CN113264759A - 一种低损耗高频磁介材料及其制备方法 - Google Patents

一种低损耗高频磁介材料及其制备方法 Download PDF

Info

Publication number
CN113264759A
CN113264759A CN202110549706.3A CN202110549706A CN113264759A CN 113264759 A CN113264759 A CN 113264759A CN 202110549706 A CN202110549706 A CN 202110549706A CN 113264759 A CN113264759 A CN 113264759A
Authority
CN
China
Prior art keywords
low
dielectric material
loss
frequency
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110549706.3A
Other languages
English (en)
Other versions
CN113264759B (zh
Inventor
武剑
李颉
孙亚辉
高峰
苏豪凯
张颖
刘颖力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Qixing Vacuum Coating Technology Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110549706.3A priority Critical patent/CN113264759B/zh
Publication of CN113264759A publication Critical patent/CN113264759A/zh
Application granted granted Critical
Publication of CN113264759B publication Critical patent/CN113264759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

一种低损耗高频磁介材料,属于电子材料领域。所述磁介材料为Ba3Co2Fe24‑x‑yPrxSmyO41六角晶型铁氧体;x=0.05~0.30,y=0.01~0.10。本发明低损耗高频磁介材料采用溶胶凝胶法制备,实现了低损耗和高频磁介特性,在1MHz~1.8GHz的频率范围内具有低损耗和近等磁介特性(其磁导率和介电常数均在5~15左右,且频段内磁损耗系数和介电损耗系数都低于0.005);该低损耗高频磁介材料作为天线基板时,可以很好地实现天线的小型化和高频化,且有利于提高微带天线的传输效率,降低天线的传输损耗,为高频和集成化的小尺寸无线通信设备的设计提供了新的材料。

Description

一种低损耗高频磁介材料及其制备方法
技术领域
本发明属于电子材料领域,具体涉及一种低损耗高频磁介材料及其制备方法。
背景技术
在电子通讯和空间传输过程中,天线是必不可少的一个部件。传统的天线为了提升传输特性,尺寸一般较大,不利于现在集成化和小型化的需求和发展方向。因此,在天线的研究中,一方面从电路设计上提高天线传输特性,一方面从天线基板材料上改进天线尺寸和性能。其中,电路设计可以提升信息传输量,天线基板可以改进天线的电路设计结构以及天线的尺寸。根据天线结构尺寸的计算公式,天线的结构尺寸正比于波在介质中的波长,为了减小较低频段微带天线的尺寸、质量和体积,根据天线的谐振频率
Figure BDA0003074935740000011
可知,提高天线介质基板的有效磁导率μeff可有效降低天线基板的尺寸;同时,天线介质基板的特性阻抗
Figure BDA0003074935740000012
即与真空的特性阻抗相等,因此,采用接近于等磁介材料制备天线基板,可以有效减小天线辐射的能量反射,提高天线的辐射效率。因此,研究新型天线基板,尤其是低损耗、高频的天线基板,满足磁导率和介电常数接近相等的材料,是制备小型化、高性能的天线的重要途径之一。
在天线基板材料中,最常用的是低损耗的介电陶瓷材料,低损耗高频磁介材料的研究较少。李强等2017年申请的中国发明专利《一种镁铁氧体基磁介材料及其制备方法》(授权公布号:CN106587976B),采用传统的固相烧结法制备了Cd掺杂的Mg铁氧体材料,实现了等磁介特性,但是磁损耗较大。郭莉等2019年申请的中国发明专利《一种镁铁氧体基低损耗磁介材料及其制备方法》(申请号:CN201910362184.9)中,采用Pr掺杂的Mg铁氧体材料,虽然实现了低损耗的特性,但是应用频率较低,仅在几百MHz的应用频段。荆玉兰等2013年申请的中国发明专利《一种铁氧体基复合磁介天线基板材料及其制备方法》(申请号:CN201310275973.1),在Ba-Sr的Co2Z铁氧体的基础上,采用了缺铁配方,仅仅调整了磁介特性,未能实现很好的低损耗的天线基板性能。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种低损耗高频磁介材料及其制备方法。本发明低损耗高频磁介材料为Pr-Sm离子改性的Ba3Co2Fe24-xPrxO41六角晶型铁氧体材料,采用溶胶凝胶法制备,实现了低损耗和高频磁介特性,在1MHz~1.8GHz的频率范围内具有低损耗和近等磁介特性(其磁导率和介电常数均在5~15左右,且频段内磁损耗系数和介电损耗系数都低于0.005);该低损耗高频磁介材料作为天线基板时,可以很好地实现天线的小型化和高频化,且有利于提高微带天线的传输效率,降低天线的传输损耗,为高频和集成化的小尺寸无线通信设备的设计提供了新的材料。
为实现上述目的,本发明采用的技术方案如下:
一种低损耗高频磁介材料,由Pr-Sm元素掺杂的Co2Z材料(Ba3Co2Fe24O41)组成,其特征在于,所述磁介材料为Ba3Co2Fe24-x-yPrxSmyO41六角晶型铁氧体;其中,x的取值范围为0.05~0.30,y的取值范围为0.01~0.10。
进一步地,所述磁介材料是采用溶胶凝胶法制备得到的,具体过程为:首先,称量分析纯原料,溶解、调节pH值,烘干至湿凝胶、干凝胶;然后,研磨,自蔓延燃烧,形成预烧粉;最后,球磨,烘干,造粒,压制成型后,在1200~1300℃下烧结1~6h,随炉冷却至室温,即得到所述高频磁介材料。
一种低损耗高频磁介材料的制备方法,其特征在于,包括以下步骤:
步骤1、以硝酸钡(Ba(NO3)2)、硝酸钴(Co(NO3)2)、硝酸铁(Fe(NO3)3)、硝酸镨(Pr(NO3)3)和硝酸钐(Sm(NO3)3)为原料,按照分子式Ba3Co2Fe24-x-yPrxSmyO41(x=0.05~0.30,y=0.01~0.10)中的金属元素的比例折算出Ba(NO3)2、Co(NO3)2、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3原料的质量,称料;
步骤2、将步骤1称取的Ba(NO3)2溶解于去离子水中,搅拌至完全溶解后,再加入Co(NO3)3、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3,在磁力恒温搅拌器中搅拌溶解,温度为60~80℃,时间为1~2h;
步骤3、在步骤2处理后得到的混合液A中加入柠檬酸,调节pH至4~6,然后,60~80℃恒温下磁力搅拌1~4h;
步骤4、在步骤3得到的混合液B中加入氨水,调节pH至8~9,搅拌3~5h后,转移至鼓风干燥箱中,在80~100℃烘干至湿凝胶,然后在90~120℃下烘干至干凝胶;
步骤5、将步骤4得到的干凝胶,在研钵中进行研磨,然后加入酒精,点燃,自蔓延燃烧,形成预烧粉;
步骤6、将步骤5得到的预烧粉在行星式球磨机中进行球磨,磨介为去离子水,球磨时间为8~16h,转速为200~260转/分钟,球磨完成后,采用去离子水出料,鼓风干燥箱中烘干;加入PVA粘合剂,造粒、压制成型后,在1200~1300℃下烧结1~6h,烧结完成后,随炉自然冷却至室温,得到所述低损耗高频磁介材料。
本发明还提供了上述低损耗高频磁介材料作为小型化天线基板的应用。
与现有技术相比,本发明的有益效果为:
1、本发明提供的一种低损耗高频磁介材料,采用Pr-Sm元素掺杂Co2Z六角铁氧体(Ba3Co2Fe24-x-yPrxSmyO41)材料,通过调整Pr、Sm离子的添加量,制备得到了尺寸小、均匀性好、性能优良的纳米晶粒铁氧体材料,Pr、Sm离子一方面通过离子占位调控磁介性能、降低磁介损耗,另一方面,与Fe3+离子形成具有一定介电特性的介电相,使得到的材料具有较好的等磁介特性,可用作微带天线的基板材料。
2、本发明磁介材料实现了低温烧结和磁介近似相等,在1MHz~1.8GHz的频率范围内具有等磁介性和低损耗性(其磁导率和介电常数均在5~15左右,且频段内比磁损耗系数和比介电损耗系数都低于0.005)。
3、本发明磁介材料作为天线基板材料时,可以很好地实现天线的小型化,且有利于提高微带天线的辐射效率和带宽,为小尺寸无线通信设备的设计提供了新的方案。
附图说明
图1为本发明低损耗高频磁介材料的制备方法流程图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种低损耗高频磁介材料的制备方法,其特征在于,包括以下步骤:
步骤1、以硝酸钡(Ba(NO3)2)、硝酸钴(Co(NO3)2)、硝酸铁(Fe(NO3)3)、硝酸镨(Pr(NO3)3)和硝酸钐(Sm(NO3)3)为原料,按照分子式Ba3Co2Fe23.83Pr0.15Sm0.02O41中的金属元素的比例折算出Ba(NO3)2、Co(NO3)2、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3原料的质量,称料7.84g的Ba(NO3)2、5.82g的Co(NO3)2、57.88g的Fe(NO3)3、0.49g的Pr(NO3)3和0.07g的Sm(NO3)3原料;
步骤2、将步骤1称取的Ba(NO3)2溶解于300mL的去离子水中,搅拌至完全溶解后,再加入Co(NO3)3、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3,在磁力恒温搅拌器中搅拌溶解,温度为80℃,时间为1h;
步骤3、在步骤2处理后得到的混合液A中加入14.9g的柠檬酸,调节pH至4,然后,在80℃恒温下磁力搅拌2h;
步骤4、在步骤3得到的混合液B中加入60mL的氨水,调节pH至8,搅拌3h后,转移至鼓风干燥箱中,在80℃烘干10h,得到湿凝胶,然后在120℃下烘干6h,得到干凝胶;
步骤5、将步骤4得到的干凝胶,在研钵中进行研磨,然后加入100mL酒精,点燃,自蔓延燃烧,形成预烧粉;
步骤6、将步骤5得到的预烧粉在行星式球磨机中进行球磨,磨介为去离子水,球磨时间为16h,转速为260转/分钟,球磨完成后,采用去离子水出料,鼓风干燥箱中烘干;加入PVA粘合剂,造粒、压制成型后,在1300℃下烧结6h,烧结完成后,随炉自然冷却至室温,得到所述低损耗高频磁介材料。
实施例1得到的磁介材料的磁导率和介电常数如下:
频率 1MHz 100MHz 200MHz 500MHz 800MHz 1.5GHz 1.8GHz
磁导率/μ 12.45 12.45 12.46 12.57 12.62 1166 10.34
磁损耗/tanδ 0.035 0.035 0.038 0.038 0.040 0.041 0.052
介电常数/ε 12.99 12.65 12.61 12.63 12.64 12.63 12.66
介电损耗/tanδ 0.028 0.026 0.026 0.027 0.029 0.031 0.033
实施例2
本实施例与实施例1相比,区别在于:步骤1的过程为:以硝酸钡(Ba(NO3)2)、硝酸钴(Co(NO3)2)、硝酸铁(Fe(NO3)3)、硝酸镨(Pr(NO3)3)和硝酸钐(Sm(NO3)3)为原料,按照分子式Ba3Co2Fe23.79Pr0.15Sm0.06O41中的金属元素的比例折算出Ba(NO3)2、Co(NO3)2、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3原料的质量,称料7.84g的Ba(NO3)2、5.82g的Co(NO3)2、57.78g的Fe(NO3)3、0.49g的Pr(NO3)3和0.20g的Sm(NO3)3原料;
实施例2得到的磁介材料的磁导率和介电常数如下:
频率 1MHz 100MHz 200MHz 500MHz 800MHz 1.5GHz 1.8GHz
磁导率/μ 12.54 12.55 12.56 12.56 12.59 12.61 12.60
磁损耗/tanδ 0.039 0.039 0.038 0.041 0.042 0.041 0.059
介电常数/ε 12.11 12.10 12.13 12.15 12.15 12.19 12.16
介电损耗/tanδ 0.033 0.033 0.036 0.037 0.037 0.052 0.051
实施例3
本实施例与实施例1相比,区别在于:步骤1的过程为:以硝酸钡(Ba(NO3)2)、硝酸钴(Co(NO3)2)、硝酸铁(Fe(NO3)3)、硝酸镨(Pr(NO3)3)和硝酸钐(Sm(NO3)3)为原料,按照分子式Ba3Co2Fe23.75Pr0.15Sm0.10O41中的金属元素的比例折算出Ba(NO3)2、Co(NO3)2、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3原料的质量,称料7.84g的Ba(NO3)2、5.82g的Co(NO3)2、57.68g的Fe(NO3)3、0.49g的Pr(NO3)3和0.33g的Sm(NO3)3原料;
实施例3得到的磁介材料的磁导率和介电常数如下:
频率 1MHz 100MHz 200MHz 500MHz 800MHz 1.5GHz 1.8GHz
磁导率/μ 11.03 11.03 11.03 11.06 11.13 11.09 11.09
磁损耗/tanδ 0.040 0.040 0.050 0.050 0.050 0.050 0.053
介电常数/ε 12.30 12.96 12.96 13.03 13.03 13.04 13.10
介电损耗/tanδ 0.037 0.034 0.039 0.038 0.038 0.041 0.041

Claims (5)

1.一种低损耗高频磁介材料,其特征在于,所述磁介材料为Ba3Co2Fe24-x-yPrxSmyO41六角晶型铁氧体;其中,x=0.05~0.30,y=0.01~0.10。
2.根据权利要求1所述的低损耗高频磁介材料,其特征在于,所述磁介材料是采用溶胶凝胶法制备得到的,具体过程为:首先,称量原料,溶解、调节pH值,烘干至湿凝胶、干凝胶;然后,研磨,自蔓延燃烧,形成预烧粉;最后,球磨,烘干,造粒,压制成型后,在1200~1300℃下烧结1~6h,随炉冷却至室温,即得到所述高频磁介材料。
3.一种低损耗高频磁介材料的制备方法,其特征在于,包括以下步骤:
步骤1、以Ba(NO3)2、Co(NO3)2、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3为原料,按照分子式Ba3Co2Fe24-x-yPrxSmyO41,x=0.05~0.30,y=0.01~0.10中的金属元素的比例折算出Ba(NO3)2、Co(NO3)2、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3原料的质量,称料;
步骤2、将步骤1称取的Ba(NO3)2溶解于去离子水中,搅拌至完全溶解后,再加入Co(NO3)3、Fe(NO3)3、Pr(NO3)3和Sm(NO3)3,在磁力恒温搅拌器中搅拌溶解,温度为60~80℃,时间为1~2h;
步骤3、在步骤2处理后得到的混合液A中加入柠檬酸,调节pH至4~6,然后,60~80℃下磁力搅拌1~4h;
步骤4、在步骤3得到的混合液B中加入氨水,调节pH至8~9,搅拌3~5h后,在80~100℃烘干至湿凝胶,然后在90~120℃下烘干至干凝胶;
步骤5、将步骤4得到的干凝胶研磨,然后加入酒精,点燃,自蔓延燃烧,形成预烧粉;
步骤6、将步骤5得到的预烧粉进行球磨,球磨时间为8~16h,转速为200~260转/分钟;球磨完成后,造粒、压制成型,在1200~1300℃下烧结1~6h,烧结完成后,随炉自然冷却至室温,得到所述低损耗高频磁介材料。
4.权利要求1至2任一项所述低损耗高频磁介材料作为小型化天线基板的应用。
5.权利要求3所述方法得到的低损耗高频磁介材料作为小型化天线基板的应用。
CN202110549706.3A 2021-05-20 2021-05-20 一种低损耗高频磁介材料及其制备方法 Active CN113264759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110549706.3A CN113264759B (zh) 2021-05-20 2021-05-20 一种低损耗高频磁介材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110549706.3A CN113264759B (zh) 2021-05-20 2021-05-20 一种低损耗高频磁介材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113264759A true CN113264759A (zh) 2021-08-17
CN113264759B CN113264759B (zh) 2022-05-03

Family

ID=77231954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110549706.3A Active CN113264759B (zh) 2021-05-20 2021-05-20 一种低损耗高频磁介材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113264759B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669180A (zh) * 2007-04-27 2010-03-10 旭化成株式会社 高频用磁性材料及其制造方法
CN101800107A (zh) * 2010-03-26 2010-08-11 西南交通大学 各向异性z型六角铁氧体及使用该铁氧体的天线
CN101913850A (zh) * 2010-07-06 2010-12-15 电子科技大学 一种高磁导率低烧z型六角铁氧体材料的制备方法
CN103319165A (zh) * 2013-06-08 2013-09-25 广东江粉磁材股份有限公司 一种z型六角铁氧体材料及其制备方法
CN105669178A (zh) * 2014-10-24 2016-06-15 天工方案公司 提高谐振频率的钾掺杂的六角晶型铁氧体
CN107266062A (zh) * 2017-08-03 2017-10-20 中南大学 一种各向异性Co2Z型六角铁氧体磁芯及其制备方法
US20180131065A1 (en) * 2010-12-07 2018-05-10 Skyworks Solutions, Inc. Radiofrequency and other electronic devices formed from enhanced resonant frequency hexaferrite materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669180A (zh) * 2007-04-27 2010-03-10 旭化成株式会社 高频用磁性材料及其制造方法
CN101800107A (zh) * 2010-03-26 2010-08-11 西南交通大学 各向异性z型六角铁氧体及使用该铁氧体的天线
CN101913850A (zh) * 2010-07-06 2010-12-15 电子科技大学 一种高磁导率低烧z型六角铁氧体材料的制备方法
US20180131065A1 (en) * 2010-12-07 2018-05-10 Skyworks Solutions, Inc. Radiofrequency and other electronic devices formed from enhanced resonant frequency hexaferrite materials
CN103319165A (zh) * 2013-06-08 2013-09-25 广东江粉磁材股份有限公司 一种z型六角铁氧体材料及其制备方法
CN105669178A (zh) * 2014-10-24 2016-06-15 天工方案公司 提高谐振频率的钾掺杂的六角晶型铁氧体
CN107266062A (zh) * 2017-08-03 2017-10-20 中南大学 一种各向异性Co2Z型六角铁氧体磁芯及其制备方法

Also Published As

Publication number Publication date
CN113264759B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN111825441B (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
CN111499369B (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
JP2020007224A (ja) 向上した共鳴周波数を有する改良z型六方晶フェライト材料
CN110156453A (zh) 一种高功率稀土钇铁石榴石复合铁氧体材料的制备方法
CN113651609A (zh) 一种微波铁氧体材料及其制备方法与应用
CN113264759B (zh) 一种低损耗高频磁介材料及其制备方法
CN1121048C (zh) 高性能低烧甚高频叠层片式电感材料及其制备方法
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN114573334B (zh) 高功率高居里温度低线宽石榴石铁氧体及制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN114409393B (zh) 一种高矫顽力低损耗复合六角铁氧体材料及其制备方法
CN114094301B (zh) 一种磁介电复合材料介质谐振器的制备方法及小型化天线
CN112679205B (zh) 一种z型铁氧体及其制备方法
CN110395976B (zh) 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN113845360B (zh) 一种包覆式高频磁介材料及其制备方法
CN115974542B (zh) 一种镨掺杂锶铁氧体吸波材料及其制备方法
CN114890779B (zh) 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法
CN118561587A (zh) 高介电常数低铁磁共振线宽的微波铁氧体材料及其制备方法和应用
CN118307315A (zh) 一种单轴磁场取向制备高取向度平面型六角铁氧体的方法
CN117209265A (zh) 低线宽低损耗的钇铁石榴石铁氧体材料及其制备方法
CN110078492B (zh) 一种镁铁氧体基低损耗磁介材料及其制备方法
CN116477936A (zh) 一种微波用铁氧体材料及其制备方法
CN117164354A (zh) 一种锶铁氧体吸波材料及其制备方法与应用
CN116730717A (zh) 高功率、低损耗石榴石铁氧体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221207

Address after: 610093 a-98 public Secretary platform, No.5 Gaopeng Avenue, Chengdu high tech Zone, Chengdu, Sichuan

Patentee after: Chengdu Qixing vacuum coating technology Co.,Ltd.

Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan)

Patentee before: University of Electronic Science and Technology of China

TR01 Transfer of patent right