CN106086813B - 一种手机面板多层镀膜层及其制备方法 - Google Patents

一种手机面板多层镀膜层及其制备方法 Download PDF

Info

Publication number
CN106086813B
CN106086813B CN201610442789.5A CN201610442789A CN106086813B CN 106086813 B CN106086813 B CN 106086813B CN 201610442789 A CN201610442789 A CN 201610442789A CN 106086813 B CN106086813 B CN 106086813B
Authority
CN
China
Prior art keywords
layer
mobile phone
multicoating
glass substrate
mocvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610442789.5A
Other languages
English (en)
Other versions
CN106086813A (zh
Inventor
裴艳丽
林家勇
刘佳慧
吴土祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Ecahopto Co Ltd
National Sun Yat Sen University
Original Assignee
Shenzhen Ecahopto Co Ltd
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Ecahopto Co Ltd, National Sun Yat Sen University filed Critical Shenzhen Ecahopto Co Ltd
Priority to CN201610442789.5A priority Critical patent/CN106086813B/zh
Publication of CN106086813A publication Critical patent/CN106086813A/zh
Application granted granted Critical
Publication of CN106086813B publication Critical patent/CN106086813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明涉及玻璃基板的多层镀膜的技术领域,更具体地,涉及一种手机面板多层镀膜层及其制备方法。本发明提供了一种在玻璃基板上制备高透、耐磨的多层膜技术,其中具体包括玻璃基板,氧化镁多晶种子层,氧化铝高硬耐磨镀膜层,氧化钛/氧化铝叠层增透层;本发明1)采用金属有机化学气相沉积(MOCVD)技术可大面积,均匀成膜,2)通过多晶缓冲层设计,在较低成膜温度下外延生长微晶非晶混合结构的高硬氧化铝镀膜;3)通过氧化铝/氧化钛/氧化铝叠层增加透过率。

Description

一种手机面板多层镀膜层及其制备方法
技术领域
本发明涉及玻璃基板的多层镀膜的技术领域,更具体地,涉及一种手机面板多层镀膜层及其制备方法。
背景技术
随着显示,移动终端的发展,急需寻求具有低成本高耐磨防划、高透过特性的玻璃镀膜技术,满足智能手机面板等移动终端产品的需求。在上述背景下,对玻璃面板进行高硬度、高透过率的镀膜将是实现高防刮划、高透过率、低成本智能手机面板的有效途径。目前,作为高硬镀膜技术而广泛研究和应用的是类金刚石碳膜(DLC:Diamond Like Carbon),它具有金刚石的碳sp3杂化轨道,硬度高、化学惰性、低摩擦系数等优点。根据制备条件的不同,报道的硬度值在(3-60GPa)。但是DLC薄膜的光学带隙一般在2.7eV以下,在红外区具有很高的透过率,但是在可见光区域通常是吸收的,只能是一种半透明的薄膜,不能满足智能手机面板对透过率的要求。另据文献报道,氧化铝的多晶薄膜具有与单晶蓝宝石相近的硬度。由于其光学带隙为7.9eV,具有宽光谱透过的优势。氧化铝根据晶体结构的不同可以分为具有高度热稳定性的α-Al2O3,亚稳态的κ-Al2O3,以及γ-Al2O3等六种不同的结构。α-Al2O3的制备温度一般需要950度-1050度的高温,k-Al2O3的制备温度通常也要1000度的高温。但是手机玻璃基本的软化温度一般在700度左右,因此如何低温制备高结晶质量的高硬度、高透过率氧化铝薄膜,并实现高透过率是需要解决的关键问题。
金属有机化学气相沉积(MOCVD)是利用金属有机化合物进行金属输运的一种气相外延生长技术,载气把金属有机化合物和其它气源携带到反应室中加热的衬底上方,随着温度的升高在气相和气固界面发生一系列化学和物理变化,最终在衬底表面上生成外延层。MOCVD的优点在于可以选择多种金属有机化合物作为源材料,因而具有生长多种化合物的灵活性。它不仅能够制备高纯材料,还能对生长的极薄层材料的厚度、组分和界面进行精确控制;可以进行选择生长;可以生长大面积、均匀性高的薄膜,非常适合工业生产。但是由于玻璃为非晶衬底,缺少晶态氧化铝的成核核心导致成膜温度高。而具有相近晶体结构的氧化镁具有结晶温度低的特点,以此为成核核心将大大降低晶态氧化铝的生长温度。基于MOCVD技术的优势,采用MOCVD技术有望在玻璃基板上低温沉积高硬度、高透过率的氧化铝薄膜。另外,为了进一步提高透过率,引入高折射率中间层,采用多层膜增透结构,增加透过率。
发明内容
本发明为克服上述现有技术所述的至少一种缺陷,为了实现低温玻璃衬底的高耐磨、高透过率镀膜技术,提供一种手机面板多层镀膜层及其制备方法,并在其上加上多层膜增透;本发明的镀层沉积技术具有成膜温度低,透过率高等优点。
为解决上述技术问题,本发明采用的技术方案是:一种手机面板多层镀膜层,其中,包括玻璃基板、形成与其上的氧化镁种子层、氧化铝层,其上的氧化钛/氧化铝多层增透层。
具体的,所述的氧化镁种子层采用MOCVD方法制备,制备温度为300-600度之间,厚度为2-10nm,为多晶结构,反应物为高纯氧或者去离子水、二茂镁,氩气或者氮气为载气。
具体的,所述的氧化铝层,采用MOCVD方法在种子层之上原位制备,制备温度为300-600度,厚度为500nm-1um,晶体结构为微晶、纳米晶、非晶混合结构。
具体的,所述的氧化铝层采用纯氧或者去离子水为氧源,三甲基铝为铝源,氩气或者氮气为载气。
具体的,所述的增透层为氧化铝/氧化钛/氧化铝的叠层结构。
本发明中,在玻璃衬底上沉积氧化镁种子层,在种子层上沉积氧化铝微晶非晶混合层,最后再在其上沉积氧化钛/氧化铝增透膜。
氧化镁种子层采用MOCVD方法低温生长,具有立方晶体结构。
MOCVD的反应物:二茂镁为镁源,高纯氧为氧源;氮气或者氩气为载气;
氧化镁种子层之上为采用MOCVD方法生长氧化铝薄膜。
MOCVD的反应物为:三甲基铝为铝源,高纯氧或者去离子水为氧源;
一种手机面板多层镀膜层的制备方法,其中:包括以下步骤,
S1:玻璃基板有机清洗后,去离子水冲洗,有效去地清除表面会导致薄膜生长缺陷的不洁物质;
S2:以纯度为99.995%以上的二茂镁为镁源,高纯氧或者去离子水为氧源,利用MOCVD技术,在玻璃衬底上生长具有多晶结构的氧化镁种子层;
S3:以纯度为99.995%以上的三甲基铝为铝源,高纯氧或者去离子水为氧源,利用MOCVD技术在上述种子层上外延氧化铝微晶、纳米晶、非晶混合薄膜。
具体的,所述的氧化钛/氧化铝叠层增透薄膜沉积于高硬耐磨氧化铝之上,氧化钛采用离子辅助电子束蒸镀技术沉积,氧化铝采用MOCVD技术沉积。
与现有技术相比,有益效果是:本发明1)采用镀膜技术提高玻璃衬底的耐磨性,具有成本优势;2)采用种子层技术,配合MOCVD外延生长,有利于降低成膜温度;3)增透膜进一步增加透过率,且具有一定的自清洁功能。
附图说明
图1是本发明镀膜玻璃的结构示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。
如图1所示,
本具体实施方式的目的是提供一种低温低成本的玻璃表面防划耐磨高透镀膜技术。
本发明初步的思路为:利用现有的工业量产型MOCVD(Metal-organic ChemicalVapor Deposition,金属有机物化学气相沉积)技术,以多晶氧化镁为种子层,再此种子层之上低温外延微晶非晶混合结构的氧化铝薄膜,达到防刮划耐磨的作用。进一步在表面引入氧化铝/氧化钛/氧化铝的增透膜。
具体的步骤为:
1.玻璃衬底表面清洁
对作为生长衬底材料的玻璃基板表面进行有机清洗,以及去离子水冲洗,有效清除表面会导致材料生长缺陷的不洁物质;
2.氧化镁(MgO)种子层的生长
以表面清洗过的玻璃为衬底,以纯度为99.995%的二茂镁为镁源,以高纯氧为氧源,利用MOCVD技术,生长氧化镁种子层,技术的工艺参数:衬底温度400度,反应压力为6.9Tor,二茂镁的流量80sccm,氧的流量1000sccm,氧化镁的厚度为3‐4nm。
3.氧化铝镀膜层生长
在氧化镁种子层之上生长氧化铝薄膜,以纯度为99.995%的三甲基铝为铝源,以高纯氧为氧源,利用MOCVD技术,在氧化镁种子层之上原位生长,薄膜厚度为1um,衬底温度为500℃,反应压力为10Tor,三甲基铝的流量控制在184sccm,,氧气的流量控制在890sccm.
4.氧化钛镀膜
在氧化铝高硬耐磨层上采用离子束辅助电子束蒸镀技术沉积130nm的氧化钛薄膜;
5.氧化铝薄膜
在氧化钛薄膜之上采用MOCVD技术沉积85nm的氧化铝薄膜。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (4)

1.一种手机面板多层镀膜层,其特征在于,包括玻璃基板、形成于其上的氧化镁种子层、氧化铝层,其上的氧化钛/氧化铝多层增透层;
所述的氧化镁种子层采用MOCVD方法制备,制备温度为300-600度之间,厚度为2-10nm,为多晶结构,反应物为高纯氧或者去离子水、二茂镁,氩气或者氮气为载气;
所述的氧化铝层,采用MOCVD方法在种子层之上原位制备,制备温度为300-600度,厚度为500nm-1um,晶体结构为微晶、纳米晶、非晶混合结构。
2.根据权利要求1所述的一种手机面板多层镀膜层,其特征在于:所述的氧化铝层采用纯氧或者去离子水为氧源,三甲基铝为铝源,氩气或者氮气为载气。
3.权利要求1或2所述的一种手机面板多层镀膜层的制备方法,其特征在于:包括以下步骤,
S1:玻璃基板有机清洗后,去离子水冲洗,有效地清除表面会导致薄膜生长缺陷的不洁物质;
S2:以纯度为99.995%以上的二茂镁为镁源,高纯氧或者去离子水为氧源,利用MOCVD技术,在玻璃衬底上生长具有多晶结构的氧化镁种子层;
S3:以纯度为99.995%以上的三甲基铝为铝源,高纯氧或者去离子水为氧源,利用MOCVD技术在上述种子层上外延氧化铝微晶、纳米晶、非晶混合薄膜。
4.根据权利要求3所述的一种手机面板多层镀膜层的制备方法,其特征在于:所述的氧化钛/氧化铝多层增透层沉积于高硬耐磨氧化铝之上,氧化钛采用离子辅助电子束蒸镀技术沉积,氧化铝采用MOCVD技术沉积。
CN201610442789.5A 2016-06-17 2016-06-17 一种手机面板多层镀膜层及其制备方法 Active CN106086813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610442789.5A CN106086813B (zh) 2016-06-17 2016-06-17 一种手机面板多层镀膜层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610442789.5A CN106086813B (zh) 2016-06-17 2016-06-17 一种手机面板多层镀膜层及其制备方法

Publications (2)

Publication Number Publication Date
CN106086813A CN106086813A (zh) 2016-11-09
CN106086813B true CN106086813B (zh) 2018-11-02

Family

ID=57238009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610442789.5A Active CN106086813B (zh) 2016-06-17 2016-06-17 一种手机面板多层镀膜层及其制备方法

Country Status (1)

Country Link
CN (1) CN106086813B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107793041A (zh) * 2017-09-29 2018-03-13 广东星弛光电科技有限公司 具有耐磨氧化铝镀膜层的钢化玻璃的制备方法
CN115921863B (zh) * 2022-12-12 2023-10-27 巨玻固能(苏州)薄膜材料有限公司 镀膜材料、复合氧化物薄膜、制备方法及光学产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388378B1 (en) * 1998-07-28 2002-05-14 Planar Systems Inc. Insulative film for thin film structures
JP2009116218A (ja) * 2007-11-09 2009-05-28 Seiko Epson Corp 反射防止膜、反射防止膜の形成方法、及び透光部材
JP2011133627A (ja) * 2009-12-24 2011-07-07 Mitsubishi Cable Ind Ltd 反射防止膜
CN102703880A (zh) * 2012-06-12 2012-10-03 浙江大学 利用原子层沉积制备高精度光学宽带抗反射多层膜的方法
CN102740615A (zh) * 2011-04-01 2012-10-17 鸿富锦精密工业(深圳)有限公司 壳体及其制作方法
CN104616719A (zh) * 2014-12-17 2015-05-13 青岛墨烯产业科技有限公司 一种低铟透明电极及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764580B2 (en) * 2001-11-15 2004-07-20 Chungwa Picture Tubes, Ltd. Application of multi-layer antistatic/antireflective coating to video display screen by sputtering

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388378B1 (en) * 1998-07-28 2002-05-14 Planar Systems Inc. Insulative film for thin film structures
JP2009116218A (ja) * 2007-11-09 2009-05-28 Seiko Epson Corp 反射防止膜、反射防止膜の形成方法、及び透光部材
JP2011133627A (ja) * 2009-12-24 2011-07-07 Mitsubishi Cable Ind Ltd 反射防止膜
CN102740615A (zh) * 2011-04-01 2012-10-17 鸿富锦精密工业(深圳)有限公司 壳体及其制作方法
CN102703880A (zh) * 2012-06-12 2012-10-03 浙江大学 利用原子层沉积制备高精度光学宽带抗反射多层膜的方法
CN104616719A (zh) * 2014-12-17 2015-05-13 青岛墨烯产业科技有限公司 一种低铟透明电极及其制备方法

Also Published As

Publication number Publication date
CN106086813A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
US10311992B2 (en) Transparent conducting films including complex oxides
KR102197243B1 (ko) 적층체 및 가스 배리어 필름
US20220056578A1 (en) Manufacturing method for graphene film, porous silica powder and transparent conductive layer
CN102681073B (zh) 玻璃基板以及偏光元件的制造方法
CN106086813B (zh) 一种手机面板多层镀膜层及其制备方法
Nishimura et al. Microstructures of ITO films deposited by dc magnetron sputtering with H2O introduction
CN106086814A (zh) 一种玻璃面板镀膜层及其制备方法
AU2010306798B2 (en) Deposition of doped ZnO films on polymer substrates by UV-assisted chemical vapor deposition
JP4622075B2 (ja) 透明導電性材料およびその製造方法
CN111276277A (zh) 一种具有红外透明导电功能的窗口
CN110835740A (zh) 一种高透射的复合Ag薄膜的制备方法
CN107793041A (zh) 具有耐磨氧化铝镀膜层的钢化玻璃的制备方法
Hu et al. Magnesium incorporation efficiencies in MgxZn1− xO films on ZnO substrates grown by metalorganic chemical vapor deposition
CN106968015B (zh) 一种紫外透明导电薄膜及其制造方法
US20120107491A1 (en) High Permittivity Transparent Films
JPH06150723A (ja) 透明導電膜
KR20200139090A (ko) 화학기상증착법에 의한 페로브스카이트 태양전지 흡수층의 제조방법
KR101867310B1 (ko) 칼코파이라이트계 박막 태양전지의 제조 방법
CN112670159B (zh) 一种铪基AlN厚膜及其制备方法
KR20180092894A (ko) 화학기상증착법을 이용한 반사방지막 제조방법
KR102635426B1 (ko) C-축 배열 izo 물질막, 및 그 제조 방법
US20150140321A1 (en) Methodology for improved adhesion for deposited fluorinated transparent conducting oxide films on a substrate
CN105349964A (zh) 防止mocvd反应室部件上沉积有反应物及其副产物的方法
KR101169018B1 (ko) 단결정 실리콘 박막 및 이의 제조 방법
US8716152B2 (en) Method of controlling silicon oxide film thickness

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant