CN113296176B - 一种表面增强拉曼散射基底以及制备方法 - Google Patents

一种表面增强拉曼散射基底以及制备方法 Download PDF

Info

Publication number
CN113296176B
CN113296176B CN202110436134.8A CN202110436134A CN113296176B CN 113296176 B CN113296176 B CN 113296176B CN 202110436134 A CN202110436134 A CN 202110436134A CN 113296176 B CN113296176 B CN 113296176B
Authority
CN
China
Prior art keywords
film
substrate
gold nano
nano
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110436134.8A
Other languages
English (en)
Other versions
CN113296176A (zh
Inventor
侯玉欣
马庆
罗向东
余洋
陈明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Dowell Photonics Technology Co ltd
Original Assignee
Jiangsu Dowell Photonics Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Dowell Photonics Technology Co ltd filed Critical Jiangsu Dowell Photonics Technology Co ltd
Priority to CN202110436134.8A priority Critical patent/CN113296176B/zh
Publication of CN113296176A publication Critical patent/CN113296176A/zh
Application granted granted Critical
Publication of CN113296176B publication Critical patent/CN113296176B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种表面增强拉曼散射基底以及这种基底的制备方法。先在柔性高分子基底上生长一层金纳米薄膜,通过双向机械拉伸的方法使得金薄膜随着高分子的伸长产生规则均匀的裂纹。随后,将具有拉伸微结构的金薄膜转移到干净的玻璃基底上并在其上面生长一层均匀致密的SnSe2纳米片。这样的结构结合了传统金属SERS基底具有的优点,即金属尖端有热点,增强了局域电场;又结合了半导体SERS基底的优点,能够避免金属SERS基底吸附能力弱而团聚导致表面不均匀,此外二维材料SnSe2的比表面积大,结构具有限光作用,能将光限制在结构内。本发明结合了半导体SERS基底以及传统金属基底的优势,具有增强拉曼散射的作用。

Description

一种表面增强拉曼散射基底以及制备方法
技术领域
本发明属于拉曼光谱应用领域,尤其涉及到一种表面增强拉曼散射基底以及制备方法。
背景技术
光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。
拉曼光谱技术的优越性在于可以提供快速、简单、可重复、且更重要的是无损伤的定性定量的分析,无需样品准备,样品可以直接通过光纤探头或者玻璃、石英和光纤测量。拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。因此,利用拉曼效应对分子进行分析已经是一种非常有用且可靠的科学分析手段。但拉曼光谱灵敏度较低,有时由于信号太弱或者样品被污染导致采集不到良好有用的型号。
表面增强拉曼散射(Surface-Enhanced Raman Scattering,简称SERS)克服了拉曼光谱灵敏度低的缺点,可以获得常规拉曼光谱所不易得到的结构信息,被广泛用于表面研究、吸附界面表面状态研究、生物大小分子的界面取向及构型、构象研究、结构分析等,可以有效分析化合物在界面的吸附取向、吸附态的变化、界面信息等。
SERS基底的制备一直是SERS技术最重要的研究领域。而且对于扩大 SERS的研究范围和应用领域起着重要的作用。利用日益成熟的纳米材料的制备技术,已经可以获得颗粒形状和大小可以很好控制的纳米颗粒,来增强拉曼效应。采用具有光捕获结构的半导体材料作为表面增强拉曼光谱(SERS)活性衬底受到越来越多的关注,其中电磁波的多次反射和散射可以提高增强因子。然而,这些半导体SERS活性基底的制备通常需要复杂的过程,而且这些方法通常会导致颗粒/片的不均匀和孤立,这在满足高性能和可靠的SERS基底的实际需求方面具有根本的困难。
此外,具有特性几何形状与纳米尺度的材料也大范围的应用在SERS基底上,通过将材料图案精确定义成具有几何形状与纳米尺度的特征尺寸的SERS基底有着多种制备工艺,电子束光刻(EBL)、聚焦离子束(FIB)、和纳米压印光刻(NIL) 已经主导了具有可控形状和尺寸的微/纳米结构的制造。然而,为了满足日益增长的实际应用需求,这些传统技术从根本上受到其复杂的程序、长时间处理和高制造成本的限制。
发明内容
有鉴于此,本发明提出了一种表面增强拉曼散射基底以及制备方法,可以高效率、高灵敏度的提供拉曼光谱测试。本发明将在柔性聚合物基底上沉积一层纳米金薄膜,再通过聚合物冷拉方法来实现金薄膜层的纳米图案。再在此基础上,本发明继续沉积一层具有光捕获结构的半导体材料,从而实现高灵敏度的、高效率的、可靠的表面增强拉曼散射测试。
为了实现上述目的,本发明采用如下技术方案:
本发明提供了一种表面增强拉曼散射基底,包括支撑衬底,以及位于支撑衬底上的功能层;所述的功能层为具有微结构的金纳米薄膜以及在其上生长的 SnSe2纳米片;所述的金纳米薄膜上具有均匀的裂纹,SnSe2纳米片垂直生长在金纳米薄膜上。其金微结构结合SnSe2异质结垂直阵列功能可以增强电场,并提供探针分子吸附位点和增强限光效应,有利于增强基底SERS活性。
优选的,所述的支撑衬底为刚性衬底,可以是硅片、玻璃、刚玉等。
本发明还提供了一种上述表面增强拉曼散射基底的制备方法,包括以下步骤:
(1)在柔性PEI衬底上利用电子束蒸镀金纳米薄膜,蒸镀温度为25-60℃;蒸镀结束后在130~160℃下干燥20-40min;
(2)由机械拉伸设备双向拉伸镀有金纳米薄膜的PEI衬底,形成具有均匀裂纹的微结构;将微结构转移到刚性支撑衬底上;
(3)利用分子束外延设备在具有均匀裂纹的微结构金纳米薄膜上垂直生长 SnSe2纳米片阵列。
优选的,由机械拉伸设备双向拉伸镀有金纳米薄膜的PEI衬底时,拉伸速度为0.01~0.02mm/s,优选为0.02mm/s;拉伸时间1~60min。
优选的,步骤(1)蒸镀的金纳米薄膜的厚度为10~100nm,进一步优选 30~50nm。
优选的,金纳米薄膜的生长时间为3~30min,进一步优选5~10min。
优选的,步骤(3)制备的SnSe2纳米片的厚度为20~30nm,高为80~120μm。
优选的,所述的SnSe2纳米片的生长时间为1~30min,优选为5~20min。
优选的,步骤(2)中由机械拉伸设备双向拉伸镀有金纳米薄膜的PEI衬底,包括:
(2.1)x方向拉伸镀有金纳米薄膜的PEI衬底,使得PEI衬底经过一个颈缩过程,并通过表面粘附力对金纳米薄膜施加应力,当应力超过机械断裂强度时,金纳米薄膜破裂成条状;
(2.2)y方向继续拉伸金纳米薄膜破裂成条状的PEI衬底,以使得金纳米薄膜产生二维的微/纳米表面图案。
优选的,利用分子束外延设备在具有均匀裂纹的微结构金纳米薄膜上垂直生长SnSe2纳米片阵列时,微结构金纳米薄膜、硒源和锡源的温度分别为250-300℃, 215-250℃,1100-1120℃。
本发明具备的有益效果是:
(1)本发明的基底制备方法简单实用,不需要电子束刻蚀光刻等复杂的工艺,通过简单的拉伸工艺,在柔性热塑性薄膜上实现了大面积纳米图纹。通过改变纳米薄膜的厚度和第二次机械拉伸,可以很好地控制纳米图形的大小和排列,金纳米薄膜其SERS增强能力强、灵敏度高、重现性好。
(2)本发明通过分子束外延生长的SnSe2纳米片具有尺寸大、均匀度高、测量限域高等优点,结合了纳米图案金薄膜对于SERS基底的增强以及分子束外延生长的SnSe2纳米片用于SERS增强的优势,能够避免金属SERS基底吸附能力弱而团聚导致表面不均匀的问题。此外二维材料SnSe2的比表面积大,结构具有限光作用,能将光限制在结构内,具有较高的稳定性和实用性。
其中,金纳米层与二维材料SnSe2的位置不可替换,传统的将金沉积在SnSe2表面的方式相当于将SnSe2结构作为了金的沉积模板,会将半导体的特征覆盖,达不到金属+半导体对于SERS基底的增强效果。
(3)本发明通过简单的拉伸工艺,使得金膜破裂成小块的尺寸可控,界面剪切强度与条带宽度W的关系可由公式求得:
Figure BDA0003033160570000041
其中,E2D为面内刚度,Г为断裂韧性,h为薄膜厚度,W为条带的平均最小宽度由此可知,界面剪切强度越大,W越小,相对的破碎面积更小。
附图说明
图1是本发明实施例所得的金纳米基底被横竖向机械拉伸的示意图;
图2是本发明提出的表面增强拉曼散射基底结构示意图;
图3是金纳米薄膜基底被拉伸后得到的电镜图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
实施例1
在柔性PEI聚合物基底上沉积一层金。采用电子束蒸发器在厚度为125微米、长度为10厘米,宽度为10厘米、表面光滑的PEI薄膜上沉积一层厚度20纳米的金纳米薄膜,使其变为一块金/PEI薄膜,沉积速率为
Figure BDA0003033160570000042
沉积时间为6 分钟,金纳米薄膜的厚度为20nm。在沉积过程中,真空室的温度保持在60℃以下,以防止PEI膜因内部应力而可能产生热膨胀或变形,从而导致金膜产生缺陷或皱纹。蒸镀结束后在150℃的烘箱中干燥30min,这样使得金纳米薄膜和PEI 结合的更强,保证了后续拉伸过程中,金纳米薄膜会随着PEI薄膜的裂纹一样产生裂纹。
如图1,使用一块金/PEI薄膜进行x方向的拉伸,拉伸速度为0.02毫米/秒,拉伸10分钟。PEI膜经过一个颈缩过程,并通过表面粘附力对金膜施加应力,当应力超过机械断裂强度时,金膜破裂成条状。
在y方向上重新拉伸制备的薄膜,以产生二维的微/纳米表面图案,拉伸速度为0.02毫米/秒。在应变诱发的内应力作用下,纳米金条会发生均匀伸长,进一步破碎成小块,得到如图3所示的碎块结构。接着,将所得到的具有微结构的金纳米膜转移到干净的玻璃基底上,该玻璃基底的大小为10厘米*10厘米,以备后续步骤使用。
如图2,在上述过程制备后的基底上生长一层SnSe2纳米片阵列结构,向所述分子束外延设备(MBE)中分别加入高纯度硒材料源和高纯度锡材料源,优选的硒源和锡源的纯度为99.99%,通过所述分子束外延设备分别加热所述硒材料源和锡材料源,并将所述硒材料源和锡材料源分别以分子束或原子束的形式喷射至所述基片上,形成SnSe2纳米片阵列结构。上述结构、硒源和锡源的温度分别 250℃,245℃,1100℃,纳米片的生长时间10分钟,厚度为20纳米,高为80 微米。
将上述制备得到的基底用于表面增强拉曼散射检测系统,SERS基底产生明显的增强效果。
实施例2
在柔性PEI聚合物基底上沉积一层金。采用电子束蒸发器在厚度为125微米、长度为10厘米,宽度为10厘米、表面光滑的PEI薄膜上沉积一层厚度40纳米的金纳米薄膜,使其变为一块金/PEI薄膜,沉积速率为
Figure BDA0003033160570000051
沉积时间为10 分钟,金纳米薄膜的厚度为40nm。在沉积过程中,真空室的温度为55℃,蒸镀结束后在160℃的烘箱中干燥20min。
使用一块金/PEI薄膜进行x方向的拉伸,拉伸速度为0.02毫米/秒,拉伸15 分钟。PEI膜经过一个颈缩过程,并通过表面粘附力对金膜施加应力,当应力超过机械断裂强度时,金膜破裂成条状。在y方向上重新拉伸制备的薄膜,以产生二维的微/纳米表面图案,拉伸速度为0.02毫米/秒。在应变诱发的内应力作用下,纳米金条会发生均匀伸长,进一步破碎成小块。接着,将所得到的具有微结构的金纳米膜转移到干净的玻璃基底上,该玻璃基底的大小为10厘米*10厘米,以备后续步骤使用。
在上述过程制备后的基底上生长一层SnSe2纳米片阵列结构,向所述分子束外延设备(MBE)中分别加入高纯度硒材料源和高纯度锡材料源,优选的硒源和锡源的纯度为99.99%,通过所述分子束外延设备分别加热所述硒材料源和锡材料源,并将所述硒材料源和锡材料源分别以分子束或原子束的形式喷射至所述基片上,形成SnSe2纳米片阵列结构。上述结构、硒源和锡源的温度分别270℃,250℃, 1100℃,纳米片的生长时间15分钟,厚度为30纳米,高为100微米。

Claims (6)

1.一种表面增强拉曼散射基底的制备方法,所述的表面增强拉曼散射基底包括支撑衬底,以及位于支撑衬底上的功能层;所述的支撑衬底为刚性衬底;所述的功能层为具有微结构的金纳米薄膜以及在其上生长的SnSe2纳米片;所述的金纳米薄膜上具有均匀的裂纹,SnSe2纳米片垂直生长在金纳米薄膜上;其特征在于,制备方法包括以下步骤:
(1)在柔性PEI衬底上利用电子束蒸镀金纳米薄膜,蒸镀温度为25-60℃;蒸镀结束后在130~160℃下干燥20-40min;
(2)由机械拉伸设备双向拉伸镀有金纳米薄膜的PEI衬底,拉伸速度为0.01~0.02mm/s,拉伸时间1~60min,形成具有均匀裂纹的微结构,包括:
(2.1)x方向拉伸镀有金纳米薄膜的PEI衬底,使得PEI衬底经过一个颈缩过程,并通过表面粘附力对金纳米薄膜施加应力,当应力超过机械断裂强度时,金纳米薄膜破裂成条状;
(2.2)y方向继续拉伸金纳米薄膜破裂成条状的PEI衬底,以使得金纳米薄膜产生二维的微/纳米表面图案;
将拉伸后的微结构转移到刚性支撑衬底上;
(3)利用分子束外延设备在具有均匀裂纹的微结构金纳米薄膜上垂直生长SnSe2纳米片阵列。
2.根据权利要求1所述的表面增强拉曼散射基底的制备方法,其特征在于,步骤(1)蒸镀的金纳米薄膜的厚度为10~100nm。
3.根据权利要求1或2所述的表面增强拉曼散射基底的制备方法,其特征在于,金纳米薄膜的生长时间为3~30min。
4.根据权利要求1所述的表面增强拉曼散射基底的制备方法,其特征在于,步骤(3)制备的SnSe2纳米片的厚度为20~30nm,高为80~120μm。
5.根据权利要求1或4所述的表面增强拉曼散射基底的制备方法,其特征在于,所述的SnSe2纳米片的生长时间为1~30min。
6.根据权利要求1所述的表面增强拉曼散射基底的制备方法,其特征在于,利用分子束外延设备在具有均匀裂纹的微结构金纳米薄膜上垂直生长SnSe2纳米片阵列时,微结构金纳米薄膜、硒源和锡源的温度分别为250-300℃,215-250℃,1100-1120℃。
CN202110436134.8A 2021-04-22 2021-04-22 一种表面增强拉曼散射基底以及制备方法 Active CN113296176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110436134.8A CN113296176B (zh) 2021-04-22 2021-04-22 一种表面增强拉曼散射基底以及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110436134.8A CN113296176B (zh) 2021-04-22 2021-04-22 一种表面增强拉曼散射基底以及制备方法

Publications (2)

Publication Number Publication Date
CN113296176A CN113296176A (zh) 2021-08-24
CN113296176B true CN113296176B (zh) 2022-12-06

Family

ID=77320050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110436134.8A Active CN113296176B (zh) 2021-04-22 2021-04-22 一种表面增强拉曼散射基底以及制备方法

Country Status (1)

Country Link
CN (1) CN113296176B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491773B (zh) * 2022-05-11 2023-06-06 南京工业大学 一种多段颈缩的银纳米线结构的拉伸方法及应用
CN114994014B (zh) * 2022-05-30 2024-09-13 大连海事大学 一种基于可拉伸薄膜的高灵敏度拉曼检测基底装置及其检测方法
CN117607121B (zh) * 2023-11-10 2024-07-30 元珵科技(北京)有限公司 一种生物组织拉曼光谱扫描专用载玻片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037976A1 (en) * 2009-08-17 2011-02-17 Yiping Zhao Flexible surface enhanced raman spectroscopy (sers) substrates, methods of making, and methods of use
CN104792766B (zh) * 2015-04-15 2017-09-29 江苏理工学院 表面增强拉曼散射基底及其制备方法
CN105891185A (zh) * 2016-04-08 2016-08-24 广东工业大学 一种贵金属微纳米结构及其制备方法和应用
WO2018186805A1 (en) * 2017-04-05 2018-10-11 National University Of Singapore Flexible surface plasmon resonance film
CN109696433A (zh) * 2019-01-30 2019-04-30 兰州理工大学 Pmma间隔的金纳米立方体与金膜复合结构低浓度检测sers基底
CN111896523A (zh) * 2020-08-28 2020-11-06 深圳先进技术研究院 表面增强拉曼散射基底及其制备方法和应用
CN112326624A (zh) * 2020-10-29 2021-02-05 山东师范大学 掺杂二维半导体纳米材料在表面拉曼散射增强中的应用

Also Published As

Publication number Publication date
CN113296176A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN113296176B (zh) 一种表面增强拉曼散射基底以及制备方法
KR101097205B1 (ko) 표면증강라만산란 분광용 기판의 제조방법
JP2013527910A (ja) 分子検出用基板を作成する方法及び装置
CN103361601A (zh) 一种制作表面增强拉曼散射基底的方法
CN111496384A (zh) 一种脆性材料表面纳米孔阵列的加工装置及方法
CN111896523A (zh) 表面增强拉曼散射基底及其制备方法和应用
WO2019072035A1 (zh) 一种电化学沉积纳米薄膜的厚度测量方法
Faggio et al. Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy
Garozzo et al. Radial junctions formed by conformal chemical doping for innovative hole-based solar cells
Muslimov et al. Ordered gold nanostructures on sapphire surfaces: Fabrication and optical investigations
Wu et al. Fabrication of large-area and highly uniform interlaced silicon grating arrays for high-performance SERS substrates
Kim et al. Effect of coupling crater structure and Ag nanoparticles on SERS enhancement
Phuc et al. Fabrication of gold nanodot array on plastic films for bio-sensing applications
CN110426381B (zh) 一种六瓣状金属纳米结构sers基底的制备方法
Tzeng et al. Silver nanoparticles SERS sensors using rapid thermal CVD nanoscale graphene islands as templates
Liu et al. Silver-decorated ZnO hexagonal nanoplate arrays as SERS-active substrates: An experimental and simulation study
CN112795870A (zh) 一种纳米链结构阵列的制备方法及应用
CN114604820A (zh) 一种厚膜材料纳米图形刻蚀方法
WO2007126165A1 (en) A method for manufacturing ultra-thin carbon supporting film
CN112921276B (zh) 一种基于2d贵金属纳米结构的sers基底的制备方法
CN111349892A (zh) 一种银叠加三角形纳米颗粒阵列及其制备方法
CN111982883A (zh) 一种石墨烯/银十六角星阵列拉曼增强基底及其制备方法
Yoshino et al. Effects of process conditions on nano-dot array formation by thermal dewetting
CN106501231B (zh) 一种基于SiC外延石墨烯的Ag颗粒拉曼增强效应的表征方法
Lin et al. Laser microsphere lens array fabrication of micro/nanostructures with tunable enhanced SERS behavior in dipole superposition Plasmon mode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant