CN113233902A - 一种自定型氮化硅泡沫陶瓷的制备方法 - Google Patents

一种自定型氮化硅泡沫陶瓷的制备方法 Download PDF

Info

Publication number
CN113233902A
CN113233902A CN202110608742.2A CN202110608742A CN113233902A CN 113233902 A CN113233902 A CN 113233902A CN 202110608742 A CN202110608742 A CN 202110608742A CN 113233902 A CN113233902 A CN 113233902A
Authority
CN
China
Prior art keywords
silicon nitride
silicon
fiber
slurry
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110608742.2A
Other languages
English (en)
Other versions
CN113233902B (zh
Inventor
李思维
肖礼成
汤明
兰琳
陈立富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202110608742.2A priority Critical patent/CN113233902B/zh
Publication of CN113233902A publication Critical patent/CN113233902A/zh
Application granted granted Critical
Publication of CN113233902B publication Critical patent/CN113233902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种自定型氮化硅泡沫陶瓷的制备方法,属于先进陶瓷技术领域。1)将无机连续长纤维制备为短切纤维,利用制毡设备获得一定形状、厚度及纤维体积分数的纤维毡;2)将硅粉与氮化硅的混合微粉放入溶剂,添加表面活性剂和粘结剂,球磨后得含硅浆料;3)将纤维毡置于含硅浆料中,在压力作用下使含硅浆料充分浸渍纤维毡,取出,干燥,得挂浆产物;4)将挂浆产物置于氮气或氮氢混合气氛,在高温下使硅粉发生氮化生成氮化硅,并在氮化硅的持续转化过程中实现反应烧结,得纤维增强的氮化硅泡沫陶瓷;5)将氮化硅泡沫陶瓷置于含硅浆料中,重复步骤3)和4),得不同孔隙尺寸和孔隙率的自定型氮化硅泡沫陶瓷。微孔和微裂纹少,结温度低、收缩率小。

Description

一种自定型氮化硅泡沫陶瓷的制备方法
技术领域
本发明属于先进陶瓷技术领域,尤其是涉及一种自定型氮化硅泡沫陶瓷的制备方法。
背景技术
氮化硅泡沫陶瓷是一种具有低密度、低热导率、低热膨胀系数、高温稳定性好、抗热震性能好等优点的多孔陶瓷材料,主要应用于热防护、熔融金属过滤、分离膜和催化剂载体等领域。目前氮化硅泡沫陶瓷的制备方法有有机模板法、发泡法等。有机模板法是将多孔有机材料(多为聚氨酯海绵)作为模板,使氮化硅陶瓷浆料黏附于有机多孔膜板之上,而后通过热处理去除模板,陶瓷浆料固化烧结后保留模板形状,形成泡沫陶瓷。如高晓菊等人选用具有贯通气孔的软质聚氨酯海绵作为骨架,以α相氮化硅粉为原料,结合有机前驱体浸渍法,在1600~1800℃的条件下制备氮化硅泡沫陶瓷【高晓菊,金颖,李金富,等.烧结工艺对Si3N4泡沫陶瓷性能的影响[J].硅酸盐通报,2010,29(5):1055-1059】;发泡剂法是指将氮化硅陶瓷粉体与有机发泡材料混合,利用有机物在高温下分解产生气体的原理实现发泡和造孔,空隙结构在高温下陶瓷粉体烧结后保留,进而获得泡沫陶瓷。如专利申请号为CN201810432259.1的中国专利(周新贵,氮化硅泡沫陶瓷增强铝基复合材料及其制备方法和应用),以α相氮化硅为原料,以蛋白粉为发泡剂制备的氮化硅泡沫陶瓷增强铝基复合材料,其开孔率为49%~80%,孔隙尺寸为50~500μm。采用有机模板法制备泡沫陶瓷的过程中需要将模板脱除,在此过程中有机物分解和气体排出过程会在陶瓷骨架上留下孔洞和裂纹,从而破坏泡沫陶瓷的结构均匀性,降低力学性能;采用发泡法制备氮化硅泡沫陶瓷工艺较复杂,且难以精确控制最终制品的形状和微观结构,导致力学性能较差。
发明内容
本发明的目的在于提供陶瓷中的微孔和微裂纹少,结温度低、收缩率小,可在纤维的增强作用下,显著提高泡沫陶瓷的力学性能的一种自定型氮化硅泡沫陶瓷的制备方法。
本发明包括以下步骤:
1)将无机连续长纤维制备为短切纤维,而后利用制毡设备获得具有一定形状、厚度及纤维体积分数的纤维毡;
2)将纯硅粉或硅粉与氮化硅的混合微粉放入溶剂,并在溶剂中添加表面活性剂和粘结剂,经球磨后获得含硅浆料;
3)将纤维毡置于含硅浆料中,在压力作用下使含硅浆料充分浸渍纤维毡,而后将带有浆料的纤维毡从含硅浆料中取出,充分干燥后,获得挂浆产物;
4)将挂浆产物置于氮气或氮氢混合气氛中,在高温下使硅粉发生氮化生成氮化硅,并在氮化硅的持续转化过程中实现反应烧结,获得纤维增强的氮化硅泡沫陶瓷;
5)将氮化硅泡沫陶瓷置于含硅浆料中,重复步骤3)和4),进而获得不同孔隙尺寸和孔隙率的自定型氮化硅泡沫陶瓷。
在步骤1)中,所述无机连续长纤维包括碳纤维、玻璃纤维、氧化铝纤维、碳化硅纤维、氮化硅纤维等无机耐高温连续纤维中的一种;所述纤维毡中纤维的体积分数为1vol.%~10vol.%,所述纤维毡的厚度可为0.3~30mm,可根据实际需要进行调整;所述一定形状可通过裁剪将固定厚度的纤维毡形成特性形状。
在步骤2)中,所述硅粉及氮化硅粉的粒度可为0.5~10μm,优选0.5~2μm,以保证浆料的颗粒能够畅通无阻的进入纤维毡;所述氮化硅粉用于缓解硅粉在后续氮化过程的放热,氮化硅粉的加入量为硅粉总质量的0~80wt.%;所述表面活性剂可选自离子型表面活性剂(PEI等)或非离子型表面活性剂(NP-10等),表面活性剂的添加量可为0.5wt.%~3wt.%;所述粘结剂可为聚乙烯醇(PVA)或聚乙烯醇缩丁醛(PVB),粘结剂的含量可为1wt.%~6wt.%;所述溶剂可采用水或乙醇;所述含硅浆料的固含量可为20wt.%~50wt.%。
在步骤3)中,所述挂浆的压力可为0.5~10MPa,保压时间为5~30min;所述干燥的温度可为60~80℃,干燥的时间可为5~20h;所述挂浆产物可通过调整浆料固含量来调整挂浆量,进而获得不同孔隙率的挂浆产物。
在步骤4)中,所述氮化的反应温度可为1300~1400℃,升温速率为1~5℃/min,反应时间为1~30h;当使用氮氢混合气氛时,氢气的浓度为1%~5%,氢气的存在会抑制硅粉的进一步氧化,进而对氮化反应起到促进作用。
在步骤5)中,所述自定型氮化硅泡沫陶瓷的气孔率可为55%~80%,孔隙尺寸可为100~1000μm,抗弯强度可为15~60MPa,压缩强度可为5~20MPa。
本发明的有益效果是:
(1)以无机纤维毡作为定型骨架,不需要脱除骨架,避免传统发泡法和模板法中直接发泡和脱除模板过程引入气孔和裂纹等结构缺陷的问题,所得泡沫陶瓷的结构更均匀;
(2)以无机纤维毡为增强体,能够利用纤维的强韧化作用提高氮化硅泡沫陶瓷的强度与韧性,显著改善泡沫陶瓷的高温性能及稳定性;
(3)利用反应烧结制备氮化硅泡沫陶瓷,制备温度低于传统方法,且所得氮化硅陶瓷纯度高,烧结收缩率低,结构稳定性好。
具体实施方式
以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明实施例包括以下步骤:
1)将无机连续长纤维制备为短切纤维,而后利用制毡设备获得具有一定形状、厚度及纤维体积分数的纤维毡A。其中,无机纤维包括碳纤维、玻璃纤维、氧化铝纤维、碳化硅纤维、氮化硅纤维等;毡的厚度一般为0.3~30mm之间,且可根据实际需要进行调整;纤维体积分数为1vol.%~10vol.%;通过裁剪,可将固定厚度的纤维毡形成特性形状。
2)将纯硅粉或硅粉与氮化硅的混合微粉放入溶剂,并在溶剂中添加表面活性剂和粘结剂,经球磨后获得含硅浆料B。其中,硅粉及氮化硅粉的粒度应为0.5μm~10μm,最优为0.5~2μm,以保证浆料的颗粒能够畅通无阻的进入纤维毡;加入氮化硅粉的目的是缓解硅粉在后续氮化过程的放热,加入氮化硅粉的量为硅粉总质量的0~80wt.%;加入的表面活性剂可为离子型表面活性剂(PEI等)或非离子型表面活性剂(NP-10等),添加量为0.5wt.%~3wt.%;粘结剂为聚乙烯醇(PVA)或聚乙烯醇缩丁醛(PVB),含量为1wt.%~6wt.%;溶剂为水或乙醇;浆料的固含量为20wt.%~50wt.%之间。
3)将纤维毡A置于含硅浆料B中,在压力作用下使含硅浆料B充分浸渍A,而后将带有浆料的纤维毡A从含硅浆料B中取出,充分干燥后,获得挂浆产物C。其中挂浆的压力为0.5~10MPa;保压时间为5~30min;干燥温度为60~80℃,干燥时间为5~20h;通过调整浆料固含量来调整挂浆量,进而获得不同孔隙率的挂浆产物C;
4)将挂浆产物C置于氮气或氮氢混合气氛中,在高温下使硅粉发生氮化生成氮化硅,并在氮化硅的持续转化过程中实现反应烧结,获得纤维增强的氮化硅泡沫陶瓷D;其中,氮化反应温度为1300~1400℃,升温速率为1~5℃/min,反应时间为1~30h;当使用氮/氢混合气时,氢气的浓度为1%~5%。氢气的存在会抑制硅粉的进一步氧化,进而对氮化反应起到促进作用。
5)将纤维增强的氮化硅泡沫陶D置于含硅浆料B中,重复步骤(3)到步骤(4),进而获得不同孔隙尺寸和孔隙率的氮化硅泡沫陶瓷E。
以下给出具体实施例。
实施例1:
(1)将3K的碳纤维T300制备为短切纤维,而后利用制毡设备获得厚度为5mm、纤维体积分数为8%的碳纤维毡A;
(2)将平均粒度1.5μm的高纯硅粉(99.99%)按照固含量20wt.%的比例放入酒精中,并在溶剂中添加1wt.%的PEI和2wt.%的PVB,经高能球磨2h后,获得硅浆料B;
(3)将碳纤维毡A置于硅浆料B中,在3MPa压力作用下使硅浆料B充分浸渍碳纤维毡A,而后将带有浆料的碳纤维毡A从硅浆料B中取出,而后在60℃干燥10h,获得挂浆产物C;
(4)将挂浆产物C置于96%N2-4%H2的流动的氮氢混合气氛中,气体流速为1L/min,以2℃/min升温速率升至1360℃,而后保温20h,在高温下使硅粉发生氮化生成氮化硅,并在氮化硅的持续转化过程中实现反应烧结,获得纤维增强的氮化硅泡沫陶瓷D;
测试表明,该试样的氮化率为98.5%,所得碳纤维增强氮化硅泡沫陶瓷的气孔率为75.2%,平均孔隙尺寸为900μm,抗弯强度为17.5MPa,压缩强度为5.4MPa。
实施例2:
(1)同实施例1中的步骤(1);
(2)将平均粒度1.5μm的高纯硅粉(99.99%)按照固含量35wt.%的比例放入酒精中,并在溶剂中添加1wt.%的PEI和3wt.%的PVB,经高能球磨2h后,获得硅浆料B;
(3)同实施例1中的步骤(3);
(4)同实施例1中的步骤(4);
测试表明,该试样的平均氮化率为97.8%,所得碳纤维增强氮化硅泡沫陶瓷的气孔率为63.5%,平均孔隙尺寸为450μm,抗弯强度为38.7MPa,压缩强度为9.4MPa。
实施例3:
(1)同实施例2中的步骤(1);
(2)同实施例2中的步骤(2);
(3)同实施例2中的步骤(3);
(4)同实施例2中的步骤(4);
(5)将D置于B中,重复步骤(3)到步骤(4),重复次数为1次,获得氮化硅泡沫陶瓷E;
测试表明,该试样的平均氮化率为96.5%,所得碳纤维增强氮化硅泡沫陶瓷的气孔率为57.5%,平均孔隙尺寸为380μm,抗弯强度为43.8MPa,压缩强度为11.3MPa。
实施例4:
(1)将0.5K的碳化硅纤维制备为短切纤维,而后利用制毡设备获得厚度为3mm、纤维体积分数为5%的碳纤维毡A;
(2)同实施例1中的步骤(2);
(3)同实施例1中的步骤(3);
(4)同实施例1中的步骤(4);
本发明利用短切无机纤维毡作为定型骨架,采用含硅浆料浸渍挂浆,再结合反应烧结技术制备出纤维增强氮化硅泡沫陶瓷。该法免去直接发泡或脱除模板的过程,因此陶瓷中的微孔和微裂纹少;此外,该法烧结温度低、收缩率小,可在纤维的增强作用下,显著提高泡沫陶瓷的力学性能。测试表明,该试样的平均氮化率为99.5%,所得碳化硅纤维增强氮化硅泡沫陶瓷的气孔率为78.5%,平均孔隙尺寸为980μm,抗弯强度为17.2MPa,压缩强度为6.7MPa。
上述实施例仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (10)

1.一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于包括以下步骤:
1)将无机连续长纤维制备为短切纤维,而后利用制毡设备获得具有一定形状、厚度及纤维体积分数的纤维毡;
2)将纯硅粉或硅粉与氮化硅的混合微粉放入溶剂,并在溶剂中添加表面活性剂和粘结剂,经球磨后获得含硅浆料;
3)将纤维毡置于含硅浆料中,在压力作用下使含硅浆料充分浸渍纤维毡,而后将带有浆料的纤维毡从含硅浆料中取出,充分干燥后,获得挂浆产物;
4)将挂浆产物置于氮气或氮氢混合气氛中,在高温下使硅粉发生氮化生成氮化硅,并在氮化硅的持续转化过程中实现反应烧结,获得纤维增强的氮化硅泡沫陶瓷;
5)将氮化硅泡沫陶瓷置于含硅浆料中,重复步骤3)和4),进而获得不同孔隙尺寸和孔隙率的自定型氮化硅泡沫陶瓷。
2.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤1)中,所述无机连续长纤维包括碳纤维、玻璃纤维、氧化铝纤维、碳化硅纤维、氮化硅纤维中的一种。
3.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤1)中,所述纤维毡中纤维的体积分数为1vol.%~10vol.%,所述纤维毡的厚度为0.3~30mm,所述一定形状是通过裁剪将固定厚度的纤维毡形成特性形状。
4.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤2)中,所述硅粉及氮化硅粉的粒度为0.5~10μm,优选0.5~2μm,以保证浆料的颗粒能够畅通无阻的进入纤维毡;所述氮化硅粉用于缓解硅粉在后续氮化过程的放热,氮化硅粉的加入量为硅粉总质量的0~80wt.%。
5.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤2)中,所述表面活性剂可选自离子型表面活性剂或非离子型表面活性剂,表面活性剂的添加量为0.5wt.%~3wt.%。
6.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤2)中,所述粘结剂可为聚乙烯醇或聚乙烯醇缩丁醛,粘结剂的含量为1wt.%~6wt.%;所述溶剂可采用水或乙醇;所述含硅浆料的固含量可为20wt.%~50wt.%。
7.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤3)中,所述挂浆的压力为0.5~10MPa,保压时间为5~30min;所述干燥的温度为60~80℃,干燥的时间为5~20h。
8.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤3)中,所述挂浆产物通过调整浆料固含量来调整挂浆量,进而获得不同孔隙率的挂浆产物。
9.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤4)中,所述氮化的反应温度为1300~1400℃,升温速率为1~5℃/min,反应时间为1~30h;当使用氮氢混合气氛时,氢气的浓度为1%~5%。
10.如权利要求1所述一种自定型氮化硅泡沫陶瓷的制备方法,其特征在于在步骤5)中,所述自定型氮化硅泡沫陶瓷的气孔率为55%~80%,孔隙尺寸为100~1000μm,抗弯强度为15~60MPa,压缩强度为5~20MPa。
CN202110608742.2A 2021-06-01 2021-06-01 一种自定型氮化硅泡沫陶瓷的制备方法 Active CN113233902B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110608742.2A CN113233902B (zh) 2021-06-01 2021-06-01 一种自定型氮化硅泡沫陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110608742.2A CN113233902B (zh) 2021-06-01 2021-06-01 一种自定型氮化硅泡沫陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN113233902A true CN113233902A (zh) 2021-08-10
CN113233902B CN113233902B (zh) 2022-03-22

Family

ID=77136142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110608742.2A Active CN113233902B (zh) 2021-06-01 2021-06-01 一种自定型氮化硅泡沫陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN113233902B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773066A (zh) * 2022-05-19 2022-07-22 醴陵市凯德特种陶瓷有限公司 一种增韧碳化硅陶瓷窑具平板制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167374A1 (en) * 2011-12-29 2013-07-04 General Electric Company Process of producing ceramic matrix composites and ceramic matrix composites formed thereby
CN103224405A (zh) * 2012-11-08 2013-07-31 航天特种材料及工艺技术研究所 一种制备氮化硅泡沫陶瓷的方法
CN104876637A (zh) * 2015-05-25 2015-09-02 中航复合材料有限责任公司 一种纤维增强纯无机阻燃泡沫复合材料及其制备方法
CN105503200A (zh) * 2016-01-12 2016-04-20 中钢集团洛阳耐火材料研究院有限公司 一种氮化硅纤维过滤材料的制备方法
CN106588022A (zh) * 2016-12-18 2017-04-26 吴德炳 一种利用模板法制备碳化硅泡沫陶瓷的工艺
CN106699227A (zh) * 2017-01-13 2017-05-24 武汉科技大学 一种纳米线自增强多孔氮化硅陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167374A1 (en) * 2011-12-29 2013-07-04 General Electric Company Process of producing ceramic matrix composites and ceramic matrix composites formed thereby
CN103224405A (zh) * 2012-11-08 2013-07-31 航天特种材料及工艺技术研究所 一种制备氮化硅泡沫陶瓷的方法
CN104876637A (zh) * 2015-05-25 2015-09-02 中航复合材料有限责任公司 一种纤维增强纯无机阻燃泡沫复合材料及其制备方法
CN105503200A (zh) * 2016-01-12 2016-04-20 中钢集团洛阳耐火材料研究院有限公司 一种氮化硅纤维过滤材料的制备方法
CN106588022A (zh) * 2016-12-18 2017-04-26 吴德炳 一种利用模板法制备碳化硅泡沫陶瓷的工艺
CN106699227A (zh) * 2017-01-13 2017-05-24 武汉科技大学 一种纳米线自增强多孔氮化硅陶瓷及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773066A (zh) * 2022-05-19 2022-07-22 醴陵市凯德特种陶瓷有限公司 一种增韧碳化硅陶瓷窑具平板制造方法

Also Published As

Publication number Publication date
CN113233902B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN101698591B (zh) 一种纤维复合炭气凝胶材料的制备方法
Song et al. Processing of microcellular silicon carbide ceramics with a duplex pore structure
CN109704781B (zh) 一种氮化硅纳米带气凝胶及其制备方法
Han et al. Porous SiCnw/SiC ceramics with unidirectionally aligned channels produced by freeze-drying and chemical vapor infiltration
CN107082628B (zh) 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
Wu et al. Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics
CN107698246B (zh) 一种多层骨架结构的刚玉-莫来石基泡沫陶瓷及其制备方法
CN113233902B (zh) 一种自定型氮化硅泡沫陶瓷的制备方法
CN111362693B (zh) 一种二氧化锆多孔陶瓷材料的制备方法和应用
CN112898009B (zh) 一种多层结构的六铝酸钙泡沫陶瓷的制备方法
CN112521178A (zh) 一种氧化铝泡沫陶瓷的制备方法
CN113307629A (zh) 一种碳化硅泡沫陶瓷及其制备方法
CN108793911B (zh) 一种利用发泡法制备镁质轻质骨料的方法
CN111620698B (zh) 低热导率纳米纤维构架的多级孔陶瓷海绵材料及制备方法
CN110002863B (zh) 一种钇铝石榴石多孔陶瓷的制备方法
CN111468714B (zh) 金属微点阵结构材料及其制备方法
CN111848209A (zh) 一种常压干燥的纳米隔热材料及其制备工艺
CN114276163B (zh) 一种耐高温的轻质高强多孔陶瓷及其制备方法
CN113773043B (zh) 低密度炭纤维增强炭气凝胶复合材料的制备方法
JP3858096B2 (ja) 金属又はセラミックス含有発泡焼結体の製造方法
CN111039695A (zh) 碳化硅拓补骨架结构增强氧化铝多孔陶瓷的制备方法
CN112876280B (zh) 一种碳化硅晶须增强的铝碳多孔陶瓷过滤器及其制备方法
CN110818383A (zh) m-HNTs-三氧化二铝-二氧化硅复合气凝胶及其制备方法和应用
Deng et al. Fabrication of porous ceramics by direct foaming
CN114149270A (zh) 耐烧蚀复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant