transistor 4 (P-type MOS transistor) is added between the start control power transistor 2 and the resistor R for use as a switch.
Example 8: as shown in fig. 11, the principle of this embodiment is similar to that of embodiment 4, and a signal control power transistor 3 is added between the current source I and the capacitor C based on embodiment 7.
The present invention is not limited to the above preferred embodiments, and any modifications, equivalent substitutions and improvements made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (4)

1. A power tube soft start circuit applied to a power management chip comprises a first power tube to be started, and is characterized by further comprising a current source I, a capacitor C, a start control power tube and a resistor R; the current source I is connected with the capacitor C, and the start control power tube is connected with the common connecting end of the current source I and the capacitor C; the starting control power tube is also connected with the resistor R, and the first power tube is connected with the common connecting end of the starting control power tube and the resistor R; the current source I is used for charging the capacitor C so as to enable the grid voltage of the starting control power tube to slowly rise, further enable the current flowing through the resistor R to increase, and further reduce the grid voltage of the first power tube so as to carry out soft starting on the first power tube;
a signal control power tube is connected between the current source I and the capacitor C, and a start control power tube is connected with a common connecting end of the capacitor C and the signal control power tube; the grid electrode of the signal control power tube is used for being connected to an external signal controller, so that the signal control power tube is started once every a period of time, and further the charging time of the current source I to the capacitor C is prolonged.
2. The power tube soft start circuit applied to the power management chip as claimed in claim 1, wherein a switch control power tube is further connected between the start control power tube and the resistor R, and the first power tube is connected with a common connection end of the switch control power tube and the resistor R; the grid electrode of the switch control power tube is used for being connected with an external switch starter so as to control the switch control power tube to be turned on or turned off.
3. The power tube soft start circuit applied to the power management chip as claimed in any one of claims 1 to 2, wherein the first power tube is a P-type MOS tube, and the start control power tube is an N-type MOS tube.
4. The power tube soft start circuit applied to the power management chip as claimed in any one of claims 1 to 2, wherein the first power tube is an N-type MOS tube, and the start control power tube is a P-type MOS tube.
CN202110649943.7A 2021-06-10 2021-06-10 Power tube soft start circuit applied to power management chip Active CN113300586B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110649943.7A CN113300586B (en) 2021-06-10 2021-06-10 Power tube soft start circuit applied to power management chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110649943.7A CN113300586B (en) 2021-06-10 2021-06-10 Power tube soft start circuit applied to power management chip

Publications (2)

Publication Number Publication Date
CN113300586A CN113300586A (en) 2021-08-24
CN113300586B true CN113300586B (en) 2022-04-01

Family

ID=77328025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110649943.7A Active CN113300586B (en) 2021-06-10 2021-06-10 Power tube soft start circuit applied to power management chip

Country Status (1)

Country Link
CN (1) CN113300586B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271680A (en) * 1997-03-26 1998-10-09 Rohm Co Ltd Power supply circuit
CN1627224A (en) * 2003-12-10 2005-06-15 精工电子有限公司 Switching regulator
TW200937154A (en) * 2008-02-19 2009-09-01 Realtek Semiconductor Corp Soft start apparatus
CN102263504A (en) * 2010-05-26 2011-11-30 索尼公司 Power supply circuit, integrated circuit device, solid-state imaging apparatus, and electronic apparatus
CN103488231A (en) * 2012-12-14 2014-01-01 威盛电子股份有限公司 Soft start circuit and voltage supplier
CN103529890A (en) * 2012-07-06 2014-01-22 国民技术股份有限公司 Soft start device and method
CN103631303A (en) * 2013-12-01 2014-03-12 西安电子科技大学 Soft starting circuit for voltage-stabilized power supply chip
CN103744463A (en) * 2013-11-30 2014-04-23 成都岷创科技有限公司 Variable reference power supply capable of detecting duty ratio
CN104135146A (en) * 2014-07-29 2014-11-05 广州金升阳科技有限公司 Soft starting method and circuit
CN105490515A (en) * 2016-01-11 2016-04-13 中国电子科技集团公司第十研究所 Starting circuit with nF-stage capacitance load
CN105515363A (en) * 2014-09-24 2016-04-20 原景科技股份有限公司 Power supply circuit and soft starting circuit thereof
CN208581165U (en) * 2018-07-27 2019-03-05 武汉韦尔半导体有限公司 A kind of soft starting circuit suitable for Switching Power Supply
CN209233535U (en) * 2019-01-18 2019-08-09 歌尔科技有限公司 A kind of low-power consumption power supply circuit and electronic equipment
CN210225370U (en) * 2019-09-04 2020-03-31 青岛中科英泰商用系统股份有限公司 MOS opens circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652889B (en) * 2017-07-14 2019-03-01 通嘉科技股份有限公司 High-voltage startup circuit and high-voltage charging control method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271680A (en) * 1997-03-26 1998-10-09 Rohm Co Ltd Power supply circuit
CN1627224A (en) * 2003-12-10 2005-06-15 精工电子有限公司 Switching regulator
TW200937154A (en) * 2008-02-19 2009-09-01 Realtek Semiconductor Corp Soft start apparatus
CN102263504A (en) * 2010-05-26 2011-11-30 索尼公司 Power supply circuit, integrated circuit device, solid-state imaging apparatus, and electronic apparatus
CN103529890A (en) * 2012-07-06 2014-01-22 国民技术股份有限公司 Soft start device and method
CN103488231A (en) * 2012-12-14 2014-01-01 威盛电子股份有限公司 Soft start circuit and voltage supplier
CN103744463A (en) * 2013-11-30 2014-04-23 成都岷创科技有限公司 Variable reference power supply capable of detecting duty ratio
CN103631303A (en) * 2013-12-01 2014-03-12 西安电子科技大学 Soft starting circuit for voltage-stabilized power supply chip
CN104135146A (en) * 2014-07-29 2014-11-05 广州金升阳科技有限公司 Soft starting method and circuit
CN105515363A (en) * 2014-09-24 2016-04-20 原景科技股份有限公司 Power supply circuit and soft starting circuit thereof
CN105490515A (en) * 2016-01-11 2016-04-13 中国电子科技集团公司第十研究所 Starting circuit with nF-stage capacitance load
CN208581165U (en) * 2018-07-27 2019-03-05 武汉韦尔半导体有限公司 A kind of soft starting circuit suitable for Switching Power Supply
CN209233535U (en) * 2019-01-18 2019-08-09 歌尔科技有限公司 A kind of low-power consumption power supply circuit and electronic equipment
CN210225370U (en) * 2019-09-04 2020-03-31 青岛中科英泰商用系统股份有限公司 MOS opens circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DC-DC转换器高集成度片上软启动电路;杨骁等;《电子科技大学学报》;20180131;第47卷(第1期);第30-36页 *
降压变换器片内集成软启动电路设计;袁冰等;《半导体学报》;20081031;第29卷(第10期);第2069-2073页 *

Also Published As

Publication number Publication date
CN113300586A (en) 2021-08-24

Similar Documents

Publication Publication Date Title
CN202309659U (en) Power input load power-on slow starter
CN100547680C (en) The mid point potential generating circuit that in semiconductor devices, uses
CN101295189A (en) Voltage regulating circuit and method for providing regulated output voltage
US7656632B2 (en) Electronic circuit including a step-up circuit and electric appliance comprising the same
CN205283396U (en) Exchange to direct -current converter
TW202119744A (en) Multi-level converter with voltage divider for pre-charging flying capacitor
JP2015188300A (en) Dc-dc converter
CN113472032A (en) Charging control circuit, charging control system and charger
CN109412395B (en) Power supply starting adjusting circuit and power supply circuit
CN103176496A (en) Voltage regulator
CN113300586B (en) Power tube soft start circuit applied to power management chip
CN112564470B (en) Ultralow-voltage self-starting control circuit for DC-DC converter
CN110445364B (en) For a 1: soft start and drive circuit of 2-direction charge pump and realization method thereof
JP2013255002A (en) Undervoltage lockout circuit
CN208835729U (en) A kind of power-switching circuit with counnter attack connection function, integrated circuit
US11929667B2 (en) Switching converter and low-voltage startup circuit thereof
CN115065226A (en) Soft start circuit for DC-DC converter
CN114784927A (en) Power supply circuit for saving chip layout area
CN116137488A (en) Soft start method applied to switch capacitor converter circuit of rechargeable battery
CN113258548A (en) Power supply circuit and power supply system
CN113467566B (en) Ramp voltage generating circuit, chip and electronic equipment
CN115333356B (en) Soft start circuit and switching power supply
CN220795346U (en) Bootstrap capacitor undervoltage protection detection circuit
CN111158424B (en) Quick start circuit and method
CN212726845U (en) Ammeter switching power supply circuit with soft start circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant