CN113215536A - 一种小晶粒锐钛矿光学薄膜、制备方法及其用途 - Google Patents

一种小晶粒锐钛矿光学薄膜、制备方法及其用途 Download PDF

Info

Publication number
CN113215536A
CN113215536A CN202110426312.9A CN202110426312A CN113215536A CN 113215536 A CN113215536 A CN 113215536A CN 202110426312 A CN202110426312 A CN 202110426312A CN 113215536 A CN113215536 A CN 113215536A
Authority
CN
China
Prior art keywords
anatase
film layer
layer
thin film
interlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110426312.9A
Other languages
English (en)
Other versions
CN113215536B (zh
Inventor
曾进能
赵恒�
龚燕妮
李晓峰
褚祝军
常乐
李廷涛
杨琼连
李金沙
王乙瑾
高兵祥
马怀超
杜木林
刘倍宏
汪云
钟梓源
须恃瑜
杨振
杨小东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Night Vision Technology Co Ltd
Original Assignee
North Night Vision Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Night Vision Technology Co Ltd filed Critical North Night Vision Technology Co Ltd
Priority to CN202110426312.9A priority Critical patent/CN113215536B/zh
Publication of CN113215536A publication Critical patent/CN113215536A/zh
Application granted granted Critical
Publication of CN113215536B publication Critical patent/CN113215536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种小晶粒锐钛矿光学薄膜及其制备方法,有效抑制锐钛矿大晶粒现象的技术难题,有效地提高了像增强器输入窗与光电阴极界面的透过率,提高了光电阴极的光电发射效率,属于光电探测领域。本发明所述小晶粒锐钛矿光学薄膜制备在玻璃基底表面。小晶粒锐钛矿光学薄膜由过渡层、锐钛矿薄膜和夹层薄膜组成。锐钛矿薄膜制备在过渡层薄膜表面,在锐钛矿薄膜的基础上制备夹层薄膜,周期性的重复锐钛矿薄膜和夹层薄膜的制作,且表层为锐钛矿薄膜,达到要求的厚度即完成小晶粒锐钛矿光学薄膜制备。

Description

一种小晶粒锐钛矿光学薄膜、制备方法及其用途
技术领域
本发明属于光电探测领域,尤其涉及一种小晶粒锐钛矿光学薄膜、制备方法及其用途,该薄膜可应用于微光像增强器、光电倍增管等光电探测器件。
背景技术
在光电探测及光电成像领域中,光电阴极是实现光电转换、将微弱光信号转换为电信号的关键部分,为光电发射层,其光电转换效率的高低,即阴极灵敏度,在很大程度上决定了光电探测器件和光电成像器件的性能高低。
以像增强器(光电成像器件)的多碱光电阴极为例,在传统的多碱光电阴极制作工艺中,利用蒸镀法直接在输入窗(硼硅玻璃输入窗/石英玻璃输入窗)表面制作固定厚度(小于或等于300nm)的多碱光电阴极(SbNa2KCs)。由于多碱光电阴极材料本身的折射率较大,在550nm波长的折射率约为3.3,明显大于输入窗的折射率,硼硅玻璃输入窗在550nm波长的折射率约为1.47,石英玻璃输入窗在550nm波长的折射率约为1.46,因此光子入射到输入窗与多碱光电阴极的界面时,会产生显著的费涅耳反射。根据能量守恒定律,反射能量越多,进入多碱光电阴极的能量就越少,多碱光电阴极吸收的能量越少,发射出的光电子就越少,光电阴极的光电转换效率就越低,阴极灵敏度也就越低。多碱光电阴极的光电转换效率是多碱光电阴极发射出的光电子数与多碱光电阴极所接收的入射光子数的比值,多碱光电阴极的光电转换效率取决于多碱光电阴极的厚度和输入光子的波长。
光子波长在400nm~900nm范围内,多碱光电阴极的厚度越厚其光电转换效率越低、多碱光电阴极对输入光子的吸收率呈递减趋势、多碱光电阴极对输入光子的反射率也呈递减趋势,多碱光电阴极与输入窗的结合截面在550nm波长处的光子的透过率约为68%、反射率约为27%,为了减小入射光子的反射率、提高光电阴极对入射光子的吸收,可以采用在输入窗和光电阴极之间制作一层增透膜的方法(输入窗表面),如附图1所示。
但需要满足以下三点:
①增透膜的折射率n需要与输入窗折射率(硼硅输入窗在550nm波长的折射率n1约为1.47)和多碱光电阴极折射率(在550nm波长的折射率n2约为3.3)相匹配,满足的n2=n1·n2关系;
②增透膜材料具有较好的热稳定性,能够经受住后续制作多碱阴极时超过400℃的高温环境;
③增透膜材料本身具有很高的光子透过率,入射光子通过增透膜时不会产生明显的光子损失。
锐钛矿晶型的TiO2薄膜作为增透膜的特点:
①锐钛矿薄膜的折射率n约为2.2,恰好满足n2=n1·n2
②锐钛矿薄膜在400℃的高温环境中仍具有较好的热稳定性,满足后续制作多碱阴极时的耐高温要求。
③但是,锐钛矿薄膜的透过率并不是很高550nm波长光子的透过率约为69%。
因为,锐钛矿薄膜在生长过程中,晶体的形成经过成核,然后岛状生长,随着薄膜沉积厚度增加,例如超过100nm厚度,“小晶粒”体积逐渐增大,会出现愈加显著的大晶粒现象,晶粒尺寸达到几百纳米。入射光子通过这些大晶粒时,会产生较大的散射或反射,导致光子透过率降低。因此,需要找到一种制备小晶粒锐钛矿薄膜的方法。
发明内容
本发明要解决的技术问题是如何克服在锐钛矿薄膜生长过程中,晶体的形成随着薄膜沉积厚度增加而产生大晶粒并导致光子透过率降低的技术问题,其目的是制备一种小晶粒锐钛矿薄膜,提高锐钛矿薄膜的光子透过率。
本发明提供的制备小晶粒锐钛矿光学薄膜的方法,总体上是通过在像增强器输入窗表面沉积锐钛矿薄膜层之前先沉积过渡层薄膜层、在沉积锐钛矿薄膜层过程中周期性的插入夹层薄膜层,成功的抑制了锐钛矿薄膜的大晶粒现象,提高了锐钛矿薄膜的透过率。
为解决上述技术问题,本发明的技术方案为:
一种小晶粒锐钛矿薄膜,沿光子行进方向,该薄膜依次由过渡层薄膜层、锐钛矿薄膜层和夹层薄膜层共同组成,所述过渡层薄膜层被首先制备在像增强器输入窗的基底表面,所述锐钛矿薄膜层被制备在过渡层薄膜层的表面,每当沉积锐钛矿薄膜层时沉积到一定厚度时,便暂停沉积锐钛矿薄膜层、转而沉积夹层薄膜层,然后继续周期性的重复所述锐钛矿薄膜层和夹层薄膜层的制作,直至该小晶粒锐钛矿薄膜达到要求的厚度且最表层为锐钛矿薄膜层为止。
进一步地,所述锐钛矿薄膜层的一层的厚度为4nm~40nm;所述过渡层薄膜层的一层的厚度是5nm~15nm;所述夹层薄膜层的一层的厚度是0.3nm~0.6nm。
进一步地,所述周期性的重复所述锐钛矿薄膜层和夹层薄膜层的制作,直到所述锐钛矿薄膜层的厚度和夹层薄膜层的厚度之和达到100nm~1000nm。
进一步地,所述过渡层薄膜层的材料是Al2O3
进一步地,所述夹层薄膜层的材料是Al2O3或HfO2
进一步地,所述像增强器输入窗材料为硼硅像增强器输入窗或石英玻璃,表面粗糙度应在2nm以内。
一种小晶粒锐钛矿薄膜的制备方法,包括以下步骤:
第一步:在像增强器输入窗的表面制作过渡层薄膜层;
第二步:在过渡层薄膜层的基础上制作锐钛矿薄膜层,每当沉积锐钛矿薄膜层时沉积到一定厚度时,便暂停沉积锐钛矿薄膜层,转下一步;
第三步:在锐钛矿薄膜层的基础上制作夹层薄膜层;
第四步:周期性的重复第二步和第三步,直到达到所述小晶粒薄膜要求的厚度且最表层为锐钛矿薄膜层为止。
进一步地,所述锐钛矿薄膜层的一层的厚度为4nm~40nm;所述过渡层薄膜层的一层的厚度是5nm~15nm;所述夹层薄膜层的一层的厚度是0.3nm~0.6nm。
进一步地,所述周期性的重复所述锐钛矿薄膜层和夹层薄膜层的制作,直到所述锐钛矿薄膜层的厚度和夹层薄膜层的厚度之和达到100nm~1000nm。
进一步地,所述过渡层薄膜层、锐钛矿薄膜层和夹层薄膜层通过原子层沉积法、磁控溅射法、电子束蒸发法任一种方法制备;制备温度为200℃~230℃。
该薄膜可应用于微光像增强器、光电倍增管等光电探测器件。
本发明与沉积单纯锐钛矿薄膜相比,其有益效果在于:
一方面,本发明在沉积锐钛矿薄膜过程中周期性的插入夹层薄膜,能够周期性的在晶粒还较小时就及时夹断锐钛矿晶粒的继续生长,从而有效抑制锐钛矿大晶粒现象;
另一方面,本发明在像增强器输入窗表面沉积锐钛矿薄膜之前先沉积过渡层薄膜,然后在过渡层表面制作锐钛矿薄膜,由此将锐钛矿薄膜的直接生长基底由像增强器输入窗(硼硅玻璃/石英玻璃)转换为过渡层薄膜。由于锐钛矿薄膜中的Ti和O原子彼此之间的结合较之于像增强器输入窗的结合强很多,导致锐钛矿薄膜形成岛状生长,从而过渡层薄膜可以有效抑制初始沉积阶段的岛状生长。
此外,本发明的制备方法还具有简单易行的特点,具有较好的推广价值。
附图说明
图1:沉积单纯的锐钛矿光学薄膜横截面示意图。
图2:本发明的小晶粒锐钛矿光学薄膜的横截面示意图。
图3:本发明的制备方法流程图。
图4:沉积单纯锐钛矿薄膜的大晶粒的SEM形貌图。
图5:本发明的小晶粒锐钛矿光学薄膜表面的SEM形貌图。
图6:本发明的小晶粒锐钛矿光学薄膜截面的TEM局部形貌图。
图例说明:1—像增强器输入窗;2—小晶粒锐钛矿光学薄膜;21—过渡层薄膜层;22—锐钛矿薄膜层;23—夹层薄膜层。
具体实施方式
本发明意在找到一种制备方法,实现制作小晶粒锐钛矿光学薄膜。
实施例1
如图2所示,本发明的一种小晶粒锐钛矿薄膜,所述小晶粒锐钛矿光学薄膜由过渡层薄膜层21、锐钛矿薄膜层22、夹层薄膜层23共同组成,所述过渡层薄膜层21被首先制备在像增强器输入窗1基底的表面,所述锐钛矿薄膜层22被制备在过渡层薄膜层21的表面,每当沉积锐钛矿薄膜层22沉积到厚度h2=4nm~40nm时,便暂停沉积锐钛矿薄膜层22、转而沉积夹层薄膜层23,然后继续周期性的重复上述锐钛矿薄膜层22和夹层薄膜层23的制作且最表层为锐钛矿薄膜层22为止;所述过渡层薄膜层21的材料是Al2O3,厚度h1是5nm~15nm;所述夹层薄膜层23的材料是Al2O3薄膜或HfO2,厚度h3是0.3nm~0.6nm。
实施例2
如图3所示,制备过渡层薄膜层21、锐钛矿薄膜层22、夹层薄膜层23的方法是原子层沉积法,因为原子层沉积法制备的薄膜具有致密性,而且过渡层薄膜层21与锐钛矿薄膜层22的亲和性好,这就能使得过渡层薄膜层21和锐钛矿薄膜层22之间紧密接触、均匀生长;此外原子层沉积法制备的薄膜还具备大面积均匀性好、精确的膜厚控制等特点。
制备设备是嘉兴科民电子设备技术有限公司生产的TALD-150D型原子层沉积设备。
第一步,在像增强器输入窗基底上制备Al2O3过渡层薄膜层21:采用三甲基铝和H2O分别作为Al和O的前躯体源,使用高纯度的氮气作为运载气体,Al2O3过渡层薄膜层21的原子层沉积脉冲每个周期的沉积顺序为三甲基铝脉冲时间0.1s,吹扫时间5s,H2O脉冲时间0.1s,吹扫时间5s,总周期数为50,原子层沉积腔室温度为230℃。
第二步,制备锐钛矿薄膜层22:采用TiCl4和H2O分别作为Ti和O的前躯体源,使用高纯度的氮气作为运载气体,锐钛矿薄膜层22的原子层沉积脉冲每个周期的沉积顺序为TiCl4脉冲时间0.1s,吹扫时间5s,H2O脉冲时间0.1s,吹扫时间5s,总周期数为100,原子层沉积腔室温度为220℃。
第三步,在锐钛矿薄膜层22表面制备HfO2夹层薄膜层23:采用四甲乙胺铪和H2O分别作为Hf和O的前躯体源,使用高纯度的氮气作为运载气体,HfO2薄膜的原子层沉积脉冲每个周期的沉积顺序为四甲乙胺铪脉冲时间1.2s,吹扫时间5s,H2O脉冲时间0.1s,吹扫时间5s,总周期数为3,原子层沉积腔室温度为220℃。
第四步,重复制备锐钛矿薄膜层22和HfO2夹层薄膜层23,且表层为锐钛矿薄膜层22:以上述第二步加第三步为一个大周期,重复30次大周期且最表层为锐钛矿薄膜层22为止。
用扫描电子显微镜实测小晶粒锐钛矿薄膜的表面形貌如图5所示,薄膜晶粒尺寸最大约100nm。用透射电镜实测小晶粒锐钛矿薄膜的截面如附图6所示。
对比例
作为对比,用同一台原子层沉积设备,制备了沉积单纯锐钛矿薄膜。
采用TiCl4和H2O分别作为Ti和O的前躯体源,使用高纯度的氮气作为运载气体,锐钛矿薄膜的原子层沉积脉冲每个周期的沉积顺序为TiCl4脉冲时间0.1s,吹扫时间5s,H2O脉冲时间0.1s,吹扫时间5s,总周期数为100×30=3000,原子层沉积腔室温度为220℃。用扫描电子显微镜实测该锐钛矿薄膜的大晶粒现象如图4所示,薄膜晶粒尺寸最大约370nm。
测试例
采用岛津公司生产的UV-2550型分光光度计测试小晶粒锐钛矿光学薄膜和普通锐钛矿薄膜550nm处的透过率分别是69%和87%,可见小晶粒锐钛矿光学薄膜和普通锐钛矿薄膜的透过率提高了18个百分点,由此也证实了本发明可以有效的抑制锐钛矿大晶粒现象,从而可以有效提高锐钛矿薄膜的透过率。

Claims (11)

1.一种小晶粒锐钛矿薄膜,其特征在于:
沿光子行进方向,该薄膜依次由过渡层薄膜层(21)、锐钛矿薄膜层(22)和夹层薄膜层(23)共同组成,所述过渡层薄膜层(21)被首先制备在像增强器输入窗(1)的基底表面上,所述锐钛矿薄膜层(22)被制备在过渡层薄膜层(21)的表面上,每当沉积锐钛矿薄膜层(22)时沉积到一定厚度时,便暂停沉积锐钛矿薄膜层(22)、转而沉积夹层薄膜层(23),然后继续周期性的重复所述锐钛矿薄膜层(22)和夹层薄膜层(23)的制作,直至达到该小晶粒锐钛矿薄膜要求的厚度且最表层为锐钛矿薄膜层(22)为止。
2.根据权利要求1所述的小晶粒锐钛矿薄膜,其特征在于:
所述锐钛矿薄膜层(22)的一层的厚度为4nm~40nm;
所述过渡层薄膜层(21)的一层的厚度为5nm~15nm;
所述夹层薄膜层(23)的一层的厚度为0.3nm~0.6nm。
3.根据权利要求2所述的小晶粒锐钛矿薄膜,其特征在于:
所述周期性的重复所述锐钛矿薄膜层(22)和夹层薄膜层(23)的制作,直到所述锐钛矿薄膜层(22)的厚度和夹层薄膜层(23)的厚度之和为100nm~1000nm。
4.根据权利要求1至3任一项所述的小晶粒锐钛矿薄膜,其特征在于:
所述过渡层薄膜层(21)的材料是Al2O3
5.根据权利要求1至3任一项所述的小晶粒锐钛矿薄膜,其特征在于:
所述夹层薄膜层(23)的材料是Al2O3或HfO2
6.根据权利要求1至3任一项所述的小晶粒锐钛矿薄膜,其特征在于:
所述像增强器输入窗(1)材料为硼硅像增强器输入窗或石英玻璃,其表面粗糙度在2nm以内。
7.一种如权利要求1所述的小晶粒锐钛矿薄膜的制备方法,其特征在于,包括以下步骤:
第一步:在像增强器输入窗(1)的表面制作过渡层薄膜层(21);
第二步:在过渡层薄膜层(21)的基础上制作锐钛矿薄膜层(22),每当沉积锐钛矿薄膜层(22)时沉积到一定厚度h2时,便暂停沉积锐钛矿薄膜层(22),转下一步;
第三步:在锐钛矿薄膜层(22)的基础上制作夹层薄膜层(23);
第四步:周期性的重复第二步和第三步,直到达到所述小晶粒薄膜要求的厚度且表层为锐钛矿膜层为止。
8.根据权利要求7所述的小晶粒锐钛矿薄膜的制备方法,其特征在于:
所述锐钛矿薄膜层(22)的一层的厚度h2为4nm~40nm;
所述过渡层薄膜层(21)的一层的厚度h1为5nm~15nm;
所述夹层薄膜层(23)的一层的厚度h3为0.3nm~0.6nm。
9.根据权利要求8所述的小晶粒锐钛矿薄膜的制备方法,其特征在于:
所述周期性的重复所述锐钛矿薄膜层(22)和夹层薄膜层(23)的制作,直到所述锐钛矿薄膜层(22)的厚度h2和夹层薄膜层(23)的厚度h3之和h为100nm~1000nm。
10.根据权利要求7至9任一项所述的小晶粒锐钛矿薄膜的制备方法,其特征在于:
所述过渡层薄膜层(21)、锐钛矿薄膜层(22)和夹层薄膜层(23)通过原子层沉积法、磁控溅射法、电子束蒸发法任一种方法制备;制备温度为200℃~230℃。
11.根据权利要求1至6任一项所述小晶粒锐钛矿薄膜在微光像增强器或光电倍增管中的应用。
CN202110426312.9A 2021-04-20 2021-04-20 一种小晶粒锐钛矿光学薄膜、制备方法及其用途 Active CN113215536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110426312.9A CN113215536B (zh) 2021-04-20 2021-04-20 一种小晶粒锐钛矿光学薄膜、制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110426312.9A CN113215536B (zh) 2021-04-20 2021-04-20 一种小晶粒锐钛矿光学薄膜、制备方法及其用途

Publications (2)

Publication Number Publication Date
CN113215536A true CN113215536A (zh) 2021-08-06
CN113215536B CN113215536B (zh) 2022-08-19

Family

ID=77088418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110426312.9A Active CN113215536B (zh) 2021-04-20 2021-04-20 一种小晶粒锐钛矿光学薄膜、制备方法及其用途

Country Status (1)

Country Link
CN (1) CN113215536B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921765A (zh) * 2022-05-16 2022-08-19 北方夜视技术股份有限公司 一种像增强器用光电阴极扩散阻挡层的制作方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7307440A (zh) * 1972-05-30 1973-12-04
EP0240951A2 (en) * 1986-04-04 1987-10-14 Kabushiki Kaisha Toshiba X-ray image intensifier
JP2004089987A (ja) * 1995-03-20 2004-03-25 Toto Ltd 親水性表面を備えた部材
KR20080038077A (ko) * 2007-12-20 2008-05-02 삼성전자주식회사 데이터 저장을 위한 강유전체 박막의 제조방법 및 이를이용한 강유전체 기록매체의 제조방법
CN101404216A (zh) * 2008-11-10 2009-04-08 重庆大学 一种二氧化钛复合薄膜光电极及其制备方法
JP2013016509A (ja) * 2012-09-18 2013-01-24 Hamamatsu Photonics Kk 光電陰極
CN103137890A (zh) * 2011-11-29 2013-06-05 海洋王照明科技股份有限公司 顶发射有机电致发光器件及其制备方法
CN103880297A (zh) * 2012-12-20 2014-06-25 江南大学 一种锌掺杂多孔SiO2/TiO2自清洁复合薄膜的制备方法
CN108864971A (zh) * 2018-07-25 2018-11-23 佛山市高明区爪和新材料科技有限公司 一种车用防爆膜的制备方法
US20190019646A1 (en) * 2016-01-08 2019-01-17 Photonis Netherlands B.V. Image intensifier for night vision device
CN110697769A (zh) * 2019-11-06 2020-01-17 吉林大学 一种锐钛矿/板钛矿复相二氧化钛紫外屏蔽剂及其制备方法
CN110783157A (zh) * 2019-10-24 2020-02-11 北方夜视技术股份有限公司 一种应用于多碱光电阴极的复合光学薄膜及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838273A (en) * 1972-05-30 1974-09-24 Gen Electric X-ray image intensifier input
NL7307440A (zh) * 1972-05-30 1973-12-04
EP0240951A2 (en) * 1986-04-04 1987-10-14 Kabushiki Kaisha Toshiba X-ray image intensifier
JP2004089987A (ja) * 1995-03-20 2004-03-25 Toto Ltd 親水性表面を備えた部材
KR20080038077A (ko) * 2007-12-20 2008-05-02 삼성전자주식회사 데이터 저장을 위한 강유전체 박막의 제조방법 및 이를이용한 강유전체 기록매체의 제조방법
CN101404216A (zh) * 2008-11-10 2009-04-08 重庆大学 一种二氧化钛复合薄膜光电极及其制备方法
CN103137890A (zh) * 2011-11-29 2013-06-05 海洋王照明科技股份有限公司 顶发射有机电致发光器件及其制备方法
JP2013016509A (ja) * 2012-09-18 2013-01-24 Hamamatsu Photonics Kk 光電陰極
CN103880297A (zh) * 2012-12-20 2014-06-25 江南大学 一种锌掺杂多孔SiO2/TiO2自清洁复合薄膜的制备方法
US20190019646A1 (en) * 2016-01-08 2019-01-17 Photonis Netherlands B.V. Image intensifier for night vision device
CN108864971A (zh) * 2018-07-25 2018-11-23 佛山市高明区爪和新材料科技有限公司 一种车用防爆膜的制备方法
CN110783157A (zh) * 2019-10-24 2020-02-11 北方夜视技术股份有限公司 一种应用于多碱光电阴极的复合光学薄膜及其制备方法
CN110697769A (zh) * 2019-11-06 2020-01-17 吉林大学 一种锐钛矿/板钛矿复相二氧化钛紫外屏蔽剂及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
NAJME LARI ET AL.: ""Six-layer antireflection TiO2/SiO2 coatings for solar covers: role of Triton and PDMS additives"", 《J MATER SCI: MATER ELECTRON》 *
YANG JINHUI ET AL.: ""Fabrication of Al2O3/TiO2 reflective type anti-blue light multi-layers with atomic layer deposition"", 《PROCEEDINGS OF SPIE》 *
吕晓庆等: "TiO_2/VO_2双层薄膜的制备及光电性能研究", 《合肥工业大学学报(自然科学版)》 *
房红兵等: ""多碱光电阴极制备中中间层光谱初探"", 《南京理工大学学报》 *
李晓峰等: "用光致荧光研究多碱阴极光电发射机理", 《光子学报》 *
赵伟林等: ""Ti02薄膜基底上制作多碱光电阴极的探索研究"", 《红外技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921765A (zh) * 2022-05-16 2022-08-19 北方夜视技术股份有限公司 一种像增强器用光电阴极扩散阻挡层的制作方法

Also Published As

Publication number Publication date
CN113215536B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
TWI647490B (zh) 具有傳輸改良之近紅外線光學干涉濾波器
CN110783157B (zh) 一种应用于多碱光电阴极的复合光学薄膜及其制备方法
WO2012018199A2 (ko) 점진적으로 굴절률이 변하는 실리콘 다층 무반사막 및 그 제조방법 및 이를 구비하는 태양전지 및 그 제조방법
KR101586073B1 (ko) 무반사 나노코팅 구조 및 그 제조방법
CN113215536B (zh) 一种小晶粒锐钛矿光学薄膜、制备方法及其用途
CN108333661B (zh) 基于硼掺杂氢化硅的低角度偏移滤光片及其制备方法
Tatar et al. Synthesis and optical properties of CeO2 nanocrystalline films grown by pulsed electron beam deposition
WO2023124046A1 (zh) 一种隧穿氧化层、n型双面太阳能晶硅电池及制备方法
Yan et al. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates
WO2018090926A1 (zh) 透明导电膜与制备方法、溅射靶与透明导电性基板及太阳能电池
WO2019148731A1 (zh) 氧锌镁材料、制备方法及太阳能电池
US20210333444A1 (en) Light absorption film, preparation method and application
Mosbah et al. Preparation of highly textured surface ZnO thin films
CN106086813B (zh) 一种手机面板多层镀膜层及其制备方法
CN102520470B (zh) 一种硬铝/碳化硅极紫外多层膜反射镜及其制备方法
TWI697575B (zh) 太陽能選擇性吸收膜及其製造方法
CN114388319B (zh) 光纤面板阴极光窗及其制备方法
KR102117945B1 (ko) 화학기상증착법을 이용한 반사방지막 제조방법
CN212181064U (zh) 一种锗基底8-12um红外窗口片
CN113278950B (zh) 渐变折射率减反薄膜及其制备方法和应用
CN106968015B (zh) 一种紫外透明导电薄膜及其制造方法
Chen et al. Sputtered TiO2 films for photovoltaic cell's antireflection coating
US20220171098A1 (en) Amorphous boron nitride film and anti-reflection coating structure including the same
CN103304152A (zh) 一种五层膜系结构的在线镀膜减反射玻璃及其加工方法
CN114921765A (zh) 一种像增强器用光电阴极扩散阻挡层的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant