CN113299734A - 一种氮化镓晶体管器件及其制备方法 - Google Patents

一种氮化镓晶体管器件及其制备方法 Download PDF

Info

Publication number
CN113299734A
CN113299734A CN202110419515.5A CN202110419515A CN113299734A CN 113299734 A CN113299734 A CN 113299734A CN 202110419515 A CN202110419515 A CN 202110419515A CN 113299734 A CN113299734 A CN 113299734A
Authority
CN
China
Prior art keywords
layer
gan
algan
algan layer
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110419515.5A
Other languages
English (en)
Other versions
CN113299734B (zh
Inventor
张辉
林科闯
孙希国
刘胜厚
蔡仙清
卢益锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Sanan Integrated Circuit Co Ltd
Original Assignee
Xiamen Sanan Integrated Circuit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Sanan Integrated Circuit Co Ltd filed Critical Xiamen Sanan Integrated Circuit Co Ltd
Priority to CN202110419515.5A priority Critical patent/CN113299734B/zh
Publication of CN113299734A publication Critical patent/CN113299734A/zh
Application granted granted Critical
Publication of CN113299734B publication Critical patent/CN113299734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种氮化镓晶体管器件及其制备方法,包括由下至上设置的衬底、GaN层、AlGaN层和源漏栅电极结构,源极、漏极设于AlGaN层两侧,栅极设于源极和漏极之间,其特征在于:该AlGaN层的上表面氧化形成若干相互平行且间隔分布的隔离道,隔离道长度方向一端与漏极相连,另一端与源极间隔设置,栅极设于AlGaN层上表面,其长度方向与隔离道相互垂直。本发明通过氧化AlGaN的方式实现纳米沟道,无需蚀刻避免刻蚀引入的均匀性、重复性和损伤的风险,能有效减小寄生电容的影响,提高器件的频率特性。

Description

一种氮化镓晶体管器件及其制备方法
技术领域
本发明涉及半导体器件领域,特别是指一种氮化镓晶体管器件及其制备方法。
背景技术
作为重要的第三代宽禁带半导体材料,氮化镓(GaN)禁带宽度大(3.4eV),击穿场强高(>3MV/cm),AlGaN/GaN异质结中的二维电子气(2DEG)浓度高(>1013cm-2),电子饱和速度高(2.8x107cm/s),且GaN材料的化学惰性和温度稳定性好,因此,AlGaN/GaN高电子迁移率晶体管(HEMT)能够获得很高的击穿电压、功率密度以及较高的工作频率,且开关损耗非常小。
传统的GaN器件多为平面结构,也有报道一些其他的结构如纳米沟道器件,纳米沟道器件有很多优势,如单条沟道中的电流相比传统器件小得多,所以散热要比传统器件好,可以很好的抑制传统异质结场效应晶体管中存在的自热效应,目前纳米沟道器件的实现方法大多是采用蚀刻的方式实现。
例如一种基于横向沟道调制的GaN基增强型场效应晶体管,自下而上包括衬底、AlN成核层、GaN缓冲层和AlGaN势垒层,AlGaN势垒层的两端设有源电极和漏电极,AlGaN势垒层和GaN缓冲层上均设有多条纳米线沟道,沟道之间通过隔离区隔开,AlGaN势垒层上设有凹槽栅电极等。该多条纳米线沟道是通过在AlGaN势垒层表面用电子束光刻机光刻源极与漏极之间的有源区,形成由条状隔离区图形和条状纳米线沟道图形按周期性排列的图案。这种方式会引入蚀刻损伤,对工艺的稳定性与重复性要求极高,同时,蚀刻损伤带来的沟道侧壁2DEG的耗尽,使得实际器件的沟道宽度无法得到有效的控制。
发明内容
本发明的主要目的在于克服现有技术中的GaN器件的纳米沟道通常采用蚀刻的方式实现,工艺要求极高且带来了蚀刻损伤的缺陷,提出一种氮化镓晶体管器件及其制备方法,通过氧化AlGaN的方式实现纳米沟道,无需蚀刻避免刻蚀引入的均匀性、重复性和损伤的风险,能有效减小寄生电容的影响,提高器件的频率特性。
本发明采用如下技术方案:
一种氮化镓晶体管器件,包括由下至上设置的衬底、GaN层、AlGaN层和源漏栅电极结构,源极、漏极设于AlGaN层两侧,栅极设于源极和漏极之间,其特征在于:该AlGaN层的上表面氧化形成若干相互平行且间隔分布的隔离道,隔离道长度方向一端与漏极相连,另一端与源极间隔设置,栅极设于AlGaN层上表面,其长度方向与隔离道相互垂直。
优选的,所述隔离道的宽度范围:1nm-1000nm。
优选的,所述隔离道的厚度大于1nm。
优选的,所述隔离道为Ga2O3。
优选的,还包括有钝化层,该钝化层沉积于所述AlGaN层表面,所述栅极贯穿钝化层与AlGaN层欧姆接触。
优选的,所述衬底为硅、碳化硅或蓝宝石。
优选的,所述GaN层包括有GaN缓冲层和GaN沟道层,GaN缓冲层生长于衬底表面,该GaN沟道生长于GaN缓冲层表面且与所述AlGaN层形成所述AlGaN/GaN异质结。
一种氮化镓晶体管器件的制备方法,其特征在于:包括如下步骤
1)在衬底上依次生长GaN层和AlGaN层,该GaN层和AlGaN层形成有AlGaN/GaN异质结;
2)在AlGaN层上定义有源区,在有源区两侧制作源极和漏极;
3)在AlGaN层表面定义出相互平行且间隔分布的隔离道区域,将隔离道区域热氧化成Ga2O3,未氧化部分被分隔为若干纳米沟道,该纳米沟道与隔离道为交替排列;
4)在AlGaN层表面定义出栅极区域,并制作栅极。
优选的,步骤3)中,沉积SiN或SiO2覆盖AlGaN层上表面,形成掩膜,刻蚀开口定义出隔离道区域,热氧化条件为:温度范围650℃-850℃,气体包括O2和N2,时间为20-30min。
优选的,步骤4)中,先采用光刻技术在纳米沟道和隔离道表面定义出栅极区域,再采用金属蒸发方法制备栅极金属,剥离完成后形成栅极。
由上述对本发明的描述可知,与现有技术相比,本发明具有如下有益效果:
1、本发明的器件,将AlGaN层局部热氧化形成若干平行间隔分布的隔离道,未氧化部分构成若干平行间隔分布的纳米沟道,该纳米沟道与隔离道为交替排列,避免刻蚀引入的均匀性、重复性和损伤的风险,能有效减小寄生电容的影响,提高器件的频率特性。
2、本发明的器件,源极和漏极之间热氧化形成的纳米沟道,单条沟道中的电流相比穿传统器件小得多,所以散热要比传统器件好,可以很好的抑制传统异质结场效应晶体管中存在的自热效应,同时源极附近的GaN和AlGaN并未被氧化,使得器件在工作状态下有更大的电流驱动能力。
3、本发明的方法,采用热氧化工艺在AlGaN层上制作隔离道和纳米沟道,无需进行刻蚀,工艺流程更为简单,减少刻蚀损伤,且改善器件内部的电场分布,形成一种调控器件内部电场的GaN器件技术,提高器件的击穿电压,抑制了电流崩塌。
4、本发明还设置有钝化层,用于保护EPI表面,减小漏电、降低界面太、增大栅压摆幅等。
附图说明
图1为本发明结构图(无钝化层);
图2为本发明俯视图(无钝化层);
图3为本发明剖视图(无钝化层);
图4为本发明剖视图(有钝化层);
图5为本发明方法流程图;
其中:
10、衬底,20、GaN层,30、AlGaN层,31、纳米沟道,32、隔离道,40、钝化层,50、源极,60、漏极,70、栅极。
以下结合附图和具体实施例对本发明作进一步详述。
具体实施方式
以下通过具体实施方式对本发明作进一步的描述。
参见图1,本发明提出一种氮化镓晶体管器件,包括由下至上设置的衬底10、GaN层20、AlGaN层30和源漏栅电极结构,该GaN层20和AlGaN层30之间形成有AlGaN/GaN异质结,该源极50和漏极60与AlGaN层30欧姆接触,该AlGaN层30的源极50和漏极60之间局部热氧化形成若干平行间隔分布的隔离道32,隔离道32长度方向一端与漏极60相连,另一端与源极50间隔设置,栅极70设于AlGaN层30上表面,其长度方向与隔离道32相互垂直。其中,未氧化部分被分隔成平行间隔分布的纳米沟道31,该纳米沟道31与隔离道32为交替排列。
本发明中,衬底10、GaN层20和AlGaN层30构成的外延结构为传统的AlGaN/GaN的结构。该衬底10可采用硅、碳化硅或蓝宝石,衬底的厚度可根据需要设定,例如可为500μm,但不限于此。GaN层20的厚度大于AlGaN层30的厚度。
其中,GaN层20可以是单层结构,也可以是多层结构。例如:GaN层20包括有GaN缓冲层和GaN沟道层,GaN缓冲层生长于衬底表面,其厚度范围1.5μm~2μm,该GaN沟道生长于GaN缓冲层表面,其厚度范围80nm~120nm。该AlGaN层30作为势垒层可与GaN缓冲层形成AlGaN/GaN异质结。
源极50和漏极60位于AlGaN层30两侧,栅极70位于源极50和漏极60之间,可靠近源极50。其中,AlGaN层30两侧可以是器件左右两侧边缘或靠近边缘处。该栅极70、源极50和漏极60为采用金属材质制作的电极结构。
参见图2、图3,本发明中,AlGaN层30的源极50和漏极60之间局部热氧化成Ga2O3形成的隔离道32,该隔离道32表面与AlGaN层30未氧化部分的纳米沟道表面平齐,且交替分布。隔离道32和纳米沟道31为条状,若干隔离道32的长度可相同或不同,优选为相同。隔离道32的数量可根据器件的尺寸设置,不作限定。
由于AlGaN层30表面局部薄薄一层被氧化后,氧化处的二维电子气就会消失,因此隔离道32的厚度大于1nm,小于AlGaN层30的厚度。隔离道32的宽度大于1nm,优选为1nm-1000nm,其长度小于源极50和漏极60之间的距离。纳米沟道31的宽度可以是1nm到微米量级均可以,优选为1nm~1μm。纳米沟道31的长度可与隔离道32的长度相同或不同,其数量、厚度与隔离道32的数量和厚度等相关。
本发明中,源极50和漏极60之间热氧化后形成的纳米沟道32,单条沟道中的电流相比穿传统器件小得多,所以散热要比传统器件好,可以很好的抑制传统异质结场效应晶体管中存在的自热效应。隔离道32与源极50之间的间隔处并未被氧化,则使得器件在工作状态下有更大的电流驱动能力。
参见图4,本发明还可设置钝化层40,该钝化层40沉积于AlGaN层30表面(包括纳米沟道31表面和隔离道32表面)。栅极70贯穿钝化层与AlGaN层30欧姆接触以保护EPI表面,减小漏电、降低界面太、增大栅压摆幅等。
本发明还提出一种氮化镓晶体管器件制备方法,参见图5,用于制作上述的氮化镓晶体管器件,包括如下步骤:
1)在衬底上依次生长GaN层20和AlGaN层30,该GaN层20和AlGaN层30之间形成有AlGaN/GaN异质结。
具体的,GaN层20包括有GaN缓冲层和GaN沟道层,在特定的工艺条件下,先在衬底的表面生长GaN缓冲层,在GaN缓冲层表面生长GaN沟道层,而后,在GaN沟道层表面生长AlGaN层30。GaN沟道层和AlGaN势垒层形成AlGaN/GaN异质结,AlGaN/GaN异质结界面处可形成二维电子气。
采用离子注入平面隔离技术实现晶体管器件间隔离,或者也可采用台面隔离工艺实现。
2)在AlGaN层30上定义于出有源区,并采用高温欧姆技术在有源区两侧制作源极50和漏极60以分别与AlGaN层30欧姆接触。
该步骤中,先采用光刻技术定义出源极区域和漏极区域,再采用金属蒸发的方法制备欧姆金属,随后进行高温退火工艺使得金属与AlGaN/GaN异质结的二维电子气形成良好的欧姆接触。该步骤中,对AlGaN层30两侧进行光刻时,其刻蚀后凹槽或孔的深度到达AlGaN/GaN异质结处,以便于形成欧姆接触即可,不作限定。其中,AlGaN层30两侧可以是器件左右两侧边缘或靠近边缘处,源极50和漏极60还可以采用其他常规的工艺方法制作。
3)在AlGaN层30表面定义出相互平行且间隔分布的隔离道区域,将隔离道区域热氧化成Ga2O3,形成若干平行间隔分布的隔离道32,未氧化部分被分隔成纳米沟道31,该纳米沟道31与隔离道32为交替排列。
其中,可在AlGaN层30表面覆盖遮蔽层形成掩膜,刻蚀开口定义出隔离道区域,使得AlGaN层30的隔离道区域外露。采用热氧化工艺对外露的隔离道区域进行热氧化,即通过高温高压的炉管内通入氧气,使暴露出的隔离道区域的AlGaN氧化,并非掺杂。遮蔽层可选材料为SiN、SiO2,热氧化条件为:温度650℃~850℃,气体包括O2和N2,时间为20~30min。该步骤中,通过控制氧化的气体浓度、氧化时间以及遮蔽层形貌来调节氧化的宽度和厚度。
采用该步骤制作的隔离道32的厚度大于1nm,小于AlGaN层30的厚度。隔离道32的宽度大于1nm,优选为1nm~1000nm,其长度小于源极50和漏极60之间的距离。纳米沟道31的宽度可以是1nm到微米量级均可以,优选为1nm~1μm。
4)在AlGaN层30表面(包括纳米沟道31和隔离道32表面)定义出栅极区域,并制作栅极70。
该步骤中,先采用光刻技术在AlGaN层30表面定义出栅极区域,再采用金属蒸发方法制备栅极金属,剥离完成后形成栅极70。
本发明还可包括在AlGaN层30外露表面(隔离道32和纳米沟道31外露表面)沉积钝化层40的步骤。本发明通过氧化AlGaN的方式实现纳米沟道,无需蚀刻避免刻蚀引入的均匀性、重复性和损伤的风险,能有效减小寄生电容的影响,提高器件的频率特性。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。

Claims (10)

1.一种氮化镓晶体管器件,包括由下至上设置的衬底、GaN层、AlGaN层和源漏栅电极结构,源极、漏极设于AlGaN层两侧,栅极设于源极和漏极之间,其特征在于:该AlGaN层的上表面氧化形成若干相互平行且间隔分布的隔离道,隔离道长度方向一端与漏极相连,另一端与源极间隔设置,栅极设于AlGaN层上表面,其长度方向与隔离道相互垂直。
2.如权利要求1所述的一种氮化镓晶体管器件,其特征在于:所述隔离道的宽度范围:1nm-1000nm。
3.如权利要求1所述的一种氮化镓晶体管器件,其特征在于:所述隔离道的厚度大于1nm。
4.如权利要求1所述的一种氮化镓晶体管器件,其特征在于:所述隔离道为Ga2O3。
5.如权利要求1所述的一种氮化镓晶体管器件,其特征在于:还包括有钝化层,该钝化层沉积于所述AlGaN层表面,所述栅极贯穿钝化层与AlGaN层欧姆接触。
6.如权利要求1所述的一种氮化镓晶体管器件,其特征在于:所述衬底为硅、碳化硅或蓝宝石。
7.如权利要求1所述的一种氮化镓晶体管器件,其特征在于:所述GaN层包括有GaN缓冲层和GaN沟道层,GaN缓冲层生长于衬底表面,该GaN沟道生长于GaN缓冲层表面且与所述AlGaN层形成所述AlGaN/GaN异质结。
8.一种如权利要求1至7中任意一项所述氮化镓晶体管器件的制备方法,其特征在于:包括如下步骤
1)在衬底上依次生长GaN层和AlGaN层,该GaN层和AlGaN层形成有AlGaN/GaN异质结;
2)在AlGaN层上定义有源区,在有源区两侧制作源极和漏极;
3)在AlGaN层表面定义出相互平行且间隔分布的隔离道区域,将隔离道区域热氧化成Ga2O3,未氧化部分被分隔为若干纳米沟道,该纳米沟道与隔离道为交替排列;
4)在AlGaN层表面定义出栅极区域,并制作栅极。
9.如权利要求8所述的一种氮化镓晶体管器件制备方法,其特征在于:步骤3)中,沉积SiN或SiO2覆盖AlGaN层上表面,形成掩膜,刻蚀开口定义出隔离道区域,热氧化条件为:温度范围650℃-850℃,气体包括O2和N2,时间为20-30min。
10.如权利要求8所述的一种氮化镓晶体管器件制备方法,其特征在于:步骤4)中,先采用光刻技术在纳米沟道和隔离道表面定义出栅极区域,再采用金属蒸发方法制备栅极金属,剥离完成后形成栅极。
CN202110419515.5A 2021-04-19 2021-04-19 一种氮化镓晶体管器件及其制备方法 Active CN113299734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110419515.5A CN113299734B (zh) 2021-04-19 2021-04-19 一种氮化镓晶体管器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110419515.5A CN113299734B (zh) 2021-04-19 2021-04-19 一种氮化镓晶体管器件及其制备方法

Publications (2)

Publication Number Publication Date
CN113299734A true CN113299734A (zh) 2021-08-24
CN113299734B CN113299734B (zh) 2022-09-06

Family

ID=77319919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110419515.5A Active CN113299734B (zh) 2021-04-19 2021-04-19 一种氮化镓晶体管器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113299734B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631960A (zh) * 2023-05-15 2023-08-22 江苏能华微电子科技发展有限公司 GaN HEMT器件制备方法及GaN HEMT器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183598A1 (en) * 2012-12-28 2014-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same
CN107958928A (zh) * 2017-11-20 2018-04-24 西安电子科技大学 一种基于横向沟道调制的增强型场效应晶体管及其制作方法
CN109920850A (zh) * 2017-12-12 2019-06-21 中国科学院苏州纳米技术与纳米仿生研究所 基于ⅲ族氧化物钝化的增强型晶体管及其制作方法
CN112201689A (zh) * 2019-07-08 2021-01-08 中国科学院苏州纳米技术与纳米仿生研究所 基于ⅲ族氮化物异质结的场效应晶体管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183598A1 (en) * 2012-12-28 2014-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same
CN107958928A (zh) * 2017-11-20 2018-04-24 西安电子科技大学 一种基于横向沟道调制的增强型场效应晶体管及其制作方法
CN109920850A (zh) * 2017-12-12 2019-06-21 中国科学院苏州纳米技术与纳米仿生研究所 基于ⅲ族氧化物钝化的增强型晶体管及其制作方法
CN112201689A (zh) * 2019-07-08 2021-01-08 中国科学院苏州纳米技术与纳米仿生研究所 基于ⅲ族氮化物异质结的场效应晶体管及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631960A (zh) * 2023-05-15 2023-08-22 江苏能华微电子科技发展有限公司 GaN HEMT器件制备方法及GaN HEMT器件
CN116631960B (zh) * 2023-05-15 2024-04-05 江苏能华微电子科技发展有限公司 GaN HEMT器件制备方法及GaN HEMT器件

Also Published As

Publication number Publication date
CN113299734B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
US20080176366A1 (en) Method for fabricating AIGaN/GaN-HEMT using selective regrowth
US9257535B2 (en) Gate-all-around metal-oxide-semiconductor transistors with gate oxides
WO2019101009A1 (zh) 一种SiC基UMOSFET的制备方法及SiC基UMOSFET
US9455315B2 (en) High-voltage nitride device and manufacturing method thereof
CN105355657A (zh) 多沟道鳍式结构的绝缘栅AlGaN/GaN高电子迁移率晶体管
JP3449116B2 (ja) 半導体装置
CN105762078A (zh) GaN基纳米沟道高电子迁移率晶体管及制作方法
CN105280696A (zh) 多沟道鳍式结构的AlGaN/GaN高电子迁移率晶体管
CN112635544B (zh) 具有偶极子层的增强型AlGaN-GaN垂直型超结HEMT及其制备方法
CN107785435A (zh) 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法
CN105448962A (zh) 多沟道侧栅结构的AlGaN/GaN高电子迁移率晶体管
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
WO2022199309A1 (zh) 具有p-GaN盖帽层的HEMT器件及制备方法
CN206116406U (zh) 一种具有复合势垒层结构的常关型iii‑v异质结场效应晶体管
CN113299734B (zh) 一种氮化镓晶体管器件及其制备方法
CN114496789A (zh) 一种增强型晶体管的制备方法及增强型晶体管
CN112397587B (zh) 一种常开型高电子迁移率晶体管及其制造方法
CN205564759U (zh) 一种新型增强型iii-v异质结场效应晶体管
CN115579290B (zh) 一种p-GaN增强型器件制备方法
CN109817523A (zh) 电荷平衡结构、具有电荷平衡结构的功率器件及制作方法
CN112420828A (zh) 一种常闭型高电子迁移率晶体管及其制造方法
CN112420829A (zh) 一种常闭型硅衬底高电子迁移率晶体管及其制造方法
JP6866619B2 (ja) 半導体装置
CN111415996B (zh) 核壳式结构GaN结型场效应管器件及其制备方法
CN114843187B (zh) 一种GaN基多纳米沟道高电子迁移率晶体管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant