CN109879810A - 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用 - Google Patents

一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用 Download PDF

Info

Publication number
CN109879810A
CN109879810A CN201910187042.3A CN201910187042A CN109879810A CN 109879810 A CN109879810 A CN 109879810A CN 201910187042 A CN201910187042 A CN 201910187042A CN 109879810 A CN109879810 A CN 109879810A
Authority
CN
China
Prior art keywords
arh
nch
zinc complex
cyclosubstituted
imidazoles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910187042.3A
Other languages
English (en)
Other versions
CN109879810B (zh
Inventor
马海燕
龚艳梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201910187042.3A priority Critical patent/CN109879810B/zh
Publication of CN109879810A publication Critical patent/CN109879810A/zh
Application granted granted Critical
Publication of CN109879810B publication Critical patent/CN109879810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一类咪唑环取代的氨基酚氧基锌络合物及其制备方法,以及其在高活性、高选择性催化内酯开环聚合中的应用。其制备方法包括如下步骤:将中性配体直接与金属原料化合物在有机介质中反应,然后经过滤、浓缩、重结晶步骤获得目标化合物。本发明的咪唑环取代的氨基酚氧基锌络合物是一种高效的内酯开环聚合催化剂,可用于催化丙交酯等内酯的聚合反应;特别对于外消旋丙交酯可得到高等规度的聚丙交酯。本发明的咪唑环取代的氨基酚氧基锌络合物优点十分明显:原料易得,合成路线简单,产物收率高,具有很高的催化活性和立体选择性,能获得高规整度、高分子量聚酯材料,能够满足工业部门的需要。其结构式如下所示:

Description

一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用
技术领域
本发明涉及一类咪唑环取代的氨基酚氧基锌络合物,以及这类络合物在内酯聚合中的应用。
背景技术
聚烯烃材料由于其廉价而又优异的性能在生产生活中得到广泛的应用,带动了聚烯烃工业的迅猛发展。但聚烯烃原料来源于不可再生的石油资源,使用后又难以降解,严重的“白色污染”威胁着人类与环境的健康发展,不符合绿色化学及人类可持续发展战略,因此开发可再生、可降解的环境友好型材料替代聚烯烃材料成为近年来高分子材料领域的研究热点。作为一类可以媲美传统聚烯烃材料的高分子材料,脂肪族聚酯因其良好的生物相容性和可降解性而受到了广泛关注。目前被大量研究的脂肪族聚酯包括聚乳酸、聚己内酯及聚丁内酯等。
聚乳酸(Polylactic acid),也称聚丙交酯(Polylactide,PLA),一方面具有与聚烯烃相似的半结晶性能,另一方面具有良好的生物相容性、可降解性以及原料可再生等特点,符合当代绿色化学的潮流,成为绿色环保型聚合物材料中最具发展前景的典型代表。聚乳酸原料来源于玉米、稻谷等可再生植物资源的淀粉发酵,摆脱了通用高分子材料对石油资源的依赖,凭借自然界中的微生物又可降解为二氧化碳和水,维持了自然界的碳循环。聚乳酸还表现出与聚苯乙烯相似的热性能,具有良好的压缩模量和拉伸强度。聚乳酸的诸多优良特性使其在药物缓释材料、手术缝合线、骨折固定材料等生物医学领域都具有良好的应用前景,也可广泛应用于食品包装、纺织行业、汽车行业等领域。聚乳酸的广阔应用前景吸引着各国科学家对其聚合生产过程以及相关催化剂的设计进行广泛研究。
丙交酯具有左旋(L-Lactide,L-LA)、右旋(D-Lactide,D-LA)、和内消旋(meso-Lactide,meso-LA)三种异构体结构,另外,等比例的左旋和右旋丙交酯混合物(L-Lactide:D-Lactide=1:1)称为外消旋丙交酯(rac-Lactide,rac-LA)。利用金属络合物催化不同种类的丙交酯单体开环聚合可以获得多种微观链结构的聚丙交酯。催化单一手性丙交酯单体可获得等规聚丙交酯;催化内消旋丙交酯单体可获得间规、杂规或无规聚丙交酯;催化外消旋丙交酯单体可获得无规、杂规或等规嵌段聚乳酸。其中以外消旋丙交酯为原料聚合得到的等规嵌段聚丙交酯表现出较高的熔点和机械强度,可显著改善聚合物材料的力学性能。因此,以廉价易得的rac-LA为原料,设计合成结构新颖的立体选择性催化剂以实现催化rac-LA等规选择性聚合具有十分重要的研究价值。鉴于催化剂在聚合物中的残留问题以及锌金属络合物高催化活性的特点,设计基于无色、无毒、来源广泛的锌金属中心的络合物催化剂成为该领域的研究热点,相较于其他金属络合物催化剂,更有望实现将聚丙交酯应用于医用高分子材料或环保高分子材料等领域。
1999年,Coates小组用β-二亚氨类(BDI)双核锌络合物(BDI)Zn(OiPr)作为催化剂催化外消旋丙交酯聚合,可控性好,获得高杂规度的聚丙交酯,Pr=0.94(J.Am.Chem.Soc.,1999,121,11583-11584)。Chisholm小组报道了多配位点β-二亚氨配体锌络合物,催化外消旋丙交酯聚合得到了较高杂规度的聚丙交酯,Pr=0.90(Inorg.Chem.2002,41,2785-2794)。Hillmyer和Tolman研究组在2003年合成了双乙氧基桥联的双核锌络合物,该络合物对外消旋丙交酯开环聚合具有很高的催化剂活性,但没有立体选择性(J.Am.Chem.Soc.2003,125,11350)。2007年,Carpentier小组合成了吡唑基氨基镁络合物并用来催化外消旋丙交酯开环聚合,表现出较好的催化活性,但仅得到无规聚丙交酯(Polyhedron,2007,26,3817)。2010年,我们小组报道了多齿氨基酚氧基锌络合物,对丙交酯聚合显示了超高活性,得到无规聚合物(Macromolecules,2010,43,6535-6537),通过调整爪形配位点碳链长度,获得了等规倾向的聚合物(Dalton trans.,2010,39,7897-7910)。2011年,王中夏小组报道的β-单膦亚氨锌络合物催化外消旋丙交酯体现较高催化活性,但仅得到无规聚合物(Organometallics,2011,30,4364-4373)。2016年,Williams小组设计合成的大环双核锌络合物能在1min内能使1000当量的外消旋丙交酯聚合完全,TOF=60000h-1,是目前已报道的活性最高的锌络合物(Angew.Chem.Int.Ed.2016,128,1-7)。
锌合物催化外消旋丙交酯聚合时具有较高的活性,虽说多数表现出无规或杂规选择性,但是近几年来已有好几例具有等规选择性的相关报道,能得到中等至高等规度的聚丙交酯。2013年,本组报道了具有悬垂四氢吡咯的手性氨基酚氧基锌络合物,表现出高催化活性,在室温和低温(-38℃)条件下分别得到了等规度Pm=0.80和Pm=0.84的聚合物,首次获得了集较高活性和较高等规选择性的锌络合物催化剂(Chem.Common.,2013,49,8686-8688)。Du小组于2014年报道了手性恶唑啉取代的类β-二亚氨基锌络合物,得到了高等规(Pm=0.91)多嵌段的聚丙交酯,但催化活性很低(ACS Macro Lett,2014,3,689-692)。崔冬梅小组在2014年报道了一类非手性膦亚胺取代的杂异蝎型阴阳离子型锌络合物,催化外消旋丙交酯聚合时可以得到较高等规度的聚丙交酯(Pm=0.68-0.85)(Chem.Commun.,2014,50,11411)。2017年,我们小组报道了恶唑啉取代的氨基酚氧基锌络合物,该类络合物表现出高催化活性和高等规选择性,在-40℃,能催化外消旋丙交酯聚合得到Pm=0.93的聚合物,这是目前锌络合物催化剂催化rac-LA聚合所能得到的最高等规度(Macromolecules,2017,50,7911-7919)。随后我们组接着报道的非手性苯并恶唑取代的氨基酚氧基锌络合物同样能催化rac-LA的高等规选择性聚合,在-20℃催化外消旋丙交酯聚合获得Pm=0.89的聚合物(Inorg.Chem.,2018,57(17),11240-11251)。
人们在外消旋丙交酯开环聚合领域已经取得了较大的突破,通过设计合成结构新颖的配体来满足高性能催化体系所需的特定立体和电子因素,实现了不同立体结构聚丙交酯的合成。作为环境友好型元素,锌的络合物颜色接近白色,在聚合物加工方面可以省去脱色等工艺。目前虽然个别锌络合物对外消旋丙交酯的开环聚合表现出了高等规选择性,但其催化活性比起一般无立体选择性的锌络合物降低很多。所以有关锌络合物催化外消旋丙交酯开环聚合的研究工作有待于进一步开展,以期得到集高活性、高等规选择性为一体的高效催化剂,进一步提高工业化潜力。
发明内容
本发明目的之一在于公开一类咪唑环取代的氨基酚氧基锌络合物。
本发明目的之二在于公开一类咪唑环取代的氨基酚氧基锌络合物的制备方法。
本发明目的之三在于公开一类咪唑环取代的氨基酚氧基锌络合物作为催化剂在内酯聚合中的应用。
本发明的技术构思:
氨基酚类配体具有原料易得、合成方便、结构可调等特点,通过变化取代基来调节电子效应和位阻效应,在科研领域中得到了广泛应用,将其应用于锌络合物催化剂的合成,可实现催化外消旋丙交酯立体选择性聚合。含有咪唑环的化合物在配位化学领域有着广泛的应用,咪唑环上其中一个N原子与金属中心配位,另一个N原子上的取代基在外围调控电子、空间因素,有望对金属络合物的催化性能产生直接影响。因此,本发明在氨基酚氧基配体结构中引入咪唑环,用于构筑一类新型的锌络合物催化剂。通过改变配体骨架上各取代基,来调节金属中心的路易斯酸性以及金属中心的空间位阻,以期实现锌络合物以更高活性、更高等规立体选择性催化外消旋丙交酯的开环聚合,进一步提高工业化潜力。
本发明提供的咪唑环取代的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,具有以下通式:
式(I)、(II)中:
R1~R2分别代表氢,C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基,卤素;
R3代表C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基,C6~C18的芳基;
R4代表C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基;
X代表氨基NR5R6,其中R5~R6分别为C1~C6直链、支链或环状结构的烷基,三甲基硅基,三乙基硅基,二甲基氢硅基,R5和R6可以相同或不同。
更特征的,式(I)、(II)中,R1~R2优选为氢,C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基,卤素;
R3优选为C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基,C6~C12的芳基;
R4优选为C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基;
X优选为二(三甲基硅)氨基,二(三乙基硅)氨基,二(二甲基氢硅)氨基。
式(I)、(II)中,R1~R2优选为氢、甲基、叔丁基、枯基、三苯甲基;R3优选为甲基、乙基、异丙基、正丁基、叔丁基、环己基、正己基、正辛基、苄基;R4优选为甲基、乙基、异丙基、正丁基、环己基、苄基;X优选为二(三甲基硅)氨基。
优选的咪唑环取代的氨基酚类配体,其结构式如下:
优选的氨基酚类配体的金属锌络合物结构为:
本发明的咪唑环取代的氨基酚类配体(I)及其锌络合物(II)制备方法如下所示:
将式(III)所示的2-氯甲基-取代苯并咪唑类化合物与伯胺反应生成相应仲胺,加入2-溴甲基-4,6-二取代苯酚(IV),反应温度为25~150℃,反应时间为2~72小时,然后从反应产物中收集配体化合物(I);
任选的,再将式(I)所示的咪唑环取代的氨基酚类配体化合物与锌金属原料化合物在有机介质中反应,反应温度为0~100℃,反应时间为2~96小时,然后从反应产物中收集含咪唑环的氨基酚氧基锌的目标化合物(II);
上述制备方法中取代基R1~R3、X与满足前述的咪唑环取代的氨基酚类配体(I)及其金属锌络合物(II)的各相应基团一致;
锌金属原料化合物为二{二(三甲基硅)氨基}锌。
咪唑环取代的氨基酚类配体化合物(I)与锌金属原料化合物的摩尔比为1:1~1.5;所述的有机介质选自四氢呋喃、乙醚、甲苯、苯、石油醚和正己烷中的一种或两种。
本发明所述咪唑环取代的氨基酚类配体(I)的制备方法中,式(III)所示2-氯甲基取代苯并咪唑类化合物的合成可参考文献方法按以下路线进行合成:
其中,式(V)所示N-烷基取代的邻苯二胺由邻苯二胺与烷基溴代物在N,N-二甲基甲酰胺溶液中加入无水碳酸钾反应生成;再将化合物(V)与氯乙酸反应得到目标化合物(III)(Asian Journal of Chemistry,2015,27(1),98-100)。
本发明所述咪唑环取代的氨基酚类配体(I)的制备方法中,式(IV)所示2-溴甲基-4,6-二取代酚的合成可参考文献方法按以下路线由2,4-取代苯酚与多聚甲醛在33%溴化氢的醋酸溶液反应获得(Inorg.Chem.,2002,41,3656;J.Org.Chem.,1994,59,1939):
本发明所述的咪唑环取代的氨基酚类配体的锌络合物是一种高效的内酯聚合催化剂,可用于L-丙交酯、D-丙交酯、rac-丙交酯、meso-丙交酯、ε-己内酯、β-丁内酯、α-甲基三亚甲基环碳酸酯的聚合反应,聚合方式为溶液聚合和熔融聚合。
以本发明所述的咪唑环取代的氨基酚氧基锌络合物为催化剂,使丙交酯在-40~140℃聚合,优选-20~110℃;聚合时催化剂与单体摩尔比为1:1~10000,优选为1:100~5000。
以本发明所述的咪唑环取代的氨基酚氧基锌络合物为催化剂,在醇存在的条件下,使丙交酯在-40~140℃聚合,优选-20~110℃;聚合时催化剂与醇以及单体摩尔比为1:1~50:1~10000,优选为1:1~50:100~5000;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20单或多芳基取代的烷基醇。
以本发明所述的咪唑环取代的氨基酚氧基锌络合物为催化剂,在加醇或不加醇的条件下,使ε-己内酯聚合,聚合时催化剂与醇以及单体摩尔比为1:0~50:1~10000,优选为1:0~50:100~5000;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20单或多芳基取代的烷基醇。
本发明提供的催化剂制备方便、性质稳定,同时具有较高的催化活性及高等规立体选择性,有着广泛的应用前景。下面通过实例进一步说明本发明,但本发明不限于此。
具体实施方式
实施例1
配体L1的合成:
(1)N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]环己胺的合成
惰性气体保护下,于100mL三口瓶中加入环己胺(24.5mmol,2.43g)和无水K2CO3(2.94mmol,0.41g),搅拌10分钟后,由恒压滴液漏斗缓慢滴加1-苄基-2-氯甲基苯并咪唑(2.45mmol,0.63g)的25mL N,N-二甲基甲酰胺溶液,反应8-9h。加水淬灭,用乙酸乙酯萃取,用无水MgSO4干燥,过滤,减压蒸除溶剂,得黄色粘稠液体,于90℃/1mmHg下蒸除未反应的环己胺。经TLC分析为主要产物点,直接用于下一步反应,据核磁氢谱判断产率约82%。
(2)配体L1的合成
于100mL单口瓶中加入N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]环己胺(5.6mmol,1.79g)、无水碳酸钾(6.72mmol,0.93g)和30mL N,N-二甲基甲酰胺,搅拌10分钟后,分批加入2-溴甲基-4,6-二叔丁基苯酚(5.6mmol,1.68g),室温反应5h,加水淬灭,用乙酸乙酯萃取,用饱和NaCl水溶液洗涤,无水硫酸钠干燥,减压蒸除溶剂,用二氯甲烷、石油醚重结晶,得白色固体(1.55g,52%)。
1H NMR(400MHz,CDCl3):δ10.35(s,1H,OH),7.80–7.75(m,1H,ArH),7.26–7.20(m,4H,ArH),7.20–7.13(m,3H,ArH),6.85(d,4J=2.3Hz,1H,ArH),6.73–6.68(m,2H,ArH),5.24(s,2H,PhCH2),3.90(s,2H,NCH2C=N),3.87(s,2H,ArCH2),2.98–2.87(m,1H,NCH ofcyclohexyl),1.95(d,3J=11.1Hz,2H,CH2 of cyclohexyl),1.80(m,4H,CH2 ofcyclohexyl),1.63(m,1H,CH2 of cyclohexyl),1.41(s,9H,(CH3)3),1.39–1.34(m,1H,CH2of cyclohexyl),1.27(s,9H,(CH3)3),1.23–1.17(m,1H,CH2 of cyclohexyl),1.15–1.04(m,1H,CH2 of cyclohexyl).13C NMR(101MHz,CDCl3):δ153.98(NC=N),150.85,142.52,141.17,136.26,135.83,135.66,128.86,127.80,126.46,124.27,123.29,123.06,122.23,121.60,120.00,110.17(all ArC),58.83(NCH),54.24(ArCH2),47.00(NCH2Ph),46.76(NCH2C=N),35.02(C(CH3)3),34.27(C(CH3)3),31.82(C(CH3)3),29.77(C(CH3)3),27.59(CH2of cyclohexyl),26.20(CH2 of cyclohexyl),25.91(CH2 of cyclohexyl).Anal.Calcd.for C36H47N3O:C,80.40;H,8.81;N,7.81.Found:C,80.08;H,8.59;N,7.69%.
实施例2
配体L2的合成
除原料采用N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]环己胺(5mmol,1.60g)、无水碳酸钾(6mmol,0.83g)和2-溴甲基-4,6-二枯基苯酚(5mmol,2.12g)外,其他操作同实施例1。经柱层析得白色固体(2.16g,65%)。
1H NMR(400MHz,CDCl3):δ9.86(s,1H,OH),7.74(m,1H,ArH),7.26(s,2H,ArH),7.25–7.23(m,4H,ArH),7.24–7.20(m,6H,ArH),7.19(m,3H,ArH),7.17(m,1H,ArH),7.15–7.10(m,1H,ArH),6.73(d,4J=2.2Hz,1H,ArH),6.66(m,2H,ArH),4.79(s,2H,PhCH2),3.79(s,2H,NCH2C=N),3.73(s,2H,ArCH2),2.48(m,NCH of cyclohexyl),1.69(m,1H,CH2 ofcyclohexyl),1.66(s,6H,(CH3)3),1.66(s,6H,(CH3)3),1.54(m,3H,CH2 of cyclohexyl),1.15(m,2H,CH2 of cyclohexyl),1.08–0.94(m,3H,CH2 of cyclohexyl),0.94–0.83(m,1H,CH2 of cyclohexyl).13C NMR(101MHz,CDCl3):δ153.53(NC=N),151.58,151.40,150.86,142.42,140.44,136.20,136.07,134.96,128.77,127.91,127.59,126.86,126.34,126.26,126.10,125.55,125.18,124.94,123.01,122.24,121.59,119.93,110.19(all ArC),58.99(NCH),54.10(ArCH2),47.44(NCH2Ph),46.58(NCH2C=N),42.60((CH3)2CPh),42.11((CH3)2CPh),31.23((CH3)2CPh),29.59((CH3)2CPh),27.40(CH2 of cyclohexyl),26.12(CH2 ofcyclohexyl),25.98(CH2 of cyclohexyl).Anal.Calcd.for C46H51N3O:C,83.47;H,7.77;N,6.35.Found:C,83.45;H,7.97;N,6.01%.
实施例3
配体L3的合成
除原料采用N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]环己胺(8.4mmol,2.69g)、无水碳酸钾(8.4mmol,1.50g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(10.08mmol,3.72g)外,其他操作同实施例1。经重结晶得白色固体(4.42g,77%)。
1H NMR(400MHz,CDCl3):δ10.19(s,1H,OH),7.74–7.69(m,1H,ArH),7.27–7.24(m,1H,ArH),7.24–7.21(m,3H,ArH),7.21–7.19(m,5H,ArH),7.19–7.18(m,3H,ArH),7.17(m,4H,ArH),7.15(m,3H,ArH),7.14(m,1H,ArH),7.11(m,1H,ArH),6.89(d,4J=1.6Hz,1H,ArH),6.74–6.67(m,3H,ArH),4.84(s,2H,NCH2Ph),3.81(s,2H,NCH2C=N),3.78(s,2H,ArCH2),2.48(m,1H,NCH of cyclohexyl),2.12(s,3H,ArCH3),1.70(d,3J=11.1Hz,3H,CH2of cyclohexyl),1.57(m,3H,CH2 of cyclohexyl),1.20-1.04(m,4H,CH2 of cyclohexyl),1.04-0.92(m,1H,CH2 of cyclohexyl).13C NMR(101MHz,CDCl3):δ153.97(NC=N),150.92,146.18,142.32,135.99,133.44,131.31,130.56,128.85,127.71,127.00,126.78,126.33,125.33,123.00,122.23,122.06,119.83,110.25(all ArC),63.29(NCH),58.64(Ph3C),53.89(ArCH2),46.78(NCH2Ph),46.56(NCH2C=N),27.43(CH2 of cyclohexyl),26.06(CH2of cyclohexyl),25.97(CH2 of cyclohexyl),21.00(ArCH3).Anal.Calcd.for C48H47N3O:C,84.54;H,6.95;N,6.16.Found:C,84.41;H,7.09;N,6.05%.
实施例4
配体L4的合成
(1)N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]正丁胺的合成
除原料采用正丁胺(5.60g,76.7mmol)、碳酸钾(1.27g,9.19mmol)和1-苄基-2-氯甲基苯并咪唑(1.50g,7.66mmol)外,其他操作步骤同实施例1。得橙红色油状物。
(2)配体L4的合成
除原料采用N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]正丁胺(6.4mmol,1.88g)、无水碳酸钾(7.7mmol,1.06g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(6.4mmol,2.84g)外,其他操作同实施例1。经柱层析得到白色固体(2.86g,68%)。
1H NMR(400MHz,CDCl3):δ9.86(s,1H,OH),7.77–7.73(m,1H,ArH),7.30–7.26(m,1H,ArH),7.24(m,3H,ArH),7.22(m,4H,ArH),7.20(m,2H,ArH),7.18(m,5H,ArH),7.17(m,2H,ArH),7.15(m,2H,ArH),7.14–7.11(m,2H,ArH),6.95(d,4J=1.7Hz,1H,ArH),6.71(m,3H,ArH),4.87(s,2H,NCH2Ph),3.76(s,2H,NCH2C=N),3.69(s,2H,ArCH2),2.51–2.43(m,2H,CH2 of n-Butyl),2.16(s,3H,ArCH3),1.24–1.14(m,2H,CH2 of n-Butyl),1.06(m,2H,CH2of n-Butyl),0.78(t,3J=7.2Hz,3H,CH3of n-Butyl).13C NMR(100MHz,CDCl3):δ153.87(NC=N),150.39,146.14,142.42,135.98,135.83,133.69,131.28,130.86,129.08,128.90,127.83,127.08,127.04,126.34,125.41,123.07,122.32,122.26,119.95,109.99(allArC),63.33(Ph3C),58.17(ArCH2),53.64(NCH2CH2),50.07(NCH2Ph),46.77(NCH2C=N),28.51(NCH2CH2),21.01(ArCH3),20.56(CH2CH3),14.05(CH2CH3).Anal.Calcd.for C46H45N3O:C,84.24;H,6.92;N,6.41.Found:C,84.10;H,6.98;N,6.31%.
实施例5
配体L5的合成
(1)N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]异戊胺的合成
除原料采用异戊胺(6.10g,70mmol)、碳酸钾(1.16g,8.4mmol)和1-苄基-2-氯甲基苯并咪唑(1.80g,7mmol)外,其他操作步骤同实施例1。得橙红色油状物。
(2)配体L5的合成
除原料采用N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]异戊胺(5.66mmol,1.74g)、无水碳酸钾(6.8mmol,0.94g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(5.66mmol,2.5g)外,其他操作同实施例1。经重结晶得到白色固体(2.16g,57%)。
1H NMR(400MHz,CDCl3):δ9.86(s,1H,OH),7.76–7.72(m,1H,ArH),7.32–7.27(m,1H,ArH),7.25–7.23(m,3H,ArH),7.23–7.21(m,4H,ArH),7.21–7.19(m,3H,ArH),7.19–7.17(m,4H,ArH),7.17–7.15(m,3H,ArH),7.15–7.14(m,2H,ArH),7.13–7.11(m,1H,ArH),6.95(d,4J=1.6Hz,1H,ArH),6.72(d,4J=1.6Hz,1H,ArH),6.68(d,3J=6.7Hz,2H),4.82(s,2H,NCH2Ph),3.75(s,2H,NCH2C=N),3.67(s,2H,ArCH2),2.55–2.46(m,2H,NCH2CH2),2.16(s,3H,ArCH3),1.18–1.08(m,2H,NCH2CH2),0.92–0.82(m,1H,CH(CH3)2),0.75(d,3J=6.6Hz,6H,CH(CH3)2).
实施例6
配体L6的合成
(1)N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]苄胺的合成
除原料采用苄胺(9.58g,89.5mmol)、碳酸钾(1.36g,9.85mmol)和1-苄基-2-氯甲基苯并咪唑(1.50g,8.95mmol)外,其他操作步骤同实施例1。得橙红色油状物。
(2)配体L6的合成
除原料采用N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]苄胺(6.1mmol,1.99g)、无水碳酸钾(7.3mmol,1.0g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(6.1mmol,2.70g)外,其他操作同
实施例1。经重结晶得到白色固体(2.51g,60%)。
1H NMR(400MHz,CDCl3)δ9.86(s,1H,OH),7.71(d,3J=8.0Hz,1H,ArH),7.23(m,3H,ArH),7.21(m,5H,ArH),7.19(m,3H,ArH),7.17(m,4H,ArH),7.15(m,4H,ArH),7.13(m,2H,ArH),7.12(m,1H,ArH),7.05(t,3J=7.5Hz,2H,ArH),6.92(s,1H,ArH),6.85(m,3H,ArH),6.52(d,3J=7.5Hz,2H,ArH),4.72(s,2H,CNCH2Ph),3.93(s,2H,NCH2Ph),3.62(s,2H,NCH2C=N),3.52(s,2H,ArCH2),2.17(s,3H,ArCH3).13C NMR(101MHz,CDCl3):δ153.58(NC=N),150.42,146.19,142.33,137.04,135.60,133.89,131.34 131.10,129.96,129.57,128.79,128.63,127.72,127.59,127.09,126.96,126.20,125.46,123.05,122.28,122.19,119.85,110.09(all ArC),63.38(NCH2Ph),58.37(Ph3C),57.82(ArCH2),49.14(NCH2Ph),46.72(NCH2C=N),21.02(ArCH3).Anal.Calcd.for C49H43N3O:C,85.31;H,6.28;N,6.09.Found:C,85.30;H,6.33;N,6.03%.
实施例7
配体L7的合成
(1)N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]叔丁胺的合成
除原料采用叔丁胺(5.12g,70mmol)、碳酸钾(1.16g,8.4mmol)和1-苄基-2-氯甲基苯并咪唑(1.80g,7mmol)外,其他操作步骤同实施例1。得橙红色油状物。
(2)配体L7的合成
除原料采用N-[(1-苄基-1H-苯并咪唑-2-基)-甲基]叔丁胺(5.2mmol,1.54g)、无水碳酸钾(6.3mmol,0.87g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(5.2mmol,2.3g)外,其他操作同实施例1。经柱层析得到白色固体(1.80g,53%)。
1H NMR(400MHz,CDCl3):δ11.20(s,1H,OH),7.70(d,3J=7.4Hz,1H,ArH),7.24–7.20(m,3H,ArH),7.20–7.19(m,1H,ArH),7.18–7.15(m,3H,ArH),7.15–7.13(m,4H,ArH),7.13–7.10(m,5H,ArH),7.10–7.08(m,4H,ArH),6.99(d,3J=7.4Hz,1H),6.80–6.73(m,2H,ArH),6.66(s,1H,ArH),6.45(s,1H,ArH),4.70(s,2H,NCH2Ph),4.08(s,2H,NCH2C=N),3.79(s,2H,ArCH2),1.93(s,3H,ArCH3),1.01(s,9H,C(CH3)).
实施例8
配体L8的合成:
(1)N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]环己胺的合成
除原料采用环己胺(24.5mmol,2.43g)、碳酸钾(2.94mmol,0.41g)以及1-甲基-2-氯甲基苯并咪唑(2.45mmol,0.44g)外,其他操作同实施例1,得黄色油状液体。
(2)配体L8的合成
除原料采用N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]环己胺(5mmol,1.22g),无水碳酸钾(6mmol,0.83g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(5mmol,2.2g)外,其他操作同实施例1。经重结晶得到白色固体(2.17g,72%)。
1H NMR(400MHz,CDCl3):δ10.23(s,1H,OH),7.70–7.65(m,1H,ArH),7.31–7.27(m,1H,ArH),7.25–7.22(m,1H,ArH),7.22–7.18(m,1H,ArH),7.18–7.17(m,4H,ArH),7.16(m,8H,ArH),7.15–7.10(m,3H,ArH),6.86(d,4J=1.6Hz,1H,ArH),6.71(d,4J=1.5Hz,1H,ArH),3.84(s,2H,NCH2C=N),3.80(s,2H,ArCH2),3.18(s,3H,NCH3),2.49–2.40(m,1H,NCH ofcyclohexyl),2.12(s,3H,ArCH3),1.78–1.73(m,4H,CH2 of cyclohexyl),1.61(d,3J=10.2Hz,1H,CH2 of cyclohexyl),1.29(m,2H,CH2 of cyclohexyl),1.18–1.00(m,3H,CH2of cyclohexyl).13C NMR(100MHz,CDCl3):δ153.92(NC=N),150.65,146.14,142.14,136.35,133.43,131.29,130.62,128.80,126.96,126.84,125.33,122.75,122.11,121.82,119.62,109.52(all ArC),63.24(NCH),58.75(Ph3C),53.82(ArCH2),46.55(NCH2C=N),30.00(CH2 of cyclohexyl),27.47(CH2of cyclohexyl),26.13(CH2 of cyclohexyl),25.97(NCH3),21.00(ArCH3).Anal.Calcd.for C42H43N3O:C,83.27;H,7.15;N,6.94.Found:C,82.84;H,6.97;N,6.81%.
实施例9
配体L9的合成:
(1)N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]正丁胺的合成
除原料采用正丁胺(24.5mmol,1.79g)、碳酸钾(2.94mmol,0.41g)以及1-甲基-2-氯甲基苯并咪唑(2.45mmol,0.44g)外,其他操作同实施例1,得黄色油状液体。
(2)配体L9的合成
除原料采用N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]正丁胺(5.3mmol,1.15g)、无水碳酸钾(10.6mmol,0.88g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(5.3mmol,2.34g)外,其他操作同实施例1。经柱层析得到白色固体(1.9g,63%)。
1H NMR(400MHz,CDCl3):δ9.84(s,1H,OH),7.70(d,3J=7.0Hz,1H,ArH),7.31–7.26(m,1H,ArH),7.25–7.23(m,1H,ArH),7.20(m,12H,ArH),7.18(s,1H,ArH),7.15(m,3H,ArH),6.92(s,1H,ArH),6.75(s,1H,ArH),3.77(s,2H,NCH2C=N),3.75(s,2H,ArCH2),3.16(s,3H,NCH3),2.47–2.38(m,2H,CH2 of n-Butyl),2.15(s,3H,ArCH3),1.41–1.32(m,2H,CH2 of n-Butyl),1.16–1.06(m,2H,CH2 of n-Butyl),0.81(t,3J=7.2Hz,3H,CH3of n-Butyl).13CNMR(100MHz,CDCl3):δ153.70(NC=N),150.19,146.10,142.20,136.11,133.62,131.25,130.99,129.02,127.16,127.08,125.44,122.80,122.19,121.95,119.71,109.44(allArC),63.27(Ph3C),58.49(ArCH2),53.79(NCH2CH2),50.42(NCH2C=N),29.96(NCH2CH2),28.23(NCH3),20.98(CH2CH3),20.59(CH2CH3),14.04(ArCH3).Anal.Calcd.for C40H41N3O:C,82.86;H,7.13;N,7.25.Found:C,82.99;H,7.52;N,6.87%.
实施例10
配体L10的合成:
(1)N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]正辛胺的合成
除原料采用正辛胺(100mmol,12.92g)、碳酸钾(12mmol,1.66g)以及1-甲基-2-氯甲基苯并咪唑(10mmol,1.84g)外,其他操作同实施例1,得黄色油状液体。
(2)配体L10的合成
除原料采用N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]正辛胺(8mmol,2.19g)、无水碳酸钾(9.6mmol,1.33g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(8mmol,3.55g)外,其他操作同
实施例1。经柱层析得白色固体(2.8g,55%)。
1H NMR(400MHz,CDCl3):δ9.80(s,1H,OH),7.71–7.66(m,1H,ArH),7.30–7.26(m,1H,ArH),7.24–7.22(m,1H,ArH),7.21–7.20(m,5H,ArH),7.19(m,6H,ArH),7.18–7.16(m,1H,ArH),7.16–7.14(m,2H,ArH),7.14–7.13(m,1H,ArH),7.13–7.10(m,1H,ArH),6.91(d,4J=1.7Hz,1H,ArH),6.75(d,4J=1.7Hz,1H,ArH),3.75(s,2H,NCH2C=N),3.74(s,2H,ArCH2),3.13(s,3H,NCH3),2.45–2.36(m,2H,NCH2CH2),2.15(s,3H,ArCH3),1.44–1.31(m,2H,NCH2CH2),1.30–1.23(m,2H,2H of n-octyl),1.20–1.14(m,6H,6H of n-octyl),1.11–1.01(m,2H,CH2CH3),0.86(t,3J=7.1Hz,3H,CH2CH3).
实施例11
配体L11的合成:
(1)N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]异戊胺的合成
除原料采用异戊胺(80mmol,6.97g)、碳酸钾(9.6mmol,1.33g)以及1-甲基-2-氯甲基苯并咪唑(8mmol,1.47g)外,其他操作同实施例1,得黄色油状液体。
(2)配体L11的合成
除原料采用N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]异戊胺(6.9mmol,1.60g)、无水碳酸钾(8.28mmol,1.14g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(6.9mmol,3.07g)外,其他操作同实施例1。经柱层析得白色固体(2.4g,59%)。
1H NMR(400MHz,CDCl3):δ9.83(s,1H,OH),7.72–7.66(m,1H,ArH),7.26–7.25(m,1H,ArH),7.25–7.21(m,2H,ArH),7.21–7.20(m,5H,ArH),7.20–7.18(m,6H,ArH),7.18–7.16(m,1H,ArH),7.16–7.14(m,2H,ArH),7.14–7.12(m,1H,ArH),6.92(d,4J=1.7Hz,1H,ArH),6.76(d,4J=1.7Hz,1H,ArH),3.75(s,2H,NCH2C=N),3.75(s,2H,ArCH2),3.12(s,3H,NCH3),2.49–2.41(m,2H,NCH2CH2),2.15(s,3H,ArCH3),1.42–1.33(m,1H,CH(CH3)2),1.34–1.27(m,2H,NCH2CH2),0.77(d,J=6.4Hz,6H,CH(CH3)2).
实施例12
配体L12的合成:
(1)N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]苄胺的合成
除原料采用苄胺(24.5mmol,2.63g)、碳酸钾(2.94mmol,0.41g)和1-甲基-2-氯甲基苯并咪唑(2.45mmol,0.44g)外,其他操作步骤同实施例1。得橙红色油状物。
(2)配体L12的合成
除原料采用N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]苄胺(7.7mmol,1.93g)、无水碳酸钾(9.2mmol,1.28g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(7.7mmol,3.41g)外,其他操作同实施例1。经重结晶得白色固体(3.16g,67%)。
1H NMR(400MHz,C6D6):δ11.02(s,1H,OH),7.98(d,3J=7.9Hz,1H,ArH),7.72–7.66(m,6H,ArH),7.46(d,J=1.7Hz,1H,ArH),7.33–7.28(m,1H,ArH),7.24(d,J=1.9Hz,3H,ArH),7.22(m,6H,ArH),7.21–7.18(m,3H,ArH),7.13(m,3H,ArH),6.88(d,4J=7.9Hz,1H,ArH),6.80(d,4J=1.6Hz,1H,ArH),3.80(s,2H,NCH2C=N),3.63(s,2H,PhCH2),3.34(s,2H,ArCH2),2.40(s,3H,NCH3),2.23(s,3H,ArCH3).13C NMR(101MHz,CDCl3):δ153.52(NC=N),150.18,146.18,142.14,136.80,136.08,133.81,131.33,131.13,130.01,129.38,128.62,127.72,127.07,127.02,125.46,122.80,122.19,121.79,119.65,109.42(all ArC),63.36(NCH2Ph),58.36(Ph3C),58.18(ArCH2),49.52(NCH2C=N),29.79(NCH3),21.00(ArCH3).Anal.Calcd.for C43H39N3O:C,84.14;H,6.40;N,6.85.Found:C,84.17;H,6.34;N,6.91%.
实施例13
配体L13的合成:
(1)N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]叔丁胺的合成
除原料采用叔丁胺(80mmol,5.85g)、碳酸钾(9.6mmol,1.33g)和1-甲基-2-氯甲基苯并咪唑(8mmol,1.47g)外,其他操作步骤同实施例1。得橙红色油状物。
(2)配体L13的合成
除原料采用N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]叔丁胺(5.06mmol,1.1g)、无水碳酸钾(6.07mmol,0.84g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(5.06mmol,2.24g)外,其他操作同实施例1。经重结晶得白色固体(1.81g,62%)。
1H NMR(400MHz,CDCl3):δ11.21(s,1H,OH),7.67(d,3J=7.4Hz,1H,ArH),7.31–7.27(m,1H,ArH),7.25–7.22(m,1H,ArH),7.14(m,1H,ArH),7.12–7.08(m,14H,ArH),7.08–7.05(m,1H,ArH),6.66(s,1H,ArH),6.46(s,1H,ArH),4.03(s,2H,NCH2C=N),3.86(s,2H,ArCH2),3.17(s,3H,NCH3),1.95(s,3H,ArCH3),1.05(s,9H,C(CH3)3).
实施例14
配体L14的合成
除原料采用N-[(1-甲基-1H-苯并咪唑-2-基)-甲基]环己胺(9mmol,2.19g)、无水碳酸钾(10.8mmol,1.49g)和2-溴甲基-4,6-二叔丁基苯酚(9mmol,2.69g)外,其他操作同实施例1。经重结晶得到白色固体(3.72g,90%)。
1H NMR(400MHz,CDCl3):δ10.30(s,1H,OH),7.74–7.70(m,1H,ArH),7.32–7.26(m,2H,ArH),7.26–7.21(m,1H,ArH),7.17(d,4J=2.4Hz,1H,ArH),6.85(d,4J=2.4Hz,1H,ArH),3.99(s,2H,NCH2C=N),3.87(s,2H,ArCH2),3.69(s,3H,NCH3),2.75(m,1H,NCH ofcyclohexyl),2.01(d,3J=10.9Hz,2H,CH2 of cyclohexyl),1.86–1.75(m,3H,CH2 ofcyclohexyl),1.63(d,3J=12.4Hz,1H,CH2 of cyclohexyl),1.55–1.41(m,2H,CH2 ofcyclohexyl),1.38(s,9H,C(CH3)3),1.25(s,9H,C(CH3)3),1.23–1.05(m,3H,CH2 ofcyclohexyl).13C NMR(101MHz,CDCl3):δ153.79(NC=N),150.84,142.29,141.06,136.27,135.48,124.11,123.10,122.80,122.13,121.49,119.78,109.42(all ArC),59.16(NCH),54.52(ArCH2),47.01(NCH2C=N),34.93(NCH3),34.24(C(CH3)3),31.77(C(CH3)3),30.24(C(CH3)3),29.70(C(CH3)3),27.75(CH2 of cyclohexyl),26.20(CH2 of cyclohexyl),25.91(CH2 of cyclohexyl).Anal.Calcd.for C30H43N3O:C,78.05;H,9.39;N,9.10.Found:C,77.87;H,9.52;N,9.05%.
实施例15
配体L15的合成:
(1)N-[(1-异丙基-1H-苯并咪唑-2-基)-甲基]环己胺的合成
除原料采用环己胺(167mmol,16.56g)、碳酸钾(20mmol,2.78g)以及1-异丙基-2-氯甲基苯并咪唑(16.7mmol,3.5g)外,其他操作同实施例1,得黄色油状液体。
(2)配体L15的合成
除原料采用N-[(1-异丙基-1H-苯并咪唑-2-基)-甲基]环己胺(13mmol,3.6g)、无水碳酸钾(16mmol,2.2g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(13mmol,5.7g)外,其他操作同
实施例1。经重结晶得到白色固体(4.41g,54%)。
1H NMR(400MHz,CDCl3):δ10.29(s,1H,OH),7.70–7.66(m,1H,ArH),7.50–7.45(m,1H,ArH),7.24–7.20(m,2H,ArH),7.17–7.15(m,1H,ArH),7.15–7.13(m,7H,ArH),7.13–7.11(m,3H,ArH),7.11–7.09(m,2H,ArH),7.09–7.05(m,2H,ArH),6.86(d,4J=1.6Hz,1H,ArH),6.71(d,4J=1.6Hz,1H,ArH),4.56–4.45(m,1H,NCH(CH3)2),3.84(s,4H,2H of NCH2C=N,2Hof ArCH2),2.52–2.41(m,1H,NCH of cyclohexyl),2.14(s,3H,ArCH3),1.83–1.74(m,2H,2Hof cyclohexyl),1.67–1.57(m,3H,3H of cyclohexyl),1.36(d,3J=6.9Hz,6H,CH(CH3)2),1.30–1.19(m,2H,2H of cyclohexyl),1.17–1.00(m,3H,3H of cyclohexyl).
实施例16
配体L16的合成:
(1)N-[(1-异丙基-1H-苯并咪唑-2-基)-甲基]叔丁胺的合成
除原料采用叔丁胺(192mmol,14g)、碳酸钾(23mmol,3.18g)以及1-异丙基-2-氯甲基苯并咪唑(19.2mmol,4g)外,其他操作同实施例1,得黄色油状液体。
(2)配体L16的合成
除原料采用N-[(1-异丙基-1H-苯并咪唑-2-基)-甲基]叔丁胺(11.8mmol,2.9g)、无水碳酸钾(14mmol,1.95g)和2-溴甲基-4-甲基-6-三苯甲基苯酚(11.8mmol,5.2g)外,其他操作同实施例1。经重结晶得到白色固体(4.31g,60%)。
1H NMR(400MHz,CDCl3):δ11.29(s,1H,OH),7.73–7.67(m,1H,ArH),7.49–7.44(m,1H,ArH),7.32–7.26(m,2H,ArH),7.05–7.02(m,4H,ArH),7.02–6.99(m,5H,ArH),6.98–6.91(m,6H,ArH),6.69(s,1H,ArH),6.63(s,1H,ArH),4.49–4.39(m,1H,NCH(CH3)2),4.23(s,2H,NCH2C=N),3.75(s,2H,ArCH2),2.09(s,3H,ArCH3),1.34(d,3J=6.9Hz,6H,NCH(CH3)2),0.92(s,9H,C(CH3)3).
实施例17
锌络合物Zn1的合成
氩气保护下,将Zn[N(SiMe3)2]2(1mmol,384mg)加入50mL Schlenk瓶,用5mL甲苯溶解,再缓慢加入配体L1(1mmol,538mg),室温反应8h,过滤除去少量杂质,真空减压抽除溶剂和自由硅胺,得黄色泡状物。加入甲苯、正己烷重结晶,得白色固体(427mg,56%)。
1H NMR(400MHz,C6D6):δ7.91(d,3J=8.1Hz,1H,ArH),7.23(d,4J=2.6Hz,1H,ArH),7.02–6.96(m,1H,ArH),6.94–6.90(m,3H,ArH),6.82(d,4J=2.6Hz,1H,ArH),6.79–6.74(m,1H,ArH),6.48–6.41(m,1H,ArH),4.45(d,2J=16.6Hz,1H,NCH2Ph),4.35(m,2H,1H ofNCH2Ph,1H of ArCH2),3.66(d,2J=16.7Hz,1H,NCH2C=N),3.31(d,2J=16.7Hz,1H,NCH2C=N),3.03(d,2J=11.2Hz,1H,ArCH2),2.90–2.75(m,2H,CH2 of cyclohexyl),1.80–1.68(m,2H,CH2 of cyclohexyl),1.63–1.56(m,1H,CH2 of cyclohexyl),1.54(s,9H,(CH3)3),1.49–1.42(m,1H,CH2 of cyclohexyl),1.38(s,9H,(CH3)3),1.33–1.17(m,2H,CH2 ofcyclohexyl),1.14–1.01(m,1H,CH2 of cyclohexyl),1.01–0.83(m,2H,CH2 ofcyclohexyl),0.60(s,18H,N(Si(CH3)2)2).13C NMR(101MHz,C6D6):δ165.08(NC=N),153.20,138.87,138.07,135.25,134.68,134.03,129.46,126.21,125.10,124.45,124.28,123.93,121.20,119.56,110.11(all ArC),66.88(Ph3C),56.75(ArCH2),49.27(NCH2Ph),46.85(NCH),35.56(NCH2C=N),34.08(CH2 of cyclohexyl),32.37(CH2 of cyclohexyl),30.10(CH2 of cyclohexyl),30.05(C(CH3)3),26.86(C(CH3)3),26.41(C(CH3)3),26.03(C(CH3)3),6.36(N(Si(CH3)2)2).Anal.Calcd.for C42H64N4OSi2Zn:C,66.15;H,8.56;N,7.35.Found:C,66.38;H,8.33;N,7.29%.
实施例18
锌络合物Zn2的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L2(662mg,1mmol)外,其余操作步骤同实施例17。得无色晶体Zn2(434mg,49%)。
1H NMR(400MHz,C6D6):δ7.90(d,3J=8.1Hz,1H,ArH),7.32(d,3J=7.3Hz,2H,ArH),7.20–7.16(m,4H,ArH),7.13–7.10(m,1H,ArH),7.07–7.04(m,3H,ArH),7.03–6.99(m,2H,ArH),6.92–6.86(m,4H,ArH),6.66–6.60(m,2H,ArH),6.47–6.41(m,2H,ArH),4.40(d,2J=16.8Hz,1H,NCH2Ph),4.16(d,2J=16.8Hz,1H,NCH2Ph),4.02(d,2J=11.3Hz,1H,NCH2C=N),3.44(d,2J=16.6Hz,1H,ArCH2),3.21(d,2J=16.6Hz,1H,ArCH2),2.78(d,2J=11.3Hz,1H,NCH2C=N),2.72–2.60(m,2H,CH2 of cyclohexyl),1.91(s,3H,CH3),1.86–1.76(m,1H,CH2of cyclohexyl),1.69(s,3H,CH3),1.66(s,3H,CH3),1.64–1.57(m,1H,CH2 ofcyclohexyl),1.56(s,3H,CH3),1.47(d,3J=8.9Hz,1H,CH2 of cyclohexyl),1.37(d,3J=11.5Hz,1H,CH2 of cyclohexyl),1.17–1.01(m,2H,CH2 of cyclohexyl),0.91–0.74(m,3H,CH2 of cyclohexyl),0.47(s,18H,N(Si(CH3)2)2).13C NMR(101MHz,C6D6):δ165.04(NC=N),153.13,152.96,152.42,138.10,137.92,135.28,134.77,132.92,129.44,128.17,127.93,127.54,127.29,127.04,126.90,126.11,125.42,124.87,124.27,124.02,121.76,119.79,110.14(all ArC),66.70(NCH2Ph),56.51(NCH),49.60(ArCH2),46.60((NCH2C=N),43.36,42.17(PhC(CH3)2),31.75,31.66,31.08,29.84(PhC(CH3)2),27.99(CH2 of cyclohexyl),26.61(CH2 of cyclohexyl),26.25(CH2 of cyclohexyl),25.92(CH2 of cyclohexyl),25.85(CH2 of cyclohexyl),6.31(N(Si(CH3)2)2).Anal.Calcd.for C52H68N4OSi2Zn:C,70.44;H,7.73;N,6.32.Found:C,70.23;H,7.67;N,5.88%.
实施例19
锌络合物Zn3的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L3(682mg,1mmol)外,其余操作步骤同实施例17。得无色晶体Zn3(563mg,62%)。
1H NMR(400MHz,C6D6):δ7.57(d,3J=8.1Hz,1H,ArH),7.50(m,6H,ArH),7.33(d,4J=2.2Hz,1H,ArH),7.12–7.09(m,1H,ArH),6.99–6.96(m,1H,ArH),6.96–6.95(m,1H,ArH),6.95–6.93(m,3H,ArH),6.93–6.90(m,2H,ArH),6.89-6.85(m,3H,ArH),6.72(t,J=7.3Hz,3H,ArH),6.67(d,4J=2.2Hz,1H,ArH),6.62(d,3J=8.2Hz,1H,ArH),6.38–6.30(m,2H,ArH),4.47(d,2J=11.7Hz,1H,NCH2Ph),4.17(d,2J=16.8Hz,1H,NCH2C=N),3.77(m,1H of NCH2C=N,1H of ArCH2),3.11(d,2J=6.0Hz,1H,ArCH2),3.09(d,2J=11.7Hz,1H,NCH2Ph),2.87(d,3J=11.7Hz,1H,1H of cyclohexyl),2.43(t,3J=11.4Hz,1H,1H of cyclohexyl),2.19(s,3H,ArCH3),1.68(d,J=12.5Hz,1H,1H of cyclohexyl),1.50(d,3J=11.6Hz,1H,1H ofcyclohexyl),1.40–1.31(m,2H,2H of cyclohexyl),1.25–1.17(m,1H,1H ofcyclohexyl),1.16–1.05(m,1H,1H of cyclohexyl),1.04–0.93(m,1H,1H ofcyclohexyl),0.91–0.82(m,1H,1H of cyclohexyl),0.82–0.68(m,1H,1H ofcyclohexyl),0.28(s,18H,N(Si(CH3)2)2).13C NMR(100MHz,C6D6):δ165.22(NC=N),154.03,147.94,138.26,137.37,135.23,134.59,133.75,131.97,131.82,129.33,128.55,127.01,126.06,125.19,124.25,123.72,121.63,121.03,120.08,109.57(all ArC),64.63(ArCH2),64.25(Ph3C),55.03(NCH2Ph),45.95(NCH),44.66(NCH2C=N),29.90(CH2 ofcyclohexyl),26.65(CH2 of cyclohexyl),26.13(CH2 of cyclohexyl),25.22(CH2 ofcyclohexyl),21.12(ArCH3),6.29(N(Si(CH3)2)2).Anal.Calcd.for C54H64N4OSi2Zn:C,71.53;H,7.12;N,6.18.Found:C,71.13;H,7.04;N,6.06%.
实施例20
锌络合物Zn4的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L4(656mg,1mmol)外,其余操作步骤同实施例17。得无色晶体Zn4(453mg,51%)。
1H NMR(400MHz,C6D6):δ7.54(d,3J=8.2Hz,1H,ArH),7.53–7.51(m,3H,ArH),7.51–7.48(m,3H,ArH),7.35(d,4J=2.0Hz,1H,ArH),7.01–6.97(m,1H,ArH),6.97–6.90(m,7H,ArH),6.89–6.85(m,3H,ArH),6.76–6.69(m,3H,ArH),6.66(d,4J=2.0Hz,1H,ArH),6.60(d,3J=8.2Hz,1H,ArH),6.37–6.32(m,2H,ArH),4.54(d,2J=11.9Hz,1H,NCH2Ph),4.08(d,2J=16.9Hz,1H,NCH2C=N),3.80(d,2J=17.1Hz,1H,ArCH2),3.75(d,2J=16.9Hz,1H,NCH2C=N),2.92(d,2J=12.0Hz,1H,NCH2Ph),2.82–2.72(m,1H,1H of n-Butyl),2.69(d,2J=17.1Hz,1H,ArCH2),2.30–2.22(m,1H,1H of n-Butyl),2.20(s,3H,ArCH3),1.91–1.78(m,1H,1H of n-Butyl),1.27–1.14(m,1H,1H of n-Butyl),1.24(m,8H×0.8,n-hexane),1.13–1.01(m,1H,1H of n-Butyl),0.98–0.86(m,1H,1H of n-Butyl),0.89(t,6H×0.8,n-hexane),0.82(t,3J=7.1Hz,3H,CH3of n-Butyl),0.26(s,18H,N(Si(CH3)2)2).13C NMR(101MHz,C6D6):δ165.03(NC=N),153.53,147.78,138.32,137.69,135.27,134.50,133.73,131.83,129.31,126.99,125.93,125.21,124.33,123.72,109.61(all ArC),64.24(Ph3C),60.09(NCH2Ph),59.53(ArCH2),47.71(NCH2C=N),45.94(NCH2CH2),31.94(n-hexane),26.08(NCH2CH2),23.06(n-hexane),21.11(CH2CH3),20.95(CH2CH3),14.38(n-hexane),14.02(ArCH3),6.35(N(Si(CH3)2)2).Anal.Calcd.for C52H62N4OSi2Zn·(0.8C6H14):C,71.93;H,7.09;N,5.85.Found:C,71.87;H,6.91;N,6.14%.
实施例21
锌络合物Zn7的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L7(690mg,1mmol)外,其余操作步骤同实施例17。得无色晶体Zn7(586mg,64%)。
1H NMR(400MHz,C6D6):δ7.55(d,3J=7.4Hz,7H,ArH),7.31(s,1H,ArH),7.13(m,3H×2,toluene),7.03–6.99(m,8H,ArH),7.02(m,2H×2,toluene),6.98–6.96(m,3H,ArH),6.92–6.88(m,3H,ArH),6.83(t,3J=7.3Hz,3H,ArH),6.57(d,3J=8.2Hz,1H,ArH),6.42(d,3J=7.1Hz,2H,ArH),6.40–6.34(m,3H,ArH),4.50(d,2J=11.9Hz,1H,CNCH2Ph),4.39(d,2J=14.4Hz,1H,NCH2Ph),4.08(d,2J=17.1Hz,1H,NCH2C=N),3.79(d,2J=14.4Hz,1H,NCH2Ph),3.60(d,2J=17.5Hz,1H,ArCH2),3.47(d,2J=17.1Hz,1H,NCH2C=N),3.42(d,2J=17.5Hz,1H,ArCH2),3.32(d,2J=11.9Hz,1H,CNCH2Ph),2.10(s,3H×2,toluene),2.06(s,3H,ArCH3),0.29(s,18H,N(Si(CH3)2)2).13C NMR(101MHz,C6D6):δ165.77(NC=N),153.55,147.77,138.13,137.91(toluene)137.48,135.67,134.84,133.85,132.08,131.91,131.76,129.50,129.33(toluene),128.87,128.62,128.56(toluene)127.05,125.98,125.68(toluene),125.30,124.54,123.72,121.20,121.04,120.18,109.48(all ArC),64.30(NCH2Ph),60.60(NCH2Ph),59.66(Ph3C),45.65(ArCH2),43.67(NCH2C=N),21.44(ArCH3),21.10(toluene),6.50(N(Si(CH3)2)2).Anal.Calcd.for C55H60N4OSi2Zn.2C7H8:C,73.97;H,6.81;N,5.56.Found:C,73.74;H,6.68;N,5.21%.
实施例22
锌络合物Zn9的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L9(830mg,1mmol)外,其余操作步骤同实施例17。得无色晶体Zn9(500mg,60%)。
1H NMR(400MHz,C6D6):δ7.54–7.46(m,7H,ArH),7.27(d,4J=2.2Hz,1H,ArH),7.12–7.07(m,1H,ArH),6.97(m,7H,ArH),6.76(t,3J=7.3Hz,3H,ArH),6.66(d,4J=2.2Hz,1H,ArH),6.50(d,3J=8.1Hz,1H,ArH),4.45(d,2J=11.7Hz,1H,NCH2C=N),3.59(d,2J=17.1Hz,1H,ArCH2),3.58–3.53(m,4H×0.6,THF),3.11(d,2J=11.7Hz,1H,NCH2C=N),3.07(d,2J=17.1Hz,1H,ArCH2),2.75(d,2J=11.4Hz,1H,1H of cyclohexyl),2.69–2.59(m,1H,1H of cyclohexyl),2.16(s,3H,NCH3),2.06(s,3H,ArCH3),1.85(d,2J=10.7Hz,1H,1H ofcyclohexyl),1.70(m,2H,2H of cyclohexyl),1.46(d,2J=12.0Hz,1H,1H ofcyclohexyl),1.43–1.38(m,2H×0.6,THF),1.27–1.10(m,3H,3H of cyclohexyl),1.09–0.91(m,2H,2H of cyclohexyl),0.29(s,18H,N(Si(CH3)2)2).Anal.Calcd.forC48H60N4OSi2Zn·(0.6C4H8O):C,69.27;H,7.49;N,6.41.Found:C,69.13;H,7.80;N,6.11%.
实施例23
锌络合物Zn10的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L10(580mg,1mmol)外,其余操作步骤同实施例17。得无色晶体Zn10(456mg,57%)。
1H NMR(400MHz,C6D6):δ7.52(d,3J=8.1Hz,1H,ArH),7.49(m,6H,ArH),7.32(d,4J=2.2Hz,1H,ArH),7.12–7.08(m,1H,ArH),6.93(t,3J=7.8Hz,7H,ArH),6.75(d,4J=2.2Hz,1H,ArH),6.71(t,3J=7.3Hz,3H,ArH),6.54(d,3J=8.1Hz,1H,ArH),4.61(d,2J=12.0Hz,1H,NCH2C=N),3.70(d,2J=17.0Hz,1H,ArCH2),2.95(d,2J=12.0Hz,1H,NCH2C=N),2.87–2.76(m,1H,1H of n-Butyl),2.58(d,2J=17.0Hz,1H,ArCH2),2.37–2.29(m,1H,1H of n-Butyl),2.30–2.25(m,1H,1H of n-Butyl),2.21(s,3H,NCH3),2.00(s,3H,ArCH3),1.54–1.44(m,1H,1H of n-Butyl),1.28–1.17(m,1H,1H of n-Butyl),1.16–1.05(m,1H,1H ofn-Butyl),0.92(t,3J=7.3Hz,3H,CH3of n-Butyl),0.26(s,18H,N(Si(CH3)2)2).13C NMR(101MHz,C6D6):δ165.09(NC=N),153.05,147.83,138.28,137.65,135.47,133.70,131.82,131.72,126.97,125.12,123.91,123.58,121.43,120.72,120.04,109.41(all ArC),67.83(Ph3C),64.25(ArCH2),60.38(NCH2CH2),60.08(NCH2CH2),47.93(NCH2C=N),28.09(NCH3),26.75(ArCH3),21.10(CH2CH3),14.14(CH2CH3),6.35(N(Si(CH3)2)2).Anal.Calcd.forC46H58N4OSi2Zn:C,68.67;H,7.27;N,6.96.Found:C,68.28;H,7.62;N,6.46%.
实施例24
锌络合物Zn11的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L11(636mg,1mmol)外,其余操作步骤同实施例17。得白色固体Zn11(489mg,57%)。
1H NMR(400MHz,C6D6):δ7.58–7.52(m,2H,ArH),7.50(d,3J=7.6Hz,6H,ArH),7.34(d,4J=2.1Hz,1H,ArH),6.98–6.90(m,7H,ArH),6.76(d,4J=2.1Hz,1H,ArH),6.75–6.69(m,3H,ArH),6.53(d,3J=8.1Hz,1H,ArH),4.65(d,2J=12.0Hz,1H,NCH2C=N),3.73(d,2J=17.0Hz,1H,ArCH2),3.00(d,2J=12.0Hz,1H,NCH2C=N),2.88(m,1H,NCH2CH2),2.61(d,2J=17.0Hz,1H,ArCH2),2.38(m,1H,NCH2CH2),2.22(s,3H,NCH3),1.99(s,3H,ArCH3),1.66–1.54(m,1H,1H of n-octyl),1.37–1.27(m,10H,10H of n-octyl),1.17–1.11(m,1H,1H of n-octyl),0.91(t,3J=5.4Hz,3H,CH2CH3),0.27(s,18H,N(Si(CH3)2)2).
实施例25
锌络合物Zn12的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L12(594mg,1mmol)外,其余操作步骤同实施例17。得白色固体Zn12(458mg,56%)。
1H NMR(400MHz,C6D6):δ7.50(d,3J=7.9Hz,7H,ArH),7.32(d,4J=1.9Hz,1H,ArH),7.11–7.08(m,1H,ArH),7.07–7.03(m,1H,ArH),6.95(t,3J=7.7Hz,6H,ArH),6.76(t,3J=7.3Hz,3H,ArH),6.73(d,4J=2.0Hz,1H,ArH),6.51(d,3J=8.1Hz,1H,ArH),4.54(d,2J=11.9Hz,1H,NCH2C=N),3.67(d,2J=17.1Hz,1H,ArCH2),3.01(d,2J=11.9Hz,1H,NCH2C=N),2.98–2.91(m,1H,NCH2CH2),2.69(d,2J=17.1Hz,1H,ArCH2),2.57–2.47(m,1H,CH(CH3)2),2.21(s,3H,NCH3),1.97(s,3H,ArCH3),1.92–1.81(m,1H,NCH2CH2),1.48–1.33(m,2H,NCH2CH2),0.92(d,3J=6.3Hz,3H,CH(CH3)2),0.84(d,3J=6.3Hz,3H,CH(CH3)2),0.27(s,18H,N(Si(CH3)2)2).
实施例26
锌络合物Zn13的合成
除原料采用Zn[N(SiMe3)2]2(384mg,1mmol)、L13(614mg,1mmol)外,其余操作步骤同实施例17。得无色晶体Zn13(444mg,53%)。
1H NMR(400MHz,C6D6):δ7.55–7.48(m,7H,ArH),7.27(d,4J=2.1Hz,1H,ArH),7.14–7.08(m,3H,ArH),7.06–7.00(m,2H,ArH),6.98(t,3J=7.8Hz,6H,ArH),6.89–6.85(m,2H,ArH),6.79(t,3J=7.3Hz,3H,ArH),6.54(d,3J=8.0Hz,1H,ArH),6.42(d,4J=2.1Hz,1H,ArH),4.55(d,2J=11.8Hz,1H,PhCH2),4.39(d,2J=14.5Hz,1H,NCH2C=N),3.95(d,2J=14.5Hz,1H,NCH2C=N),3.56(t,3J=6.4Hz,4H×1.3,THF),3.43–3.36(m,2H,1H of PhCH2,1H of ArCH2),3.32(d,2J=17.2Hz,1H,ArCH2),2.05(s,3H,NCH3),1.99(s,3H,ArCH3),1.43–1.38(m,4H×1.3,THF),0.31(s,18H,N(Si(CH3)2)2).13C NMR(101MHz,C6D6):δ165.65(NC=N),153.04,147.85,147.85,138.27,137.35,135.45,133.67,132.11,132.04,131.84,131.67,128.98,128.91,127.02,125.15,123.93,123.69,120.95,120.62,120.10,109.49(all ArC),64.30(Ph3C),60.54(ArCH2),59.90(NCH2Ph),43.65(NCH2C=N),28.01(NCH3),20.90(ArCH3),6.56(N(Si(CH3)2)2).Anal.Calcd.for C49H56N4OSi2Zn·(1.3C4H8O):C,72.00;H,6.19;N,6.15.Found:C,72.14;H,6.31;N,5.80%.
实施例27
氩气保护下,在聚合瓶中加入外消旋丙交酯(0.144g,1.0mmol),用0.5mL甲苯溶解。量取催化剂Zn1的甲苯溶液0.5mL加入到聚合瓶中。[rac-LA]0=1.0M,[Zn]0=0.005M,[Zn]0:[rac-LA]0=1:200。控制反应温度25±1℃,反应40分钟,加入石油醚终止反应。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇使聚合物沉淀析出。真空干燥24h。转化率:85%,Mn=13.33×104g/mol,分子量分布PDI=1.42,等规度Pm=0.69。
实施例28
除催化剂换成Zn2外,其他操作同实施实例27,反应50min后,转化率:95%,Mn=16.97×104g/mol,分子量分布PDI=1.54,等规度Pm=0.79。
实施例29
除催化剂换成Zn3外,其他操作同实施实例27,反应56min后,转化率:90%,Mn=4.84×104g/mol,分子量分布PDI=1.32,等规度Pm=0.89。
实施例30
除催化剂换成Zn4外,其他操作同实施实例27,反应28min后,转化率:94%,Mn=11.59×104g/mol,分子量分布PDI=1.63,等规度Pm=0.88。
实施例31
除催化剂换成Zn7外,其他操作同实施实例27,反应19min后,转化率:93%,Mn=5.42×104g/mol,分子量分布PDI=1.56,等规度Pm=0.85。
实施例32
除催化剂换成Zn9外,其他操作同实施实例27,反应102min后,转化率:78%,Mn=29.13×104g/mol,分子量分布PDI=1.38,等规度Pm=0.89。
实施例33
除催化剂换成Zn10,溶剂换成四氢呋喃外,其他操作同实施实例27,反应18min后,转化率:92%,Mn=12.84×104g/mol,分子量分布PDI=1.28,等规度Pm=0.88。
实施例34
除催化剂换成Zn13,溶剂换成四氢呋喃外,其他操作同实施实例27,反应15min后,转化率:93%,Mn=5.66×104g/mol,分子量分布PDI=1.34,等规度Pm=0.86。
实施例35
氩气保护下,在聚合瓶中加入外消旋丙交酯(0.144g,1.0mmol),用0.5mL异丙醇的甲苯溶液溶解。量取催化剂Zn2的甲苯溶液0.5mL加入到聚合瓶中。[rac-LA]0=1.0M,[Zn]0=0.005M,[Zn]0:[iPrOH]0:[rac-LA]0=1:1:500。控制反应温度25±1℃,反应15分钟,加入石油醚终止反应。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇使聚合物沉淀析出。真空干燥24h。转化率:96%,Mn=5.49×104g/mol,分子量分布PDI=1.27,等规度Pm=0.78。
实施例36
除催化剂换成Zn3外,其他操作同实施实例35,反应15min后,转化率:80%,Mn=3.24×104g/mol,分子量分布PDI=1.19,等规度Pm=0.88。
实施例37
除催化剂换成Zn4外,其他操作同实施实例35,反应13min后,转化率:94%,Mn=3.25×104g/mol,分子量分布PDI=1.34,等规度Pm=0.85。
实施例38
除催化剂换成Zn7,溶剂换成四氢呋喃外,其他操作同实施实例35,反应9min后,转化率:82%,Mn=1.80×104g/mol,分子量分布PDI=1.13,等规度Pm=0.86。
实施例39
除催化剂换成Zn9,溶剂换成四氢呋喃外,其他操作同实施实例35,反应20min后,转化率:86%,Mn=3.51×104g/mol,分子量分布PDI=1.19,等规度Pm=0.86。
实施例40
除催化剂换成Zn10,聚合温度换成-20℃外,其他操作同实施实例35,反应480min后,转化率:76%,Mn=3.06×104g/mol,分子量分布PDI=1.19,等规度Pm=0.91。
实施例41
除催化剂换成Zn10,聚合温度换成-40℃外,其他操作同实施实例35,反应1080min后,转化率:77%,Mn=2.91×104g/mol,分子量分布PDI=1.07,等规度Pm=0.93。
实施例42
于10mL聚合瓶中加入外消旋丙交酯(144mg,1.00mmol),加入0.1mL的异丙醇/甲苯溶液,再加入0.1mL催化剂Zn4的甲苯溶液。保持[rac-LA]0/[Zn]0/[iPrOH]=1000:1:5。置于110±1℃油浴中搅拌,反应20min,加入石油醚终止聚合。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇使聚合物沉淀析出。真空干燥24h。转化率:97%,Mn=7.90×104g/mol,分子量分布PDI=1.70,等规度Pm=0.72。
实施例43
除催化剂为Zn4,[rac-LA]0/[Zn]0/[iPrOH]=2000:1:10外,其他操作同实施实例42。反应20min后,转化率:98%,Mn=8.29×104g/mol,分子量分布PDI=1.61,等规度Pm=0.68。
实施例44
除催化剂为Zn4,[rac-LA]0/[Zn]0/[iPrOH]=5000:1:50外,其他操作同实施实例42。反应23min后,转化率:90%,Mn=4.08×104g/mol,分子量分布PDI=1.30,等规度Pm=0.78。
实施例45
除催化剂换成Zn13,聚合单体换成D-LA外,其他操作同实施实例27,反应15min后,转化率:90%,Mn=9.81×104g/mol,分子量分布PDI=1.25。
实施例46
除催化剂换成Zn13,聚合单体换成L-LA外,其他操作同实施实例27,反应14min后,转化率:87%,Mn=9.40×104g/mol,分子量分布PDI=1.28。
实施例47
除催化剂换成Zn7,聚合单体换成ε-己内酯外,其他操作同实施实例35,反应18min后,转化率:90%,Mn=3.43×104g/mol,分子量分布PDI=1.20。

Claims (10)

1.一种咪唑环取代的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,具有以下通式:
式(I)、(II)中:
R1~R2分别代表氢,C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基,卤素;
R3代表C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基,C6~C18的芳基;
R4代表C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基;
X代表氨基NR5R6,其中R5~R6分别为C1~C6直链、支链或环状结构的烷基,三甲基硅基,三乙基硅基,二甲基氢硅基,R5和R6可以相同或不同。
2.根据权利要求1所述的咪唑环取代的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,R1~R2为氢,C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基,卤素;R3为C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基,C6~C12的芳基;R4为C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基;X为二(三甲基硅)氨基,二(三乙基硅)氨基,二(二甲基氢硅)氨基。
3.根据权利要求1所述的咪唑环取代的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,R1~R2为氢、甲基、叔丁基、枯基、三苯甲基;R3为甲基、乙基、异丙基、正丁基、叔丁基、环己基、正己基、正辛基、苄基;R4为甲基、乙基、异丙基、正丁基、环己基、苄基;X为二(三甲基硅)氨基。
4.权利要求1~3任一项所述的咪唑环取代的氨基酚类配体(I)及其金属锌络合物(II)的制备方法,包括如下步骤:
将式(III)所示的2-氯甲基-取代咪唑类化合物与伯胺反应生成相应仲胺,加入2-溴甲基-4,6-二取代苯酚(IV),反应温度为25~150℃,反应时间为2~72小时,然后从反应产物中收集配体化合物(I);
任选的,再将式(I)所示的咪唑环取代的氨基酚类配体化合物与锌金属原料化合物在有机介质中反应,反应温度为0~100℃,反应时间为2~96小时,然后从反应产物中收集咪唑环取代的氨基酚氧基锌目标化合物(II);
上述制备方法中取代基R1~R4与满足权利要求1~3任一项所述的咪唑环取代的氨基酚类配体(I)及其金属锌络合物(II)的各相应基团一致;
锌金属原料化合物具有通式ZnX2,X与满足权利要求1~3任一项所述的咪唑环取代的氨基酚氧基锌络合物(II)的相应基团一致。
5.根据权利要求4所述的方法,其特征在于,锌金属原料化合物为二{二(三甲基硅)氨基}锌,咪唑环取代的氨基酚类配体化合物与锌金属原料化合物的摩尔比为1:1~1.5;所述的有机介质选自四氢呋喃、乙醚、甲苯、苯、石油醚和正己烷中的一种或两种。
6.权利要求1~3任一项所述的咪唑环取代的氨基酚氧基锌络合物的应用,其特征在于,用于内酯的开环聚合。
7.根据权利要求6所述的应用,其特征在于,内酯选自L-丙交酯,D-丙交酯,rac-丙交酯,meso-丙交酯,ε-己内酯,β-丁内酯,α-甲基三亚甲基环碳酸酯。
8.根据权利要求6所述的应用,其特征在于,以权利要求1~3任一项所述的咪唑环取代的氨基酚氧基锌络合物为催化剂,使丙交酯聚合,聚合时催化剂与单体的摩尔比为1:1~10000。
9.根据权利要求6所述的应用,其特征在于,以权利要求1~3任一项所述的咪唑环取代的氨基酚氧基锌络合物为催化剂,在醇存在的条件下,使丙交酯聚合,聚合时催化剂与醇以及单体摩尔比为1:1~50:1~10000;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20单或多芳基取代的烷基醇。
10.根据权利要求6所述的应用,其特征在于,以权利要求1~3任一项所述的咪唑环取代的氨基酚氧基锌络合物为催化剂,在加醇或不加醇的条件下,使ε-己内酯聚合;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20单或多芳基取代的烷基醇。
CN201910187042.3A 2019-03-13 2019-03-13 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用 Active CN109879810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910187042.3A CN109879810B (zh) 2019-03-13 2019-03-13 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910187042.3A CN109879810B (zh) 2019-03-13 2019-03-13 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109879810A true CN109879810A (zh) 2019-06-14
CN109879810B CN109879810B (zh) 2022-10-28

Family

ID=66932001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910187042.3A Active CN109879810B (zh) 2019-03-13 2019-03-13 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109879810B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362885A (zh) * 2020-03-06 2020-07-03 华东理工大学 一种苯并噻唑环取代的氨基酚氧基锌络合物及其制备方法和应用
CN112625054A (zh) * 2020-12-28 2021-04-09 华东理工大学 一种吲哚环取代的氨基酚氧基锌络合物及其制备方法和应用
CN113264901A (zh) * 2021-05-13 2021-08-17 华东理工大学 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用
CN113307820A (zh) * 2021-05-13 2021-08-27 华东理工大学 一种喹啉环取代的氨基酚氧基锌络合物及其制备方法和应用
CN114456199A (zh) * 2022-01-23 2022-05-10 华东理工大学 一类不对称多齿单酚氧基金属卤化物及其制备方法和应用
CN114507246A (zh) * 2022-01-23 2022-05-17 华东理工大学 一类苯并咪唑取代氨基酚氧基锌卤化物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008128548A2 (en) * 2007-04-20 2008-10-30 Nordbiochem OÜ Catalyst and method for polymerization and copolymerization of lactide
CN103787943A (zh) * 2013-05-17 2014-05-14 华东理工大学 手性胺基酚氧基锌、镁化合物及其制备方法和应用
US20140364580A1 (en) * 2011-12-08 2014-12-11 Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences Metal alkoxide complex, catalyst composition, and production method of polycaprolactone or polylactide
CN105237552A (zh) * 2015-10-10 2016-01-13 华东理工大学 一种含噁唑啉环的胺基酚氧基锌、镁络合物及其制备方法和应用
CN108558932A (zh) * 2018-05-16 2018-09-21 华东理工大学 二(2-吡啶基)甲基取代氨基酚氧基镁络合物及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008128548A2 (en) * 2007-04-20 2008-10-30 Nordbiochem OÜ Catalyst and method for polymerization and copolymerization of lactide
US20140364580A1 (en) * 2011-12-08 2014-12-11 Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences Metal alkoxide complex, catalyst composition, and production method of polycaprolactone or polylactide
CN103787943A (zh) * 2013-05-17 2014-05-14 华东理工大学 手性胺基酚氧基锌、镁化合物及其制备方法和应用
CN105237552A (zh) * 2015-10-10 2016-01-13 华东理工大学 一种含噁唑啉环的胺基酚氧基锌、镁络合物及其制备方法和应用
CN108558932A (zh) * 2018-05-16 2018-09-21 华东理工大学 二(2-吡啶基)甲基取代氨基酚氧基镁络合物及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ACS: "1385718-50-2/RN", 《STN REGISTRY数据库》 *
SHUANGXI WANG 等: "Synthesis, characterization and crystal structure of a new tripodal ligand containing imidazole and phenolate moieties and its iron(III) complexes", 《LNORGANICA CHIMICA ACTA》 *
YANMEI GONG 等: "High performance benzoimidazolyl-based aminophenolate zinc complexes for isoselective polymerization of rac-lactide", 《CHEM. COMMUN.》 *
谢如刚主编: "《现代有机合成化学》", 31 January 2007, 华东理工大学出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362885A (zh) * 2020-03-06 2020-07-03 华东理工大学 一种苯并噻唑环取代的氨基酚氧基锌络合物及其制备方法和应用
CN112625054A (zh) * 2020-12-28 2021-04-09 华东理工大学 一种吲哚环取代的氨基酚氧基锌络合物及其制备方法和应用
CN113264901A (zh) * 2021-05-13 2021-08-17 华东理工大学 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用
CN113307820A (zh) * 2021-05-13 2021-08-27 华东理工大学 一种喹啉环取代的氨基酚氧基锌络合物及其制备方法和应用
CN113264901B (zh) * 2021-05-13 2023-02-28 华东理工大学 一种含2-取代噻唑-4-基的氨基酚氧基锌络合物及其制备方法和应用
CN114456199A (zh) * 2022-01-23 2022-05-10 华东理工大学 一类不对称多齿单酚氧基金属卤化物及其制备方法和应用
CN114507246A (zh) * 2022-01-23 2022-05-17 华东理工大学 一类苯并咪唑取代氨基酚氧基锌卤化物及其制备方法和应用

Also Published As

Publication number Publication date
CN109879810B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CN109879810A (zh) 一种咪唑环取代的氨基酚氧基锌络合物及其制备方法和应用
Ireland et al. Cationic organomagnesium complexes as highly active initiators for the ring-opening polymerization of ε-caprolactone
Emig et al. Neutral and cationic tetracoordinated aluminum complexes featuring tridentate nitrogen donors: synthesis, structure, and catalytic activity for the ring-opening polymerization of propylene oxide and (D, L)-lactide
Peckermann et al. Indium complexes supported by 1, ω-dithiaalkanediyl-bridged bis (phenolato) ligands: Synthesis, structure, and controlled ring-opening polymerization of l-lactide
EP1370591B1 (en) Active non-metallocene pre-catalyst and method for tactic catalytic polymerization of alpha-olefin monomers
Giesbrecht et al. Mono-guanidinate complexes of lanthanum: synthesis, structure and their use in lactide polymerization
Gao et al. Stereoselective ring-opening polymerization of rac-lactides catalyzed by aluminum hemi-salen complexes
CN109879801A (zh) 一种含吡啶环的氨基酚氧基锌络合物及其制备方法和应用
CN103787943A (zh) 手性胺基酚氧基锌、镁化合物及其制备方法和应用
CN103864659B (zh) 手性亚胺酚氧基锌、镁化合物及其制备方法和应用
Altaf et al. Aluminum methyl and isopropoxide complexes with ketiminate ligands: Synthesis, structural characterization and ring-opening polymerization of cyclic esters
CN101418010B (zh) 桥联β-二亚胺双核铝化合物及其制备方法和应用
CN109942638A (zh) 用于乙烯聚合的含邻位二对甲基苯甲基取代的不对称α-二亚胺镍(Ⅱ)配合物
CN102268030B (zh) 含氮双酚氧基配体双核铝化合物及其制备方法和应用
CN105622490B (zh) 一种非对称氮氧配体及Ti、Zr、Hf配合物制备方法和应用
Li et al. Controlled iso-specific polymerization of 2-vinylpyridine catalyzed by arylamide-ligated rare-earth metal aminobenzyl complexes
Hu et al. Preparation of zirconium and hafnium complexes containing chiral N atoms from asymmetric tertiary amine ligands, and their catalytic properties for polymerization of rac-lactide
Ihara et al. Catalytic activity of allyl-, azaallyl-and diaza-pentadienyllanthanide complexes for polymerization of methyl methacrylate
CN105237552A (zh) 一种含噁唑啉环的胺基酚氧基锌、镁络合物及其制备方法和应用
Wang et al. Rare-earth complexes supported by an ansa-bis (amidinate) ligand with a rigid o-phenylene linker: synthesis, structure, and catalytic activity for polymerization of cyclic esters
Schmid et al. 2, 5-Bis {N-(2, 6-diisopropylphenyl) iminomethyl} pyrrolyl borohydride complexes of the divalent lanthanides–Synthesis, structures and ring-opening polymerization of ε-caprolactone
CN108558932B (zh) 二(2-吡啶基)甲基取代氨基酚氧基镁络合物及其制备方法和应用
Jiang et al. Phenoxy-imine/-amide aluminum complexes with pendant or coordinated pyridine moieties: Solvent effects on structural type and catalytic capability for the ROP of cyclic esters
CN102838628A (zh) β-酮亚胺配体铝络合物及其制备方法和应用
Allan et al. Anilido-aldimine aluminum complexes: Synthesis, characterization and lactide polymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant