CN113264901A - 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用 - Google Patents

一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用 Download PDF

Info

Publication number
CN113264901A
CN113264901A CN202110525614.1A CN202110525614A CN113264901A CN 113264901 A CN113264901 A CN 113264901A CN 202110525614 A CN202110525614 A CN 202110525614A CN 113264901 A CN113264901 A CN 113264901A
Authority
CN
China
Prior art keywords
substituted
alkyl
zinc
cyclohexyl
arch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110525614.1A
Other languages
English (en)
Other versions
CN113264901B (zh
Inventor
马海燕
邵猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202110525614.1A priority Critical patent/CN113264901B/zh
Publication of CN113264901A publication Critical patent/CN113264901A/zh
Application granted granted Critical
Publication of CN113264901B publication Critical patent/CN113264901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/28Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

本发明公开了一类含2‑取代噻唑‑4‑基的氨基酚氧基锌络合物及其制备方法,以及其在催化内酯开环聚合中的应用。其制备方法包括如下步骤:将中性配体直接与金属原料化合物在有机介质中反应,然后经过滤、浓缩、重结晶步骤获得目标化合物。本发明含2‑取代噻唑‑4‑基的氨基酚氧基锌络合物是一种高效的内酯开环聚合催化剂,可用于催化丙交酯等内酯的聚合反应;特别对于外消旋丙交酯聚合具有好的催化效果。本发明含2‑取代噻唑‑4‑基的氨基酚氧基锌络合物优点十分明显:原料易得,合成路线简单,产物收率高,具有很高的催化活性和立体选择性,能获得高规整度、高分子量聚酯材料,能够满足工业部门的需要。其结构式如下所示:

Description

一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方 法和应用
技术领域
本发明涉及一类含2-取代噻唑-4-基的氨基酚氧基锌络合物,以及这类络合物在内酯聚合中的应用。
背景技术
高分子材料由于其优越的物理和机械性能以及价格低廉、安全可靠等优点而广泛应用在生产生活的方方面面。然而高分子材料中应用最多的聚烯烃材料不能生物降解,造成了严重的污染问题。此外,聚烯烃材料的大量使用加快了不可再生石油资源的消耗。聚丙交酯(也称作聚乳酸)作为生物降解型高分子材料,其原料可再生,材料本身具有比较优秀的物理、机械以及加工性能,被认为最具有潜力在一次性用品、包装行业、纤维工业和医药卫生等领域取代石油基聚合物。
配位开环聚合是当前合成聚丙交酯的最有效的方法,由于聚合过程中不涉及水的生成和除去,使用特定催化剂可以获得具有可控分子量、窄分子量分布和可调立构规整度的聚丙交酯。研究表明,聚丙交酯的立构规整度会极大地影响其化学和物理性质,例如其熔点、结晶度和机械性能等。同时,具有不同链结构及分子量的聚丙交酯,其应用领域也有所不同。改变聚合物链结构序列可以有效调节高分子材料性质,特别是对控制聚合物结晶度和生物降解性是一种非常有效的策略。此外,具有相反构型的有规立构聚合物链之间可以产生立体复合作用,其所形成的互锁结构可以显著改变材料的物理性质。例如,当PLLA和PDLA链以等量均匀混合时,可以形成立体复合物PLA,在立体复合结构中,聚L-LA和聚D-LA序列之间强相互作用,可以增强PLA材料的耐热性、机械性能以及降解性能。在过去几年中,许多的研究已经证明了对映体纯半结晶均聚物(L-乳酸)(PLLA)和聚(D-乳酸)(PDLA)形成的立体复合物具有非常高的熔点,比均聚的PLLA或PDLA的熔点高约50℃。立体复合PLA具有可以与聚苯乙烯塑料媲美的机械能,有望在一定领域取代聚苯乙烯材料。
2002年,Chisholm课题组用β-二亚胺锌络合物催化外消旋丙交酯聚合,得到了较高杂规度的聚乳酸,Pr=0.90(Inorg.Chem.2002,41,2785-2794)。Hillmyer和Tolman课题组在2003年合成了双乙氧基桥联的双核锌络合物,对外消旋丙交酯开环聚合具有很高的催化剂活性,但没有立体选择性(J.Am.Chem.Soc.2003,125,11350)。2010年,我们报道了多齿氨基酚氧基锌络合物,对丙交酯聚合显示了高催化活性,获得了偏等规的聚合物(Daltontrans.,2010,39,7897-7910)。2013年,我们又报道了含有悬垂四氢吡咯的手性氨基酚类系列锌络合物,第一次实现了锌络合物催化外消旋丙交酯较高等规选择性聚合,在-38℃聚合时等规度可达到Pm=0.84(Chem.Common.,2013,49:8686-8688)。2014年,Du课题组合成一系列邻位取代恶唑衍生的类β-二亚胺锌络合物,这类络合物催化rac-LA聚合得到了多嵌段等规聚丙交酯(Pm=0.77-0.91),最高等规选择性Pm=0.91,但催化活性很低(ACS MacroLett.2014,3,689)。2016年,Kol课题组用一系列四齿线型胺基酚氧基乙基锌络合物催化rac-LA聚合,有较好的等规选择性,室温下可达Pm=0.81(Chem.Eur.J.,2016,22:11533-11536)。2016年,Williams课题组组设计合成的系列大环双核锌络合物,对催化外消旋丙交酯具有非常高的活性,TOF=60000h-1,但均没有立体选择性(Angew.Chem.Int.Ed.2016,128,1-7)。2017和2018年,我们分别报道了一系列手性恶唑啉和非手性苯并恶唑取代的氨基酚氧基锌络合物,在催化外消旋丙交酯聚合时同时具有较高活性和较高等规选择性,室温下所得聚合物的Pm=0.89(Macromolecules,2017,50(20),7911-7919;Inorg.Chem.,2018,57(17),11240-11251)。2019年,Chen课题组合成了苯氧基亚胺配体的锌络合物,对外消旋丙交酯聚合表现出良好的立体化学控制,其在室温和低温(-30℃)下均可得到高度杂规的PLA(Pr=0.90,Pr=0.94),分子量分布较窄(Organometallics,2019,38,461-468)。2019年,我们课题组又报道了一类咪唑环取代的氨基酚氧基锌络合物,在催化外消旋丙交酯聚合时能表现出较高活性和高等规选择性,Pm=0.89(Chem.Commun.,2019,55,10112-10115)。
当前研究者在催化外消旋丙交酯开环聚合研究上取得了较多进步,但设计出具有高活性、高立体选择性且合成方法简便的催化剂仍是巨大挑战。虽然目前有一些锌催化剂可以实现外消旋丙交酯高活性、等规选择性开环聚合,但是其性能仍不理想。因此,对丙交酯开环聚合具有高活性、高等规选择性,对杂质等良好耐受性的催化剂的研究开发仍有待进一步深入。
发明内容
本发明目的之一在于公开一类含2-取代噻唑-4-基的氨基酚氧基锌络合物。
本发明目的之二在于公开一类含2-取代噻唑-4-基的氨基酚氧基锌络合物的制备方法。
本发明目的之三在于公开一类含2-取代噻唑-4-基的氨基酚氧基锌络合物作为催化剂在内酯聚合中的应用。
本发明的技术构思:
研究表明实现外消旋丙交酯高活性、高等规选择性开环聚合的关键是催化剂,而催化剂的性能由其金属中心的性质以及配体的电子效应和空间效应决定。噻唑是五元杂环,电子云密度大,对金属中心的给电子能力较强,与金属配位后,能较好地稳定金属中心;且其上取代基易于调整,如便于在噻唑2-位引入各类取代基,从而可以方便地实现对其配位能力进行调节。将2-取代噻唑环引入配体结构中,通过对噻唑环2-位取代基的优化调整可以容易地实现对络合物催化剂电子效应和空间效应的调控。同时含有氨基酚类配体具有廉价易得、合成方便、结构易调等优点,因此本发明将噻唑环引入到氨基酚氧基结构中有望获得对外消旋丙交酯开环聚合具有良好的催化活性和选择性的催化剂,进而提升其工业应用价值。
本发明提供的含2-取代噻唑-4-基的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,具有以下通式:
Figure BDA0003063519660000031
式(I)、(II)中:
R1~R2分别代表氢,C1~C20直链、支链或环状结构的烷基,C7~C30的单或多芳基取代烷基,卤素;
R3代表C1~C20直链、支链或环状结构的烷基,C7~C30的单或多芳基取代烷基;
R4分别代表氢,C1~C20直链、支链或环状结构的烷基,C7~C30的单或多芳基取代烷基,C6~C18的芳基,卤素;
X代表氨基NR5R6,其中R5~R6分别为C1~C6直链、支链或环状结构的烷基,三甲基硅基,三乙基硅基,二甲基氢硅基,R5和R6可以相同或不同。
更特征的,式(I)、(II)中,R1~R2为氢,C1~C8直链、支链或环状结构的烷基,C7~C20的单或多芳基取代烷基,卤素;
R3为C1~C8直链、支链或环状结构的烷基,C7~C20的单或多芳基取代烷基;
R4为氢、C1~C8直链、支链或环状结构的烷基,C7~C20的单或多芳基取代烷基,C6~C12的芳基,卤素;
X为二(三甲基硅)氨基,二(三乙基硅)氨基,二(二甲基氢硅)氨基。
式(I)、(II)中,R1~R2优选为甲基、叔丁基、枯基、三苯甲基或卤素;R3优选为为甲基、乙基、异丙基、正丁基、叔丁基、正己基、环戊基、环己基、正辛基、环辛基、苄基、苯乙基;R4优选为氢、甲基、乙基、异丙基、正丁基、叔丁基、正己基、环戊基、环己基、苯基、苄基、苯乙基、氯;X优选为二(三甲基硅)氨基。
优选的含2-取代噻唑-4-基的氨基酚类配体,其结构式如下:
Figure BDA0003063519660000041
优选的含2-取代噻唑-4-基的氨基酚类配体的金属锌络合物结构为:
Figure BDA0003063519660000051
本发明的含2-取代噻唑-4-基的氨基酚类配体(I)及其锌络合物(II)制备方法如下所示:
Figure BDA0003063519660000061
将4-氯甲基-2-取代噻唑与伯胺反应生成相应仲胺化合物,再加入2-溴甲基-4,6-二取代苯酚(III),反应温度为25~150℃,反应时间为2~72小时,然后从反应产物中收集配体化合物(I);
任选的,再将式(I)所示的含2-取代噻唑-4-基的氨基酚类配体化合物与锌金属原料化合物在有机介质中反应,反应温度为0~100℃,反应时间为2~96小时,然后从反应产物中收集含2-取代噻唑-4-基的氨基酚氧基锌目标化合物(II);
上述制备方法中取代基R1~R4、X与满足前述的含2-取代噻唑-4-基的氨基酚类配体(I)及其金属锌络合物(II)的各相应基团一致;
锌金属原料化合物具有通式ZnX2,X与满足前述的含2-取代噻唑-4-基的氨基酚氧基锌络合物(II)的相应基团一致;更特征的,锌金属原料化合物为二{二(三甲基硅)氨基}锌。
含2-取代噻唑-4-基的氨基酚类配体化合物(I)与锌金属原料化合物的摩尔比为1:1~1.5;所述的有机介质选自四氢呋喃、乙醚、甲苯、苯、石油醚和正己烷中的一种或两种。
本发明所述的含2-取代噻唑-4-基的氨基酚类配体(I)的制备方法中,4-氯甲基-2-取代噻唑的合成可参考文献方法按以下路线进行合成:
Figure BDA0003063519660000062
其中,将取代的硫代酰胺和1,3-二氯丙酮用无水乙醇溶解后加热回流,分离提纯得到目标化合物(Heterocycl.Commun.,2017,23(6):455–460)。
本发明所述含2-取代噻唑-4-基的氨基酚类配体(I)的制备方法中,式(III)所示2-溴甲基-4,6-二取代酚的合成可参考文献方法按以下路线由2,4-取代苯酚与多聚甲醛在33%溴化氢的醋酸溶液反应得到(Inorg.Chem.,2002,41,3656;J.Org.Chem.,1994,59,1939):
Figure BDA0003063519660000071
本发明所述的含2-取代噻唑-4-基的氨基酚类配体的锌络合物是一种高效的内酯聚合催化剂,可用于L-丙交酯、D-丙交酯、rac-丙交酯、meso-丙交酯、ε-己内酯、β-丁内酯、α-甲基三亚甲基环碳酸酯的聚合反应,聚合方式为溶液聚合和熔融聚合。
以本发明所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物为催化剂,使丙交酯在-40~140℃聚合,优选-40~110℃;聚合时催化剂与单体摩尔比为1:1~20000,优选为1:100~1000。
以本发明所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物为催化剂,在醇存在的条件下,使丙交酯在-40~140℃聚合,优选-40~110℃;聚合时催化剂与醇以及单体摩尔比为1:1~50:1~20000,优选为1:1~50:100~10000;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20的单或多芳基取代烷基醇。
以本发明所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物为催化剂,在加醇或不加醇的条件下,使ε-己内酯聚合,聚合时催化剂与醇以及单体摩尔比为1:0~50:1~10000,优选为1:0~50:100~5000;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20的单或多芳基取代烷基醇。
本发明提供的催化剂制备简单方便,在聚合过程中性质稳定,有很高的催化活性,较高等规立体选择性,对醇的耐受性好,有着广泛的应用前景。下面通过实例进一步说明本发明,但本发明不限于此。
具体实施方式
实施例1
配体L1H的合成:
(1)N-[(2-苯基噻唑-4-基)甲基]正己胺的合成
Figure BDA0003063519660000072
将2-苯基-4-氯甲基噻唑(10.7mmol,2.24g)溶解于30mL干燥的DMF中,加入正己胺(107mmol,14mL),最后加入无水K2CO3(11.8mmol,1.63g),搅拌反应过夜。用水淬灭反应,用乙酸乙酯萃取,有机相用饱和食盐水洗,再用无水硫酸钠干燥,旋除溶剂得到黄色油状混合物,在减压下110℃/8mmHg除去过量的正己胺,得棕红色透明油状液体的粗品。
纯度大于95%,产率约80%
(2)配体L1H的合成
在100mL的圆底烧瓶中加入上述仲胺(2.35g,约8.56mmol),无水K2CO3(1.3g,9.4mmol),用30mL DMF溶解,加入2-溴甲基-4-甲基-6-三苯甲基苯酚(4.2g,9.0mmol),室温下搅拌反应过夜。反应液用水淬灭,用二氯甲烷萃取,合并有机相,有机相再用饱和食盐水洗涤,用硫酸钠干燥,滤液在真空下浓缩除去溶剂,用石油醚重结晶,得白色固体(3.1g,产率55%)。
Figure BDA0003063519660000081
1H NMR(400MHz,CDCl3):δ10.81(br s,1H,OH),7.87(m,3H,ArH),7.40(m,2H,ArH),7.25–7.11(m,15H,ArH),6.90(d,4J=1.6Hz,1H,ArH),6.79(d,4J=1.6Hz,1H,ArH),6.47(s,1H,C=CHS),3.77(s,2H,ArCH2N),3.65(s,2H,NCH2C=N),2.39(t,3J=8.0Hz,2H,NCH2 ofn-hexyl),2.17(s,3H,ArCH3),1.40(m,2H,NCH2CH2),1.27–1.20(m,2H,CH2 of n-hexyl),1.14–1.06(m,2H,CH2 of n-hexyl),0.84(t,3J=8.0Hz,3H,CH3 of n-hexyl).13C{1H}NMR(100MHz,CDCl3):δ167.4(SC=N),154.3,153.5,146.3,133.8,131.3,130.8,130.0,128.9,127.1,126.6,125.5,122.4,117.2(all Ar-C),63.4(Ph3C),58.3(ArCH2),53.2(NCH2CH2),51.8(NCH2C=N),31.7(CH2 of n-hexyl),27.1(CH2 of n-hexyl),26.1(CH2 of n-hexyl),22.7(CH2 of n-hexyl),21.1(ArCH3),14.2(CH2CH3).Anal.Calcd.for C43H44N2OS:C,81.09;H,6.69;N,4.40.Found:C,80.93;H,6.98;N,4.37%.
实施例2
配体L2H的合成
(1)N-[(2-苯基噻唑-4-基)甲基]苄胺的合成
Figure BDA0003063519660000091
除原料采用苄胺(21.8mL,200mmol)、碳酸钾(3.0g,22mmol)和2-苯基-4-氯甲基噻唑(4.2g,20mmol)外,其它操作步骤同实施例1。在减压加热条件下(100℃/8mmHg)除去过量的苄胺,得4.5g棕红色透明液体,为产物粗品,纯度大于95%,产率约80%。
(2)配体L2H的合成
除原料采用N-[(2-苯基噻唑-4-基)甲基]苄胺(4.48g,约16mmol)、无水碳酸钾(2.43g,17.6mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(7.54g,17mmol)外,其他操作同实施例1,用二氯甲烷和甲醇重结晶,得白色固体粉末(5.9g,57%)。
Figure BDA0003063519660000092
1H NMR(400MHz,CDCl3):δ10.57(br s,1H,OH),7.91–7.88(m,2H,ArH),7.43–7.38(m,3H,ArH),7.25–7.11(m,18H,ArH),7.05–7.03(m,2H,ArH),6.91(d,4J=1.6Hz,1H,ArH),6.80(d,4J=1.6Hz,1H,ArH),6.66(s,1H,C=CHS),3.81(s,2H,ArCH2N),3.61(s,2H,NCH2C=N),3.54(s,2H,PhCH2N),2.17(s,3H,ArCH3).13C{1H}NMR(100MHz,CDCl3):δ167.7(SC=N),154.1,153.3,146.2,136.7,134.0,133.7,131.3,131.0,130.0,129.1,128.9,128.5,127.4,127.2,126.8,126.6,125.5,122.3,117.3(all Ar-C),63.4(Ph3C),58.1(ArCH2),56.7(PhCH2),51.2(NCH2C=N),21.0(ArCH3).Anal.Calcd.for C44H38N2OS:C,82.21;H,5.96;N,4.36.Found:C,81.91;H,6.02;N,4.31%.
实施例3
配体L3H的合成
(1)N-[(2-叔丁基噻唑-4-基)甲基]正己胺的合成
Figure BDA0003063519660000093
除原料采用正己胺(21.0mL,164mmol)、碳酸钾(2.5g,18mmol)和2-叔丁基-4-氯甲基噻唑(3.12g,16.4mmol)外,其它操作步骤同实施例1。在减压加热条件下(110℃/8mmHg)除去过量的正己胺,得3.0g棕红色透明油状物,纯度大于95%,产率约71%。
(2)配体L3H的合成
除原料采用N-[(2-叔丁基噻唑-4-基)甲基]正己胺(3.0g,约11.7mmol,)、无水碳酸钾(1.8g,12.9mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(5.3g,12.0mmol)外,其他操作同实施例1,用石油醚和甲醇重结晶,得白色固体(5.2g,73%)。
Figure BDA0003063519660000101
1H NMR(400MHz,CDCl3):δ10.84(br s,1H,OH),7.24–7.11(m,15H,ArH),6.88(d,4J=1.6Hz,1H,ArH),6.77(s,4J=1.6Hz,1H,ArH),6.37(s,1H,C=CHS),3.71(s,2H,ArCH2N)),3.58(s,2H,NCH2C=N),2.33(t,3J=8.0Hz,2H,NCH2 of n-hexyl),2.17(s,3H,ArCH3),1.39–1.33(m,2H,CH2 of n-hexyl),1.36(s,9H,(CH3)3),1.27–1.13(m,4H,CH2 of n-hexyl),1.08(m,2H,CH2 of n-hexyl),0.85(t,3J=6.8Hz,3H,CH3 of n-hexyl).13C{1H}NMR(100MHz,CDCl3):δ180.4(SC=N),154.4,151.6,146.3,133.9,131.3,130.7,128.8,127.1,126.6,125.4,122.5,115.6(all Ar-C),63.3(Ph3C),58.3(ArCH2),53.1(NCH2C=N),51.8(NCH2CH2),37.6(C(CH3)3),31.7(C(CH3)3),31.0(CH2 of n-hexyl),27.1(CH2 of n-hexyl),26.1(CH2 of n-hexyl),22.7(CH2 of n-hexyl),21.1(ArCH3),14.2(CH3 of n-hexyl).Anal.Calcd.for C41H48N2OS:C,79.83;H,7.84;N,4.54.Found:C,80.13;H,7.71;N,4.19%.
实施例4
配体L4H的合成
(1)N-[(2-叔丁基噻唑-4-基)甲基]环己胺的合成
Figure BDA0003063519660000102
除原料采用环己胺(18.4mL,160mmol)、碳酸钾(2.43g,17.6mmol)和2-叔丁基-4-氯甲基噻唑(3.0g,16mmol)外,其它操作步骤同实施例1。在减压加热条件下(105℃/8mmHg),除去过量的环己胺,得3.1g棕红色透明油状物,纯度大于95%,产率约77%。
(2)配体L4H的合成
除原料采用N-[(2-叔丁基噻唑-4-基)甲基]环己胺(3.1g,约12.3mmol)、无水碳酸钾(1.87g,13.5mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(5.55g,12.5mmol)外,其他操作同实施例1,用石油醚和甲醇重结晶,得白色固体(5.1g,68%)。
Figure BDA0003063519660000111
1H NMR(400MHz,CDCl3):δ11.00(br s,1H,OH),7.25–7.10(m,15H,ArH),6.87(s,1H,ArH),6.75(s,1H,ArH),6.36(s,1H,C=CHS),3.79(s,2H,ArCH2N),3.63(s,2H,NCH2C=N),2.44(tt,3J=11.2,2.5Hz,1H,NCH of cyclohexyl),2.17(s,3H,ArCH3),1.71(t,3J=14.6Hz,4H,CH2 of cyclohexyl),1.58(br d,3J=10.0Hz,1H,CH2 of cyclohexyl),1.34(s,9H,(CH3)3),1.26–0.95(m,5H,CH2 of cyclohexyl).13C{1H}NMR(100MHz,CDCl3):δ180.5(SC=N),154.5,153.0,146.3,133.8,131.3,130.5,128.7,127.0,126.3,125.4,122.5,115.0(all Ar-C),63.3(Ph3C),58.4(ArCH2),53.6(NCH2C=N),49.2(NCH),37.5(C(CH3)3),31.0(C(CH3)3),27.8(CH2 of cyclohexyl),26.3(CH2 of cyclohexyl),26.1(CH2 ofcyclohexyl),21.1(ArCH3).Anal.Calcd.for C41H46N2OS:C,80.09;H,7.54;N,4.56.Found:C,79.93;H,7.56;N,4.52%.
实施例5
配体L5H的合成
(1)N-[(2-苄基噻唑-4-基)甲基]正己胺的合成
Figure BDA0003063519660000112
除原料采用正己胺(22.0mL,166mmol)、碳酸钾(2.50g,18.3mmol)和2-苄基-4-氯甲基噻唑(3.70g,16.6mmol)外,其它操作步骤同实施例1。在减压加热条件下(105℃/8mmHg),除去过量的正己胺,得3.6g浅黄色透明油状物,纯度大于98%,产率约75%。
(2)配体L5H的合成
除原料采用N-[(2-苄基噻唑-4-基)甲基]正己胺(3.60g,约12.5mmol)、无水碳酸钾(1.89g,13.7mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(12.4mmol,5.5g)外,其他操作同实施例1,用二氯甲烷和甲醇重结晶,得白色固体(4.40g,54%)。
Figure BDA0003063519660000121
1H NMR(400MHz,CDCl3):δ10.81(br s,1H,OH),7.36–7.26(m,5H,ArH),7.24–7.09(m,15H,ArH),6.89(s,1H,ArH),6.77(s,1H,ArH),6.31(s,1H,C=CHS),4.24(s,2H,PhCH2),3.73(s,2H,ArCH2N),3.57(s,2H,NCH2C=N),2.35(t,3J=8.0Hz,2H,NCH2 of n-hexyl),2.17(s,3H,ArCH3),1.42–1.31(m,2H,CH2 of n-hexyl),1.28–1.12(m,4H,CH2 of n-hexyl),1.12–1.04(m,2H,CH2 of n-hexyl),0.85(t,3J=6.8Hz,3H,CH3 of n-hexyl).13C{1H}NMR(100MHz,CDCl3):δ169.5(SC=N),154.3,152.2,146.2,138.0,133.9,131.3,130.7,129.1,128.8,127.2,127.1,126.7,125.5,122.3,117.5(all Ar-C),63.3(Ph3C),58.2(ArCH2),53.3(NCH2C=N),51.9(NCH2CH2),39.6(PhCH2N),31.7(CH2 of n-hexyl),27.1(CH2of n-hexyl),26.1(CH2 of n-hexyl),22.7(CH2 of n-hexyl),21.1(ArCH3),14.2(CH3 ofn-hexyl).Anal.Calcd.for C44H46N2OS:C,81.19;H,7.12;N,4.30.Found:C,81.12;H,6.92;N,4.07%.
实施例6
配体L6H的合成
(1)N-[(2-苄基噻唑-4-基)甲基]环己胺的合成
Figure BDA0003063519660000122
除原料采用环己胺(19mL,166mmol)、碳酸钾(2.52g,18mmol)和2-苄基-4-氯甲基噻唑(3.7g,16.6mmol)外,其他操作步骤同实施例1。得棕色油状物,纯度大于96%,产率约86%。
(2)配体L6H的合成
除原料采用N-[(2-苄基噻唑-4-基)甲基]环己胺M6(2.8g,约9.8mmol)、无水碳酸钾(1.49g,10.8mmol)和2-溴甲基-4-甲基-6-(三苯甲基)苯酚(4.4g,10mmol)外,其他操作同L1H的合成。用二氯甲烷和石油醚重结晶,得浅黄色固体L6H(4.5g,68%)。
Figure BDA0003063519660000131
1H NMR(400MHz,CDCl3):δ11.09(br s,1H,OH),7.35–7.23(m,5H,ArH),7.22–7.09(m,15H,ArH),6.87(d,4J=1.6Hz,1H,ArH),6.76(d,4J=1.6Hz,1H,ArH),6.25(s,1H,C=CHS),4.19(s,2H,PhCH2),3.78(s,2H,ArCH2N),3.63(s,2H,NCH2C=N),2.46(tt,3J=11.6,2.5Hz,1H,NCH of cyclohexyl),2.16(s,3H,ArCH3),1.77–1.67(m,4H,CH2 ofcyclohexyl),1.61–1.52(br s,1H,CH2 of cyclohexyl),1.28–0.97(m,5H,CH2 ofcyclohexyl).13C{1H}NMR(100MHz,CDCl3):δ169.5(SC=N),154.4,153.5,146.2,138.1,133.7,131.3,130.6,129.1,128.8,128.7,127.1,127.0,126.5,125.4,122.3,117.0(allAr-C),63.3(Ph3C),58.5(ArCH2),53.60(NCH2C=N),49.0(NCH),39.5(PhCH2N),27.8(CH2 ofcyclohexyl),26.2(CH2 of cyclohexyl),26.0(CH2 of cyclohexyl),21.1(ArCH3).Anal.Calcd.for C44H44N2OS:C,81.44;H,6.83;N,4.32.Found:C,81.72;H,6.84;N,4.15%.
实施例7
配体L7H的合成
(1)N-[(2-氯噻唑-4-基)甲基]环己胺的合成
Figure BDA0003063519660000132
除原料采用环己胺(14mL,125mmol)、碳酸钾(1.90g,13.8mmol)和2-氯-4-氯甲基噻唑(2.1g,12.5mmol)外,其他操作步骤同实施例1。得金黄色油状物,纯度大于95%,产率约98%。
(2)配体L7H的合成
除原料采用N-[(2-氯噻唑-4-基)甲基]环己胺(2.9g,约15.7mmol)、无水碳酸钾(2.39g,17.3mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(7.09g,16mmol)外,其他操作同实施例1,用二氯甲烷和石油醚,得浅黄色固体(6.77g,73%)。
Figure BDA0003063519660000133
1H NMR(400MHz,CDCl3):δ10.98(br s,1H,OH),7.23–7.12(m,15H,ArH),6.90(d,4J=1.2Hz,1H,ArH),6.77(d,4J=1.2Hz,1H,ArH),6.07(s,1H,C=CHS),3.80(s,2H,ArCH2),3.57(s,2H,NCH2C=N),2.45(t,3J=11.2Hz,1H,NCH of cyclohexyl),2.17(s,3H,ArCH3),1.74–1.65(m,4H,CH2 of cyclohexyl),1.60(br d,3J=11.3Hz,1H,CH2 of cyclohexyl),1.29–0.98(m,5H,CH2 of cyclohexyl).13C{1H}NMR(100MHz,CDCl3):δ154.2(SC=N),152.8,150.4,146.2,133.8,131.3,130.8,128.8,127.1,126.8,125.5,122.1,119.3(all Ar-C),63.3(Ph3C),59.0(ArCH2),53.7(NCH2C=N),48.9(NCH),27.8(CH2 of cyclohexyl),26.1(CH2 of cyclohexyl),25.9(CH2 of cyclohexyl),21.0(ArCH3).Anal.Calcd.forC37H37ClN2OS:C,74.91;H,6.29;N,4.72.Found:C,74.52;H,6.28;N,4.36%.
实施例8
配体L8H的合成
(1)N-[(2-甲基噻唑-4-基)甲基]环己胺的合成
Figure BDA0003063519660000141
除原料采用环己胺(20mL,180mmol)、碳酸钾(1.90g,27.5mmol)和4-氯甲基噻唑(3.7g,25mmol)外,其他操作步骤同实施例1。得金黄色油状物,纯度大于96%,产率约88%。
(2)配体L8H的合成
除原料采用N-[(2-甲基噻唑-4-基)甲基]环己胺(2.1g,约10mmol)、无水碳酸钾(1.5g,11mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(4.66g,10.5mmol)外,其他操作同实施例1,用二氯甲烷和石油醚,得浅黄色固体(6.77g,73%)。
Figure BDA0003063519660000142
1H NMR(400MHz,CDCl3):δ11.14(br s,1H,OH),7.24–7.10(m,15H,ArH),6.87(s,1H,ArH),6.76(s,1H,ArH),6.23(s,1H,C=CHS),3.77(s,2H,ArCH2),3.62(s,2H,NCH2C=N),2.58(s,3H,ArCH3),2.45(tt,3J=11.6,2.5Hz,1H,NCH of cyclohexyl),2.16(s,3H,ArCH3),1.79–1.65(m,4H,CH2 of cyclohexyl),1.58(br d,3J=10.3Hz,1H,CH2 ofcyclohexyl),1.28–0.96(m,5H,CH2 of cyclohexyl).13C{1H}NMR(100MHz,CDCl3):δ165.0(SC=N),154.4,153.3,146.2,133.7,131.3,130.6,128.8,127.0,126.4,125.4,122.3,116.3(all Ar-C),63.3(Ph3C),58.6(ArCH2),53.6(NCH2C=N),49.0(NCH),27.7(CH2 ofcyclohexyl),26.2(CH2 of cyclohexyl),26.0(CH2 of cyclohexyl),21.1(ArCH3),19.1(ArCH3).Anal.Calcd.for C38H40N2OS:C,79.68;H,7.04;N,4.89.Found:C,79.46;H,7.11;N,4.68%.
实施例9
配体L9H的合成
(1)N-[(噻唑-4-基)甲基]环己胺的合成
Figure BDA0003063519660000151
除原料采用环己胺(19mL,165mmol)、碳酸钾(2.5g,18mmol)和4-氯甲基噻唑(2.2g,16.5mmol)外,其他操作步骤同实施例1。得棕黄色油状物,纯度大于98%,产率约65%。
(2)配体L9H的合成
除原料采用N-[(噻唑-4-基)甲基]环己胺(2.1g,约10.7mmol)、无水碳酸钾(1.6g,11.8mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(4.74g,10.7mmol)外,其他操作同实施例1,用二氯甲烷和石油醚,得黄褐色固体(4.4g,74%)。
Figure BDA0003063519660000152
1H NMR(400MHz,CDCl3):δ11.25(br s,1H,OH),8.60(d,4J=2.0Hz,1H,N=CHS),7.24–7.11(m,15H,ArH),6.89(d,4J=1.6Hz,1H,ArH),6.78(d,4J=1.6Hz,1H,ArH),6.34(d,4J=2.0Hz,1H,C=CHS),3.81(s,2H,ArCH2),3.70(s,2H,NCH2C=N),2.42(tt,3J=11.6,2.5Hz,1H,NCH of cyclohexyl),2.17(s,3H,ArCH3),1.73(br d,3J=10.0Hz,4H,CH2 ofcyclohexyl),1.58(br d,3J=9.6Hz,1H,CH2 of cyclohexyl),1.28–1.17(m,2H,CH2 ofcyclohexyl),1.15–0.99(m,3H,CH2 of cyclohexyl).13C{1H}NMR(100MHz,CDCl3):δ154.6(SC=N),154.4,151.9,146.2,133.8,131.3,130.7,128.8,127.1,126.6,125.5,122.2,117.2(all Ar-C),63.3(Ph3C),58.6(ArCH2),53.7(NCH2C=N),48.8(NCH),27.8(CH2 ofcyclohexyl),26.2(CH2 of cyclohexyl),26.2(CH2 of cyclohexyl),21.1(ArCH3).Anal.Calcd.for C37H38N2OS:C,79.53;H,6.85;N,5.01.Found:C,79.62;H,6.89;N,4.67%.
实施例10
锌络合物Zn1的合成
在氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶,用20mL干燥甲苯溶解,再缓慢加入配体L1H(637mg,1.00mmol),室温下搅拌反应过夜,过滤除去不溶杂质,加热浓缩成热饱和溶液,冷却重结晶。过滤后收集固体,减压下抽干,得白色固体Zn1(448mg,52.0%)。
Figure BDA0003063519660000161
1H NMR(400MHz,C6D6):δ7.48(d,3J=7.6Hz,6H,PhH),7.41–7.37(m,2H,ArH),7.29(d,4J=2.0Hz,1H,ArH),7.15–6.97(m,3H of ArH and 5H×0.7of toluene),6.91(t,3J=7.6Hz,6H,PhH),6.83–6.75(m,4H,ArH),5.91(s,1H,C=CHS),4.63(d,2J=12.8Hz,1H,ArCH2),3.73(d,2J=15.2Hz,1H,NCH2C=N),3.11(d,2J=12.8Hz,1H,ArCH2),2.88(td,3J=12.4Hz,2J=4.0Hz,1H,NCH2CH2),2.51(d,2J=15.2Hz,1H,NCH2C=N),2.27(s,3H,ArCH3),2.29–2.18(m,1H,NCH2CH2,overlappped with previous one),2.11(s,3H×0.7,toluene),1.98–1.84(m,1H,CH2 of n-hexyl),1.47–1.34(m,1H,CH2 of n-hexyl),1.32–1.13(m,5H,CH2 of n-hexyl),1.10–0.97(m,1H,CH2 of n-hexyl),0.89(t,3J=6.8Hz,3H,CH3 of n-hexyl),0.20–-0.26(br s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ172.5(SC=N),163.2,153.7,148.3,137.6,133.9,132.1,131.9,131.6,130.6,129.4(toluene),128.6(toluene),127.2,125.2,120.9,120.6,113.9(all Ar-C),64.2(Ph3C),59.8(ArCH2),57.8(NCH2CH2),49.8(NCH2C=N),31.9(CH2 of n-hexyl),27.6(CH2 of n-hexyl),23.3(CH2 ofn-hexyl),23.1(CH2 of n-hexyl),21.10(toluene),21.08(ArCH3),14.3(CH3 of n-hexyl),5.8(Si(CH3)3).Anal.Calcd.for C49H61N3OSSi2Zn·0.7C7H8:C,69.90;H,7.25;N,4.54.Found:C,69.37;H,7.25;N,4.39%.
实施例11
锌络合物Zn2的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶,用约10mL干燥甲苯溶解,再缓慢加入配体L2H(642mg,1.00mmol),用少量甲苯冲洗瓶壁上的配体,共约20mL反应液,室温下搅拌反应过夜,过滤除去不溶杂质,50℃下加热浓缩成热饱和溶液,室温下冷却重结晶,过滤后收集固体,减压下抽干,得白色固体Zn2(365mg,42.1%)。
Figure BDA0003063519660000171
1H NMR(400MHz,C6D6):δ7.48(pesudo d,3J=7.6Hz,8H,ArH),7.28(d,4J=1.6Hz,1H,ArH),7.15–7.01(m,6H,ArH),6.90–6.80(m,8H,ArH),6.79(t,3J=7.2Hz,3H,ArH),6.54(d,4J=1.6Hz,1H,ArH),5.92(s,1H,C=CHS),4.58(d,2J=12.8Hz,1H,ArCH2),4.15(d,2J=14.3Hz,1H,PhCH2),3.92(d,2J=14.3Hz,1H,PhCH2),3.52(d,2J=12.8Hz,1H,ArCH2),3.46(d,2J=15.6Hz,1H,NCH2C=N),3.02(d,2J=15.6Hz,1H,NCH2C=N),2.09(s,3H,ArCH3),0.34–-0.15(br s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ172.7(SC=N),163.6,153.5,148.2,137.7,133.8,132.3,131.9,131.6,131.2,130.9,129.4,128.9,127.2,125.1,120.6,120.2,114.3(all Ar-C),64.2(Ph3C),58.6(ArCH2),57.9(PhCH2),45.0(NCH2C=N),20.9(ArCH3),6.1(N(Si(CH3)3)).Anal.Calcd.for C50H55N3OSSi2Zn:C,69.22;H,6.39;N,4.84.Found:C,68.98;H,6.30;N,4.65%.
实施例12
锌络合物Zn3的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶,用约10mL无水甲苯溶解。再缓慢滴加10mL配体L3H(617mg,1.00mmol)的甲苯溶液,室温下搅拌反应过夜。过滤除去不溶杂质,在50℃下加热浓缩成约3mL的热饱和溶液,室温下冷却结晶。过滤后收集固体,减压下抽干,得白色固体Zn3(379mg,45.0%)。
Figure BDA0003063519660000172
1H NMR(400MHz,C6D6):δ7.47(d,3J=7.2Hz,6H,ArH),7.34(d,4J=2.0Hz,1H,ArH),7.15–7.10(m,2H×0.7of toluene),7.06–6.90(m,9H of ArH and 3H×0.7of toluene),6.80(d,4J=2.0Hz,1H,ArH),6.03(s,1H,C=CHS),4.00(d,2J=13.2Hz,1H,ArCH2),3.62(d,2J=14.8Hz,1H,NCH2C=N),3.42(d,2J=13.2Hz,1H,ArCH2),3.05(d,2J=14.8Hz,1H,NCH2C=N),3.08–2.95(m,1H,NCH2CH2,overlappped with previous signal),2.69(td,3J=13.1,2J=3.5Hz,1H,NCH2CH2),2.25(s,3H,ArCH3),2.11(s,3H×0.7,toluene),1.64–1.53(m,1H,CH2 of n-hexyl),1.32–1.17(m,7H,CH2 of n-hexyl),1.12(s,9H of C(CH3)3),0.90(t,3J=6.4Hz,3H,CH3 of n-hexyl),0.08(s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ186.0(SC=N),164.5,151.3,148.1,137.9,135.8,133.8,131.5,129.3(toluene),128.6(toluene),127.2,125.7(toluene),125.4,120.6,120.4,114.5(all Ar-C),64.2(Ph3C),57.5(ArCH2),54.6(NCH2CH2),48.9(NCH2C=N),38.3(C(CH3)3),32.0(ArC(CH3)3),31.5(CH2 of n-hexyl),27.4(CH2 of n-hexyl),23.0(CH2 of n-hexyl),21.4(ArCH3),21.1(toluene),20.8(CH2 of n-hexyl),14.3(CH3 of n-hexyl),6.5(N(Si(CH3)3)).Anal.Calcd.for C50H55N3OSSi2Zn·0.7C7H8:C,68.79;H,7.85;N,4.64.Found:C,68.37;H,7.73;N,4.49%.
实施例13
锌络合物Zn4的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶,用约5mL甲苯溶解。再将配体L4H(615mg,1.00mmol)用约20mL甲苯溶解,缓慢滴加至前述反应瓶中,室温下搅拌反应过夜。过滤除去不溶性杂质,加热浓缩成热饱和溶液,室温冷却结晶。过滤后收集固体,减压下抽干,得白色固体Zn4(395mg,47.0%)。
Figure BDA0003063519660000181
1H NMR(400MHz,C6D6):δ7.47(d,3J=7.3Hz,6H,ArH),7.28(d,4J=2.4Hz,1H,ArH),7.03(t,3J=7.3Hz,6H,ArH),6.95(t,3J=7.3Hz,3H,ArH),6.74(d,4J=2.4Hz,1H,ArH),6.02(s,1H,C=CHS),3.83(d,2J=12.8Hz,1H,ArCH2),3.39(d,2J=14.8Hz,1H,NCH2C=N),3.32(d,2J=12.8Hz,1H,ArCH2),3.31(d,2J=14.8Hz,1H,NCH2C=N),2.85(t,3J=9.6Hz,1H,NCH of cyclohexyl),2.55(br s,1H,CH2 of cyclohexyl),2.23(s,3H,ArCH3),2.04(br d,3J=10.4Hz,1H,CH2 of cyclohexyl),1.70(br d,3J=11.2Hz,2H,CH2 of cyclohexyl),1.44(br d,3J=12.0Hz,1H,CH2 of cyclohexyl),1.21–0.86(m,5H of CH2 ofcyclohexyl),1.14(s,9H,C(CH3)3),0.09(s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ186.67(SC=N),164.7,151.0,148.4,135.4,134.4,131.9,131.1,127.4,125.4,121.1,120.6,114.5(all Ar-C),64.2(Ph3C),61.2(ArCH2),55.2(NCH),48.2(NCH2C=N),38.4(C(CH3)3),31.9(C(CH3)3),28.6(CH2 of cyclohexyl),26.5(CH2 of cyclohexyl),26.3(CH2of cyclohexyl),26.1(CH2 of cyclohexyl),25.6(CH2 of cyclohexyl),21.0(ArCH3),6.4(N(Si(CH3)3)).Anal.Calcd.for C47H63N3OSSi2Zn:C,67.23;H,7.56;N,5.00.Found:C,67.20;H,7.50;N,5.05%.
实施例14
锌络合物Zn5的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶中,用约10mL干燥甲苯溶解,再分批缓慢加入配体L5H(651mg,1.00mmol),用少量甲苯冲洗瓶壁,共约20mL反应溶液,室温下搅拌反应过夜,过滤除去不溶性杂质,加热浓缩成约4mL热饱和溶液,冷却结晶,过滤后收集固体,减压下抽干,得橙黄色固体Zn5(377mg,43.8%)。
Figure BDA0003063519660000191
1H NMR(400MHz,C6D6):δ7.49(d,3J=7.2Hz,6H,PhH),7.36(d,3J=6.8Hz,2H,ArH),7.25(d,4J=2.0Hz,1H,ArH),7.21–7.10(m,3H,ArH,overlapped with the signal ofC6D6),7.02(pesudo t,3J=7.3Hz,6H,PhH),6.96(t,3J=7.0Hz,3H,PhH),6.73(d,4J=2.0Hz,1H,ArH),5.69(s,1H,C=CHS),4.55(d,2J=12.4Hz,1H,ArCH2),4.40(d,2J=18.2Hz,1H,PhCH2),3.84(d,2J=18.2Hz,1H,PhCH2),3.56(d,2J=15.2Hz,1H,NCH2C=N),2.97(d,2J=12.4Hz,1H,ArCH2),2.76(td,3J=12.4,2J=3.6Hz,1H,NCH2CH2),2.41(d,2J=15.2Hz,1H,NCH2C=N),2.24(s,3H,ArCH3),2.15(td,3J=12.4Hz,2J=4.8Hz,1H,NCH2CH2),1.95–1.82(m,1H,CH2 of n-hexyl),1.49–1.39(m,1H,CH2 of n-hexyl),1.29–1.18(m,5H of CH2 ofn-hexyl and 8H×0.5of C6H14),1.10–0.98(m,1H,CH2 of n-hexyl),0.96–0.87(m,3H ofCH3 of n-hexyl and 6H×0.5of C6H14),0.19(s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ177.5(SC=N),163.6,152.5,148.4,137.3,136.1,131.9,131.7,130.0,129.5,129.0,127.1,125.2,121.8,121.2,120.5,114.5(all Ar-C),64.2(Ph3C),60.2(PhCH2),60.0(ArCH2),58.5(NCH2CH2),48.0(NCH2C=N),32.0(CH2 of n-hexyl),31.9(n-hexane),27.6(CH2 of n-hexyl),23.1(CH2 of n-hexyl),23.0(n-hexane),21.1(ArCH3),21.0(CH2of n-hexyl),14.4(CH3 of n-hexyl),14.3(n-hexane),6.2(N(Si(CH3)3)).Anal.Calcd.for C50H63N3OSSi2Zn·0.5C6H14:C,69.49;H,7.63;N,4.54.Found:C,69.37;H,7.09;N,4.25%.
实施例15
锌络合物Zn6的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶,用约5mL甲苯溶解。再缓慢加入配体L6H(648mg,1.00mmol),用少量甲苯冲洗瓶壁,共约10mL反应溶液,室温下搅拌反应过夜。过滤除去不溶性杂质,加热浓缩成约2mL热饱和溶液,冷却后析出较少晶体,再加入正己烷重结晶。过滤后收集固体,减压下将固体抽干,得浅黄色固体Zn6(533mg,61.0%)。
Figure BDA0003063519660000201
1H NMR(400MHz,C6D6):δ7.54(d,3J=7.6Hz,6H,ArH),7.34(d,3J=6.8Hz,2H,ArH),7.28(d,4J=2.0Hz,1H,ArH),7.21–7.10(m,5H of ArH and 2H×0.5of toluene,overlapped with the signal of C6D6),7.08–7.01(m,6H of ArH and 3H×0.5oftoluene),6.95(t,3J=7.2Hz,3H,ArH),6.70(d,4J=2.0Hz,1H,ArH),5.65(s,1H,C=CHS),4.42(d,2J=12.3Hz,1H,ArCH2),4.35(d,2J=18.1Hz,1H,PhCH2),3.66(d,2J=18.1Hz,1H,PhCH2),3.37(d,2J=15.6Hz,1H,NCH2C=N),3.14(d,2J=12.3Hz,1H,ArCH2),2.91(br d,2J=15.6Hz,1H,NCH2C=N),2.69(br d,3J=12.8Hz,1H,CH2 of cyclohexyl),2.56(t,3J=11.2Hz,1H,NCH of cyclohexyl),2.25(s,3H,ArCH3),2.11(s,3H×0.5,toluene),1.74–1.59(m,3H,CH2 of cyclohexyl),1.49–1.40(m,1H,CH2 of cyclohexyl),1.34–1.01(m,3H,CH2 of cyclohexyl),0.96–0.87(m,2H,CH2 of cyclohexyl),0.24(s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ177.4(SC=N),164.0,152.7,148.5,137.9(toluene),136.5,136.3,133.6,131.8,131.3,130.1,129.5,129.3(toluene),128.6(toluene),127.2,125.7(toluene),125.2,121.7,120.4,113.2(all Ar-C),64.1(Ph3C),61.9(ArCH2),61.8(PhCH2),54.5(NCH),46.6(NCH2C=N),38.3(CH2 of cyclohexyl),30.3(CH2 ofcyclohexyl),26.7(CH2 of cyclohexyl),26.1(CH2 of cyclohexyl),23.4(CH2 ofcyclohexyl),21.1(toluene),21.0(ArCH3),6.1(N(Si(CH3)3)).Anal.Calcd.forC50H61N3OSSi2Zn·0.5C7H8:C,69.87;H,7.12;N,4.57.Found:C,69.71;H,7.01;N,4.54%.
实施例16
锌络合物Zn7的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶,用约10mL甲苯溶解。再缓慢加入配体L7H(593mg,1.00mmol),室温下搅拌反应过夜后,析出大量白色固体。过滤后收集固体,减压下抽干,得白色固体Zn7(706mg,86.3%)。
Figure BDA0003063519660000211
1H NMR(400MHz,C6D6):δ7.49(d,3J=7.6Hz,6H,ArH),7.34(d,4J=2.0Hz,1H,ArH),7.13(m,2H×0.6of toluene,ArH),7.06–6.97(m,6H of ArH and 3H×0.6of toluene,ArH),6.88(t,3J=7.2Hz,3H,ArH),6.71(d,4J=2.0Hz,1H,ArH),5.44(s,1H,C=CHS),4.42(d,2J=12.4Hz,1H,ArCH2),3.12(d,2J=15.6Hz,1H,NCH2C=N),3.07(d,2J=12.4Hz,1H,ArCH2),2.80(br d,3J=11.6Hz,1H,CH2 of cyclohexyl),2.58(d,2J=15.6Hz,1H,NCH2C=N),2.39(t,3J=11.2Hz,1H,NCH of cyclohexyl),2.25(s,3H,ArCH3),2.11(s,1.8H,3H×0.6of toluene),1.72–1.58(m,2H,CH2 of cyclohexyl),1.41(br d,3J=8.4Hz,2H,CH2 ofcyclohexyl),1.29–0.76(m,5H,CH2 of cyclohexyl),0.21(s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ163.2(SC=N),156.6,151.9,148.2,137.9(toluene),137.7,133.5,131.8,129.3,128.6(toluene),127.1,125.7(toluene),125.2,121.1,120.6,115.4(allAr-C),64.1(Ph3C),61.2(ArCH2),53.5(NCH),46.0(NCH2C=N),30.4(CH2 of cyclohexyl),26.7(CH2 of cyclohexyl),26.1(CH2 of cyclohexyl),25.9(CH2 of cyclohexyl),22.6(CH2 of cyclohexyl),21.4(ArCH3),21.1(toluene),5.9(N(Si(CH3)3)).Anal.Calcd.forC43H54N3OSClSi2Zn·0.6C7H8:C,64.92;H,6.79;N,4.81.Found:C,64.55;H,6.80;N,4.87%.
实施例17
锌络合物Zn8的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mL Schlenk瓶,用少量无水甲苯溶解,再缓慢加入配体L8H(573mg,1.00mmol),共约10mL反应溶液,室温下反应过夜,过滤除去不溶性杂质,加热浓缩后,加入正己烷重结晶,过滤后收集固体,减压下抽干,得黄褐色固体(380mg,47.6%)。
Figure BDA0003063519660000221
1H NMR(400MHz,C6D6):δ7.47(d,3J=7.5Hz,6H),7.26(d,4J=2.0Hz,1H,ArH),7.15–7.12(m,2H×0.2of toluene),7.04–7.01(m,3H×0.2of toluene),6.97(t,3J=7.5Hz,6H,ArH),6.86(t,3J=7.2Hz,3H,ArH),6.74(d,4J=2.0Hz,1H,ArH),5.67(s,1H,C=CHS),4.42(d,2J=12.4Hz,1H,ArCH2),3.28(d,2J=15.2Hz,1H,NCH2C=N),3.12(d,2J=12.4Hz,1H,ArCH2),2.77(d,2J=15.2Hz,1H,NCH2C=N),2.77(br d,1H,CH2 ofcyclohexyl,overlappped with previous signal),2.45(tt,3J=11.6,2J=3.5Hz,1H,NCHof cyclohexyl),2.25(s,3H,ArCH3),2.11(s,3H,ArCH3),2.10(s,1.8H,3H×0.2oftoluene),1.73–1.58(m,2H,CH2 of cyclohexyl),1.52–1.39(m,2H,CH2 of cyclohexyl),1.32–1.20(m,1H,CH2 of cyclohexyl),1.16–0.99(m,2H,CH2of cyclohexyl),0.93–0.80(m,2H,CH2 of cyclohexyl),0.17(s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ170.6(SC=N),163.7,151.9,148.3,137.9(toluene),137.2,131.9,130.2,129.3(toluene),128.6(toluene),127.0,125.7(toluene),125.2,121.5,120.4 115.4(all Ar-C),64.1(Ph3C),61.3(ArCH2),53.8(NCH),46.2(NCH2C=N),30.6(CH2 of cyclohexyl),26.8(CH2 ofcyclohexyl),26.2(CH2 of cyclohexyl),26.0(CH2 of cyclohexyl),22.7(CH2 ofcyclohexyl),21.4(ArCH3)21.1(toluene),19.8(ArCH3),5.9(N(Si(CH3)3)).Anal.Calcd.for C44H57N3OSSi2Zn·0.2C7H8:C,66.83;H,7.24;N,5.15.Found:C,66.54;H,7.11;N,4.77%.
实施例18
锌络合物Zn9的合成
氩气氛围保护下,称取Zn[N(SiMe3)2]2(386mg,1mmol)加入50mL Schlenk瓶,用少量无水甲苯溶解,再缓慢加入配体L9H(559mg,1mmol),共约10mL反应溶液,室温下反应过夜,过滤除去不溶性杂质,加热浓缩后,加入正己烷重结晶,过滤后收集固体,减压下抽除溶剂和反应生成的自由硅胺,得黄褐色固体(262mg,43%)。
Figure BDA0003063519660000222
1H NMR(400MHz,C6D6):δ7.69(d,3J=7.6Hz,6H,ArH),7.23–7.17(m,7H,ArH),7.13(m,2H×0.3of toluene),7.07–7.00(m,3H×0.3of toluene),6.96(t,3J=7.6Hz,3H,ArH),6.32(d,4J=2.0Hz,1H,ArH),6.17(d,4J=2.0Hz,1H,ArH),5.53(s,1H,C=CHS),3.98(d,J=11.2Hz,1H,ArCH2),3.21(d,J=15.2Hz,1H,NCH2C=N),2.96(d,J=15.2Hz,1H,NCH2C=N),2.92(d,J=11.2Hz,1H,ArCH2),2.73(tt,3J=11.6,3.5Hz,1H,NCH of cyclohexyl),2.29–2.20(m,2H,CH2 of cyclohexyl),2.11(s,3H of ArCH3,overlapped 3H×0.3oftoluene),1.69(br d,3J=12.8Hz,2H,CH2 of cyclohexyl),1.49(br d,3J=12.8Hz,1H,CH2 of cyclohexyl),1.20–1.07(m,2H,CH2 of cyclohexyl),1.01–0.83(m,3H,CH2 ofcyclohexyl),0.27(s,18H,N(Si(CH3)3)).13C{1H}NMR(100MHz,C6D6):δ164.7(SC=N),156.2,152.3,148.0,137.9(toluene),133.1,132.2,131.7,130.3,129.3(toluene),128.6(toluene),127.3,125.7(toluene),124.8,122.0,120.4,111.8(all Ar-C),66.8(Ph3C),63.8(ArCH2),57.8(NCH),51.9(NCH2C=N),28.5(CH2 of cyclohexyl),28.0(CH2 ofcyclohexyl),26.3(CH2 of cyclohexyl),26.2(CH2 of cyclohexyl),26.1(CH2 ofcyclohexyl),21.1(toluene),21.0(ArCH3),6.2(N(Si(CH3)3)).Anal.Calcd.forC43H55N3OSSi2Zn·0.3C7H8:C,66.78;H,7.13;N,5.18.Found:C,66.47;H,7.12;N,4.87%.
实施例19
氩气保护下,在聚合瓶中加入外消旋丙交酯(0.144g,1.00mmol),用0.5mL甲苯溶解。量取催化剂Zn5的甲苯溶液0.5mL加入到聚合瓶中。[rac-LA]0=1.0M,[Zn]0=0.002M,[Zn]0:[rac-LA]0=1:500。控制反应温度25±1℃,反应12.3小时后,加入石油醚终止反应。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇洗涤聚合物。真空干燥24h。转化率:85%,Mn=1.48×105g/mol,分子量分布PDI=1.57,等规度Pm=0.83。
实施例20
除催化剂换成Zn5、溶剂换成四氢呋喃外,其他操作同实施实例19,反应7.3小时后,转化率:85%,Mn=1.69×105g/mol,分子量分布PDI=1.49,等规度Pm=0.80。
实施例21
除催化剂换成Zn6外,其他操作同实施实例19,反应5.6小时后,转化率:86%,Mn=1.03×105g/mol,分子量分布PDI=1.45,等规度Pm=0.78。
实施例22
除催化剂换成Zn6、溶剂换成四氢呋喃外,其他操作同实施实例19,反应8.3小时后,转化率:93%,Mn=1.37×105g/mol,分子量分布PDI=1.52,等规度Pm=0.73。
实施例23
除催化剂换成Zn7外,其他操作同实施实例19,反应5.8小时后,转化率:86%,Mn=1.35×105g/mol,分子量分布PDI=1.61,等规度Pm=0.68。
实施例24
除催化剂换成Zn8外,其他操作同实施实例19,反应8小时后,转化率:88%,Mn=1.23×105g/mol,分子量分布PDI=1.63,等规度Pm=0.79。
实施例25
除催化剂换成Zn8、溶剂换成四氢呋喃外,其他操作同实施实例19,反应50分钟后,转化率:90%,Mn=1.14×105g/mol,分子量分布PDI=1.56,等规度Pm=0.84。
实施例26
除催化剂换成Zn9外,其他操作同实施实例19,反应59分钟后,转化率:83%,Mn=1.12×105g/mol,分子量分布PDI=1.64,等规度Pm=0.80。
实施例27
除催化剂换成Zn9、溶剂换成四氢呋喃外,其他操作同实施实例19,反应50分钟后,转化率:90%,Mn=1.14×105g/mol,分子量分布PDI=1.56,等规度Pm=0.84。
实施例28
在氩气保护下,在聚合瓶中加入外消旋丙交酯(0.144g,1.00mmol),用0.50mL异丙醇的甲苯溶液溶解。量取催化剂Zn5的甲苯溶液0.50mL加入到聚合瓶中。[rac-LA]0=1.0M,[Zn]0=0.002M,[Zn]0:[iPrOH]0:[rac-LA]0=1:1:500。控制反应温度25±1℃,反应2.8小时后,加入石油醚终止反应。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇洗涤聚合物。真空干燥24h。转化率:92%,Mn=9.03×104g/mol,分子量分布PDI=1.25,等规度Pm=0.81。
实施例29
除催化剂换成Zn5、溶剂换成四氢呋喃外,其他操作同实施实例28,反应3.3小时后,转化率:85%,Mn=7.03×104g/mol,分子量分布PDI=1.16,等规度Pm=0.80。
实施例30
除催化剂换成Zn6外,其他操作同实施实例33,其他操作同实施实例28,反应2.3小时后,转化率:90%,Mn=7.73×104g/mol,分子量分布PDI=1.14,等规度Pm=0.76。
实施例31
除催化剂换成Zn8外,其他操作同实施实例28,反应2小时后,转化率:92%,Mn=7.38×104g/mol,分子量分布PDI=1.29,等规度Pm=0.78。
实施例32
除催化剂换成Zn9外,其他操作同实施实例28,反应25分钟后,转化率:93%,Mn=9.61×104g/mol,分子量分布PDI=1.33,等规度Pm=0.80。
实施例33
除催化剂换成Zn9、溶剂换成四氢呋喃外,其他操作同实施实例28,反应35分钟后,转化率:95%,Mn=7.22×104g/mol,分子量分布PDI=1.31,等规度Pm=0.84。
实施例34
除催化剂换成Zn9、聚合温度为-20℃外,其他操作同实施实例28,反应7.0小时后,转化率:87%,Mn=8.43×104g/mol,分子量分布PDI=1.33,等规度Pm=0.89。
实施例35
除催化剂换成Zn9、聚合温度为-40℃外,其他操作同实施实例28,反应48h后,转化率:83%,Mn=8.57×104g/mol,分子量分布PDI=1.30,等规度Pm=0.92。
实施例36
在氩气氛围保护下,于10mL聚合瓶中加入外消旋丙交酯(144mg,1.00mmol),加入0.10mL的异丙醇/甲苯溶液,再加入0.10mL催化剂Zn9的甲苯溶液。保持[rac-LA]0/[Zn]0/[iPrOH]=1500:1:1。置于110±1°С油浴中搅拌,反应2.5min,加入石油醚终止聚合。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇洗涤聚合物。真空干燥24h。转化率:96%,Mn=2.38×105g/mol,分子量分布PDI=1.70,等规度Pm=0.76,TOF=34560h-1
实施例37
催化剂仍为Zn9,除换成[rac-LA]0/[Zn]0/[iPrOH]=5000:1:1外,其他操作同实施实例36。反应18min后,转化率:97%,Mn=6.99×105g/mol(Mw=9.27×105g/mol),分子量分布PDI=1.35,等规度Pm=0.70,TOF=16167h-1
实施例38
催化剂仍为Zn9,除换成[rac-LA]0/[Zn]0/[iPrOH]=5000:1:50外,其他操作同实施实例36。反应4min后,转化率:90%,Mn=3.63×104g/mol,分子量分布PDI=1.24,等规度Pm=0.74,TOF=67500h-1
实施例39
催化剂仍为Zn9,除[rac-LA]0/[Zn]0/[iPrOH]=1000:1:100外,其他操作同实施实例36。反应8min后,转化率:83%,Mn=3.36×104g/mol,分子量分布PDI=1.10,等规度Pm=0.74,TOF=62250h-1
实施例40
除聚合单体换成D-LA外,其他操作同实施实例19,反应20min后,转化率:92%,Mn=7.5×104g/mol,分子量分布PDI=1.30。
实施例41
除聚合单体换成L-LA外,其他操作同实施实例19,反应20min后,转化率:88%,Mn=7.0×104g/mol,分子量分布PDI=1.33。
实施例42
除聚合单体换成ε-己内酯外,其他操作同实施实例19,反应12min后,转化率:91%,Mn=5.10×104g/mol,分子量分布PDI=1.24。

Claims (10)

1.一种含2-取代噻唑-4-基的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,具有以下通式:
Figure FDA0003063519650000011
式(I)、(II)中:
R1~R2分别代表氢,C1~C20直链、支链或环状结构的烷基,C7~C30的单或多芳基取代烷基,卤素;
R3代表C1~C20直链、支链或环状结构的烷基,C7~C30的单或多芳基取代烷基;
R4分别代表氢,C1~C20直链、支链或环状结构的烷基,C7~C30的单或多芳基取代烷基,C6~C18的芳基,卤素;
X代表氨基NR5R6,其中R5~R6分别为C1~C6直链、支链或环状结构的烷基,三甲基硅基,三乙基硅基,二甲基氢硅基,R5和R6可以相同或不同。
2.根据权利要求1所述的含2-取代噻唑-4-基的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,R1~R2为氢,C1~C8直链、支链或环状结构的烷基,C7~C20的单或多芳基取代烷基,卤素;R3为C1~C8直链、支链或环状结构的烷基,C7~C20的单或多芳基取代烷基;R4为氢、C1~C8直链、支链或环状结构的烷基,C7~C20的单或多芳基取代烷基,C6~C12的芳基,卤素;X为二(三甲基硅)氨基,二(三乙基硅)氨基,二(二甲基氢硅)氨基。
3.根据权利要求1所述的含2-取代噻唑-4-基的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,R1~R2为甲基、叔丁基、枯基、三苯甲基或卤素;R3为甲基、乙基、异丙基、正丁基、叔丁基、正己基、环戊基、环己基、正辛基、环辛基、苄基、苯乙基;R4为氢、甲基、乙基、异丙基、正丁基、叔丁基、正己基、环戊基、环己基、苯基、苄基、苯乙基、氯;X为二(三甲基硅)氨基。
4.权利要求1~3任一项所述的含2-取代噻唑-4-基的氨基酚类配体(I)及其金属锌络合物(II)的制备方法,包括如下步骤:
Figure FDA0003063519650000021
将4-氯甲基-2-取代噻唑类化合物与伯胺反应生成相应仲胺,加入2-溴甲基-4,6-二取代苯酚(III),反应温度为25~150℃,反应时间为2~72小时,然后从反应产物中收集配体化合物(I);
任选的,再将式(I)所示的含2-取代噻唑-4-基的氨基酚类配体化合物与锌金属原料化合物在有机介质中反应,反应温度为0~100℃,反应时间为2~96小时,然后从反应产物中收集含2-取代噻唑-4-基的氨基酚氧基锌目标化合物(II);
上述制备方法中取代基R1~R4与满足权利要求1~3任一项所述的含2-取代噻唑-4-基的氨基酚类配体(I)及其金属锌络合物(II)的各相应基团一致;
锌金属原料化合物具有通式ZnX2,X与满足权利要求1~3任一项所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物(II)的相应基团一致。
5.根据权利要求4所述的方法,其特征在于,锌金属原料化合物为二{二(三甲基硅)氨基}锌,含2-取代噻唑-4-基的氨基酚类配体化合物与锌金属原料化合物的摩尔比为1:1~1.5;所述的有机介质选自四氢呋喃、乙醚、甲苯、苯、石油醚和正己烷中的一种或两种。
6.权利要求1~3任一项所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物的应用,其特征在于,用于内酯的开环聚合。
7.根据权利要求6所述的应用,其特征在于,内酯选自L-丙交酯,D-丙交酯,rac-丙交酯,meso-丙交酯,ε-己内酯,β-丁内酯,α-甲基三亚甲基环碳酸酯。
8.根据权利要求6所述的应用,其特征在于,以权利要求1~3任一项所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物为催化剂,使丙交酯聚合,聚合时催化剂与单体的摩尔比为1:1~10000。
9.根据权利要求6所述的应用,其特征在于,以权利要求1~3任一项所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物为催化剂,在醇存在的条件下,使丙交酯聚合,聚合时催化剂与醇以及单体摩尔比为1:1~50:1~10000;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20的单或多芳基取代烷基醇。
10.根据权利要求6所述的应用,其特征在于,以权利要求1~3任一项所述的含2-取代噻唑-4-基的氨基酚氧基锌络合物为催化剂,在加醇或不加醇的条件下,使ε-己内酯或β-丁内酯聚合;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20的单或多芳基取代烷基醇。
CN202110525614.1A 2021-05-13 2021-05-13 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用 Active CN113264901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110525614.1A CN113264901B (zh) 2021-05-13 2021-05-13 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110525614.1A CN113264901B (zh) 2021-05-13 2021-05-13 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113264901A true CN113264901A (zh) 2021-08-17
CN113264901B CN113264901B (zh) 2023-02-28

Family

ID=77230798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110525614.1A Active CN113264901B (zh) 2021-05-13 2021-05-13 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113264901B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582928A (zh) * 2021-08-26 2021-11-02 华东理工大学 一种含(取代)吡唑环的氨基酚氧基锌络合物及其制备方法和应用
CN114349781A (zh) * 2022-01-19 2022-04-15 华东理工大学 一种含手性四氢吡咯骨架氨基酚氧基锌络合物及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007305A (ja) * 2007-06-28 2009-01-15 Daiso Co Ltd アルミニウム化合物、開環重合触媒、及びポリエステルの製造方法
US20120101233A1 (en) * 2009-04-30 2012-04-26 Total Petrochemicals Research Feluy Catalytic systems for immortal ring-opening polymerisation of cyclic esters and cyclic carbonates
CN103787943A (zh) * 2013-05-17 2014-05-14 华东理工大学 手性胺基酚氧基锌、镁化合物及其制备方法和应用
EP2740753A1 (en) * 2012-12-07 2014-06-11 Université de Strasbourg Polymerisation method
CN103864659A (zh) * 2014-03-12 2014-06-18 华东理工大学 手性亚胺酚氧基锌、镁化合物及其制备方法和应用
CN105237552A (zh) * 2015-10-10 2016-01-13 华东理工大学 一种含噁唑啉环的胺基酚氧基锌、镁络合物及其制备方法和应用
CN109705328A (zh) * 2019-01-04 2019-05-03 大连理工大学 苯酚-噁唑啉稀土金属催化剂、制备方法及应用
CN109879810A (zh) * 2019-03-13 2019-06-14 华东理工大学 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用
CN111362885A (zh) * 2020-03-06 2020-07-03 华东理工大学 一种苯并噻唑环取代的氨基酚氧基锌络合物及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007305A (ja) * 2007-06-28 2009-01-15 Daiso Co Ltd アルミニウム化合物、開環重合触媒、及びポリエステルの製造方法
US20120101233A1 (en) * 2009-04-30 2012-04-26 Total Petrochemicals Research Feluy Catalytic systems for immortal ring-opening polymerisation of cyclic esters and cyclic carbonates
EP2740753A1 (en) * 2012-12-07 2014-06-11 Université de Strasbourg Polymerisation method
CN103787943A (zh) * 2013-05-17 2014-05-14 华东理工大学 手性胺基酚氧基锌、镁化合物及其制备方法和应用
CN103864659A (zh) * 2014-03-12 2014-06-18 华东理工大学 手性亚胺酚氧基锌、镁化合物及其制备方法和应用
CN105237552A (zh) * 2015-10-10 2016-01-13 华东理工大学 一种含噁唑啉环的胺基酚氧基锌、镁络合物及其制备方法和应用
CN109705328A (zh) * 2019-01-04 2019-05-03 大连理工大学 苯酚-噁唑啉稀土金属催化剂、制备方法及应用
CN109879810A (zh) * 2019-03-13 2019-06-14 华东理工大学 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用
CN111362885A (zh) * 2020-03-06 2020-07-03 华东理工大学 一种苯并噻唑环取代的氨基酚氧基锌络合物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACS: "1444121-30-5/rn", 《STN REGISTRY》, 16 July 2013 (2013-07-16), pages 1 *
CHAO KAN 等: "Highly Isoselective and Active Zinc Catalysts for rac-Lactide Polymerization: Effect of Pendant Groups of Aminophenolate Ligands", 《MACROMOLECULES》, vol. 50, 4 October 2017 (2017-10-04), pages 7912 *
JIANWEN HU 等: "Highly Active Chiral Oxazolinyl Aminophenolate Magnesium Initiators for Isoselective Ring-Opening Polymerization of rac-Lactide: Dinuclearity Induced Enantiomorphic Site Control", 《MACROMOLECULES》, vol. 51, 11 July 2018 (2018-07-11), pages 5304 - 5312 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582928A (zh) * 2021-08-26 2021-11-02 华东理工大学 一种含(取代)吡唑环的氨基酚氧基锌络合物及其制备方法和应用
CN114349781A (zh) * 2022-01-19 2022-04-15 华东理工大学 一种含手性四氢吡咯骨架氨基酚氧基锌络合物及其制备方法和应用

Also Published As

Publication number Publication date
CN113264901B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN109879810B (zh) 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用
CN113264901B (zh) 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用
CN109879801A (zh) 一种含吡啶环的氨基酚氧基锌络合物及其制备方法和应用
KR101217954B1 (ko) 극성 시클릭 단량체의 개환 중합을 위한 비스(나프톡시)피리딘 및 비스(나프톡시)티오펜 리간드 기재의 3 족 포스트-메탈로센 착물
CN111362885A (zh) 一种苯并噻唑环取代的氨基酚氧基锌络合物及其制备方法和应用
CN108558932B (zh) 二(2-吡啶基)甲基取代氨基酚氧基镁络合物及其制备方法和应用
CN108239102B (zh) 含水杨醛基的铝配合物及其制备方法和应用
CN112625054B (zh) 一种吲哚环取代的氨基酚氧基锌络合物及其制备方法和应用
KR20140029373A (ko) 락톤 개환 중합에 사용하기 위한 n-헤테로사이클릭 카르벤 기반 지르코늄 착물
CN113307820B (zh) 一种喹啉环取代的氨基酚氧基锌络合物及其制备方法和应用
CN108570143B (zh) 一种利用含有手性环己二胺基的铝化合物催化乙交酯聚合的方法
CN114653404B (zh) 一种钌化合物催化剂及其在烯烃复分解中的用途
CN108570066B (zh) 含有手性环己二胺基的铝化合物及其制备方法和应用
CN109705328B (zh) 苯酚-噁唑啉稀土金属催化剂、制备方法及应用
CN114507246A (zh) 一类苯并咪唑取代氨基酚氧基锌卤化物及其制备方法和应用
CN104592425A (zh) 一种环庚三烯基稀土金属催化剂、制备方法及应用
CN108239263B (zh) 利用含水杨醛基的铝配合物催化己内酯聚合的方法
CN102827200A (zh) 含氮双酚氧基配体钛化合物及其制备方法和应用
CN108503801B (zh) 利用含邻苯二胺基的非对称铝配合物催化丙交酯聚合的方法
CN107955030B (zh) 含有乙酰丙酮衍生物的手性铝配合物及其制备方法和应用
CN108239017B (zh) 含水杨醛基的配体及其制备方法和应用
CN108503812B (zh) 利用含邻苯二胺基的非对称铝配合物催化己内酯聚合的方法
CN108084411B (zh) 利用含有乙酰丙酮衍生物的手性铝配合物催化乙交酯聚合的方法
CN108503576B (zh) 含邻苯二胺基的非对称配体及其制备方法和应用
CN108003087B (zh) 含水杨醛基的手性非对称氮氧配体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant