CN111349892A - 一种银叠加三角形纳米颗粒阵列及其制备方法 - Google Patents

一种银叠加三角形纳米颗粒阵列及其制备方法 Download PDF

Info

Publication number
CN111349892A
CN111349892A CN202010213049.0A CN202010213049A CN111349892A CN 111349892 A CN111349892 A CN 111349892A CN 202010213049 A CN202010213049 A CN 202010213049A CN 111349892 A CN111349892 A CN 111349892A
Authority
CN
China
Prior art keywords
silver
layer
template
silicon wafer
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010213049.0A
Other languages
English (en)
Other versions
CN111349892B (zh
Inventor
何辉
程建祥
范璐瑶
杨金彭
曾祥华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010213049.0A priority Critical patent/CN111349892B/zh
Publication of CN111349892A publication Critical patent/CN111349892A/zh
Application granted granted Critical
Publication of CN111349892B publication Critical patent/CN111349892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种银叠加三角形纳米颗粒阵列及其制备方法,将热蒸发工艺和简单成熟的单层聚苯乙烯(PS)球模板相结合,通过对模板处理和两次银沉积,获得了银叠加三角形纳米颗粒阵列。该制备方法具有简单、绿色、重现性好和结构可调等优点,这种结构独特的银纳米颗粒阵列有望在光电等领域得到实用,比如其优异的表面增强拉曼散射性能可应用于环境有机污染物痕量检测上。

Description

一种银叠加三角形纳米颗粒阵列及其制备方法
技术领域
本发明是一种简单制备银叠加三角形纳米颗粒阵列的方法,属于贵金属微纳结构的制备领域。
背景技术
贵金属纳米粒子具有独特的光学、电学、机械和化学性质,可用于光开关、传感器、非线性光学、表面增强拉曼散射(SERS)、太阳能电池等不同的应用领域。众所周知,金属纳米颗粒的光学吸收和散射是由表面电子的集体振荡引起的,这种振荡被称为表面等离子体共振,它是由入射的电磁辐射激发的。由于表面等离子体共振(SPR)和局域表面等离子体共振(LSPR),周期性纳米结构的光学性质与其尺寸、形状、组成和周围环境密切相关。目前,研究人员对银纳米粒子的LSPR光谱进行了初步研究,系统地分析了其对纳米粒子尺寸、形状、间距的依赖关系。此外,还有纳米环阵列、纳米碗阵列等,这些纳米颗粒阵列的光学性能均依赖于形貌。因此,制备形貌各异的颗粒阵列以满足不同领域的需求是非常重要的。
化学法是制备银纳米颗粒最常用的方法,它是通过化学反应将Ag+还原,方法较为灵活多样,但颗粒容易团聚并且难以控制颗粒的尺寸分布。物理方法很早就用于银纳米颗粒制备,尽管对仪器设备要求较高,但具有产物质量高、能获得周期性阵列的优势。采用物理方法制备银纳米颗粒阵列已有很多报道,但与化学方法相比相当缺乏。
虽然现已报道多种形貌的银纳米颗粒阵列,但是这些颗粒本身都是单层的,阵列的性能如SPR、SERS等则通过改变颗粒尺寸及间距来实现,因而可用于调控的工艺参数较少,并且对性能影响较大的因素如银纳米颗粒尖端效应以及大的比表面积等仍未涉及。此外,采用模板如聚苯乙烯(PS)球是制备银纳米颗粒阵列的主要方法,其工艺路线比较简单,通常都是在银生长前后对模板进行处理或去除,然而至今未见将银生长过程与模板处理相结合的报道。
发明内容
本发明的目的是提供一种银叠加三角形纳米颗粒阵列及其制备方法。
实现本发明目的的技术方案是:一种银叠加三角形纳米颗粒阵列及其制备方法,主要步骤如下:
(1)制备单层PS球胶体薄膜;
(2)获取单层PS球模板/硅片;
(3)在单层PS球模板/硅片上采用热蒸发法沉积银;
(4)加热处理后继续沉积银;
(5)去除单层PS球模板即可获得所述的银叠加三角形纳米颗粒阵列。
较佳的,采用气-液-固相界面自组装方法制备单层PS球胶体薄膜。
具体的,将PS球(直径1 μm)悬浮液(2.5wt%)和乙醇按体积比1:1超声均匀混合,取洁净载玻片,采用气-液-固相界面自组装方法制备单层PS球胶体薄膜。
较佳的,将载有该单层PS球胶体薄膜的载玻片缓慢以45°浸入水中,将所述薄膜附着在硅片上,获得单层PS球模板/硅片。
较佳的,采用热蒸发法沉积银,沉积厚度为100 nm。
较佳的,加热处理温度为110-120℃,时间为10min-30min。
较佳的,加热处理后继续采用热蒸发法沉积银,沉积厚度为100 nm。
较佳的,通过在有机溶剂中浸泡去除单层PS球模板。
具体的,有机溶剂为CH2Cl2,浸泡时间为10 min。
与现有技术相比,本发明的创新之处在于:本发明制备的银叠加三角形纳米颗粒在结构上是独特的,相比单个三角形纳米颗粒,既增大了比表面,又增加了棱角的数量,将提高光电性能。同时,制备方法上也是新颖的,文献中已有在蒸镀银后去球得到三角形银纳米颗粒阵列的报道,而本发明则是继续加热PS球模板和蒸镀银。
本发明的优越之处在下面的附图说明和具体实施方式中将进一步阐述。
附图说明
图1为本发明制备的银叠加三角形纳米颗粒阵列的工艺流程示意图。
图2为本发明实施例1所用直径1μm的PS球模板形貌。
图3为本发明实施例1银叠加三角形纳米颗粒阵列形貌。
图4为本发明实施例1银叠加三角形纳米颗粒阵列对R6G分子的SERS图谱
图5为本发明实施例2制备的银叠加三角形纳米颗粒阵列的形貌图
图6为本发明实施例3制备的银叠加三角形纳米颗粒阵列的形貌图。
具体实施方式
本发明通过将银生长过程与模板处理相结合,获得了结构复杂的银叠加三角形纳米颗粒阵列,此阵列具有更加优异的性能。
本发明合成了银叠加三角形纳米颗粒阵列,即单个三角形颗粒上面叠加一个尺寸较小的三角形颗粒,这样一种结构的表面等离子共振更为复杂,两个三角形之间的光场耦合更多,将大大有利于一些光学性能的提高。
工艺路线如图1所示。首先,组装单层PS球模板并利用热蒸发沉积银;其次,将沉积银后的衬底再进行加热处理和沉积银;最后,去除PS球即可获得银叠加三角形纳米颗粒阵列。颗粒和阵列的结构参数可以通过工艺参数进行调控。该工艺具有简单、绿色、重现性好和可宏量制备的优点,有望得到实际应用。测试表明,银叠加三角形纳米颗粒阵列具有优异的SERS性能。
实施例1
首先,采用文献中报道的气-液-固相界面自组装方法,在洁净的载玻片上制备大尺寸单层PS胶体晶体薄膜并将其转移到硅片上。即将PS球(直径1 μm)悬浮液(2.5wt%)、乙醇按体积比1:1超声均匀混合,取洁净载玻片,在其上方加适量去离子水形成大面积水膜,抽吸PS球混合溶液约0.1mL至水膜表面,PS球自发在气液固界面自组装形成几平方厘米单层胶体晶体薄膜。接着将载有PS球胶体薄膜的载玻片缓慢以45°浸入水中,PS球胶体薄膜就能漂浮到水面,取洁净的硅片,沿水面倾斜进入,将单层胶体薄膜附着在硅片上捞起,获得单层PS球模板/硅片。其次,在PS球模板/硅片上采用热蒸发法进行第一次沉积银,热蒸发仪真空度约2×10-4pa,沉积过程中保持基片静止,沉积厚度为100nm。将沉积银之后的PS球模板/硅片在110℃下加热20min,接着以相同的热蒸发工艺参数第二次沉积银,沉积银厚度仍为100nm。最后,将二次沉积银后的PS球模板/硅片浸泡在CH2Cl2溶剂中10 min去除掉PS球模板,即可获得银叠加三角形纳米颗粒阵列。
采用日本日立公司的S-4800场发射扫描电子显微镜(FESEM)观察样品形貌。采用英国Renishwa公司的In Via激光共焦拉曼光谱仪分析样品的光学性质。
图2为本发明实施例1所用直径1μm的PS球模板形貌。如图所示,PS球呈六方紧密排列,球之间有三角形缝隙。
图 3为本发明实施例1银叠加三角形纳米颗粒阵列形貌。图3a,b对应不同放大倍数SEM像。按照图1所示工艺流程,很明显在PS球之间三角缝隙处能够沉积银,去球后可得到对应的银叠加三角形纳米颗粒阵列,阵列具有十分规则的周期性。每个颗粒都是由上下两个正三角形颗粒叠加而成,三角形三边有轻微弧度。下层颗粒(颜色较暗)尺寸较大,边长约230纳米,上层颗粒尺寸较小,边长约150纳米。上层颗粒尺寸较小是PS球被加热后中间三角缝隙变小导致的。
图4为本发明实施例1银叠加三角形纳米颗粒阵列对R6G分子的SERS图谱。曲线1和2分别对应银叠加三角形纳米颗粒阵列和银三角形纳米颗粒阵列(没有叠加)的SERS谱。可以看出银叠加三角形纳米颗粒阵列具有更大的增强能力。
实施例2
其它工艺参数与实施例1相同。区别是将PS球模板/硅片于110℃下分别加热不同时间,考察银叠加三角形纳米颗粒中上层颗粒的形貌演变。
图 5a和图5b分别对应110℃/10min和110℃/30min热处理条件下得到的银叠加三角形纳米颗粒阵列SEM像。由图可见,短的加热时间对应大的上层颗粒尺寸(图5a),长的加热时间对应小的上层颗粒尺寸(图5b)。因此,可以通过改变模板加热时间(对应PS球之间三角缝隙)调控上层三角颗粒的尺寸。
实施例3
其它工艺参数与实施例2中图5a相同。区别是将初始的(第一次银沉积之前的)PS球模板/硅片于110℃下加热10min,即为第一次模板热处理条件。
图6是第一次模板热处理(110℃/10min)后按照实施例2中图5a工艺参数(第二次模板热处理条件为110℃/10min)制备的银叠加三角形纳米颗粒阵列SEM像。可见,第一次模板热处理能够改变银叠加三角形纳米颗粒的下层颗粒的尺寸,当然上层颗粒尺寸亦随之改变。
根据上述研究结果可知:利用热蒸发银和热处理PS球模板能够制备银叠加三角形纳米颗粒阵列;工艺流程具有简单、绿色、易于宏量制备等优点,有望得到实际应用。

Claims (10)

1.一种银叠加三角形纳米颗粒阵列的制备方法,其特征在于,其步骤如下:
(1)制备单层PS球胶体薄膜;
(2)获取单层PS球模板/硅片;
(3)在单层PS球模板/硅片上采用热蒸发法沉积银;
(4)加热处理后继续沉积银;
(5)去除单层PS球模板即可获得所述的银叠加三角形纳米颗粒阵列。
2.如权利要求1所述的方法,其特征在于,在载玻片上采用气-液-固相界面自组装方法制备单层PS球胶体薄膜。
3.如权利要求1或2所述的方法,其特征在于,在载玻片上采用气-液-固相界面自组装方法制备单层PS球胶体薄膜,其具体步骤如下:将PS球悬浮液和乙醇按体积比1:1超声均匀混合,取洁净载玻片,在载玻片上采用气-液-固相界面自组装方法制备单层PS球胶体薄膜,其中,PS球的直径为1 μm,PS球悬浮液浓度为2.5wt%。
4.如权利要求1所述的方法,其特征在于,获取单层PS球模板/硅片的具体步骤如下:将载有单层PS球胶体薄膜的载玻片缓慢以45°浸入水中,将所述薄膜附着在硅片上,获得单层PS球模板/硅片。
5.如权利要求1所述的方法,其特征在于,采用热蒸发法沉积银,沉积厚度为100 nm。
6.如权利要求1所述的方法,其特征在于,加热处理温度为110-120℃,时间为10min-30min。
7.如权利要求1所述的方法,其特征在于,于110℃下加热20min处理后继续沉积银。
8.如权利要求1所述的方法,其特征在于,加热处理后继续采用热蒸发法沉积银,沉积厚度为100 nm。
9.如权利要求1所述的方法,其特征在于,通过在有机溶剂中浸泡去除单层PS球模板。
10.如权利要求1-9任一所述的方法制备的银叠加三角形纳米颗粒阵列。
CN202010213049.0A 2020-03-24 2020-03-24 一种银叠加三角形纳米颗粒阵列及其制备方法 Active CN111349892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010213049.0A CN111349892B (zh) 2020-03-24 2020-03-24 一种银叠加三角形纳米颗粒阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010213049.0A CN111349892B (zh) 2020-03-24 2020-03-24 一种银叠加三角形纳米颗粒阵列及其制备方法

Publications (2)

Publication Number Publication Date
CN111349892A true CN111349892A (zh) 2020-06-30
CN111349892B CN111349892B (zh) 2022-05-13

Family

ID=71190954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010213049.0A Active CN111349892B (zh) 2020-03-24 2020-03-24 一种银叠加三角形纳米颗粒阵列及其制备方法

Country Status (1)

Country Link
CN (1) CN111349892B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975239A (zh) * 2022-09-22 2023-04-18 江西科技师范大学 皱状纳米碗@纳米颗粒等离激元薄膜及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173376A (zh) * 2011-02-25 2011-09-07 复旦大学 高度有序的小尺寸硅基纳米坑阵列的制备方法
CN102530845A (zh) * 2012-02-14 2012-07-04 中国人民解放军国防科学技术大学 三角形金属纳米孔阵列的制备方法
CN102747320A (zh) * 2012-07-31 2012-10-24 武汉大学 贵金属纳米颗粒阵列的制备方法
CN102923647A (zh) * 2012-11-22 2013-02-13 武汉大学 间距与形貌可调控的金属纳米颗粒有序阵列的制备方法
EP2830110A1 (en) * 2013-07-22 2015-01-28 Heraeus Precious Metals GmbH & Co. KG Patterning of a composition comprising silver nanowires
CN104498881A (zh) * 2014-12-09 2015-04-08 中国科学院合肥物质科学研究院 银纳米颗粒修饰的聚丙烯腈纳米结构阵列柔性衬底的制备方法
CN108046211A (zh) * 2017-11-23 2018-05-18 中国科学院合肥物质科学研究院 一种硅基多刺状纳米锥有序阵列的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173376A (zh) * 2011-02-25 2011-09-07 复旦大学 高度有序的小尺寸硅基纳米坑阵列的制备方法
CN102530845A (zh) * 2012-02-14 2012-07-04 中国人民解放军国防科学技术大学 三角形金属纳米孔阵列的制备方法
CN102747320A (zh) * 2012-07-31 2012-10-24 武汉大学 贵金属纳米颗粒阵列的制备方法
CN102923647A (zh) * 2012-11-22 2013-02-13 武汉大学 间距与形貌可调控的金属纳米颗粒有序阵列的制备方法
EP2830110A1 (en) * 2013-07-22 2015-01-28 Heraeus Precious Metals GmbH & Co. KG Patterning of a composition comprising silver nanowires
CN104498881A (zh) * 2014-12-09 2015-04-08 中国科学院合肥物质科学研究院 银纳米颗粒修饰的聚丙烯腈纳米结构阵列柔性衬底的制备方法
CN108046211A (zh) * 2017-11-23 2018-05-18 中国科学院合肥物质科学研究院 一种硅基多刺状纳米锥有序阵列的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙丰强等: "基于二维胶体晶体刻蚀法的纳米颗粒阵列", 《物理》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975239A (zh) * 2022-09-22 2023-04-18 江西科技师范大学 皱状纳米碗@纳米颗粒等离激元薄膜及其制备方法和应用
CN115975239B (zh) * 2022-09-22 2024-03-26 江西科技师范大学 皱状纳米碗@纳米颗粒等离激元薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN111349892B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Tang et al. Silver nanodisks with tunable size by heat aging
Zhang et al. Biomimetic synthesis of hierarchical 3D Ag butterfly wing scale arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection
CN102608103B (zh) 表面增强拉曼散射基底及其制备方法
Li et al. Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications
CN113649584A (zh) 一种激光诱导形貌可控的金或金复合纳米结构的生长方法及其应用
Zhang et al. Plasmonic structure with nanocavity cavities for SERS detection of pesticide thiram
CN111349892B (zh) 一种银叠加三角形纳米颗粒阵列及其制备方法
Chao et al. Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy
Van Nguyen et al. Improvement of SERS for detection of ultra-low concentration of methyl orange by nanostructured silicon decorated with Ag nanoparticles
Wang et al. Flexible and superhydrophobic silver nanoparticles decorated aligned silver nanowires films as surface-enhanced raman scattering substrates
Junisu et al. Three-Dimensional Interconnected Network of Gold Nanostructures for Molecular Sensing via Surface-Enhanced Raman Scattering Spectroscopy
Reddy et al. Comparison study of WO3 thin film and nanorods for smart window applications
Bayat et al. Optimizing the concentration of colloidal suspensions in convective assembly of centimeter-sized uniform monolayer colloidal crystals
Chang et al. Optimizing pyramidal silicon substrates through the electroless deposition of Ag nanoparticles for high-performance surface-enhanced Raman scattering
KR20180000612A (ko) 삼차원 복합 구조체, 이의 제조방법 및 이를 포함하는 sers 기판
Lu et al. Fabrication of periodic Ag tetrahedral nanopyramids via H2O2-assisted nanosphere lithography for plasmonic applications
Dhasmana et al. Hydrothermally synthesized zinc oxide nanoparticles for reflectance study onto Si surface
Li et al. Grafting PDMAEMA brushes onto graphene oxide for fabricating Ag nanosheet-assembled microspheres as SERS substrates
Liu et al. Fabrication and characterization of Ag/polymer nanocomposite films through layer-by-layer self-assembly technique
CN111421133B (zh) 银纳米片团簇阵列及其制备方法
Chiappini et al. Fabrication and characterization of colloidal crystals infiltrated with metallic nanoparticles
Liu et al. Complex nanostructures synthesized from nanoparticle colloids under an external electric field
CN101994149A (zh) 一种ZnO纳米棒阵列尺寸可控生长方法
Lin et al. Self-assembly of Large-scale Two-dimensional Plasmonic Superlattices Based on Single-Crystal Au Nanospheres and the FDTD Simulation of Its Optical Properties
Reddy et al. Structural and optical analysis of silver nanoparticles grown on porous anodic alumina membranes by electro-less deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant