CN113213962B - 一种具有贯穿孔的多孔陶瓷及其制备方法和应用 - Google Patents

一种具有贯穿孔的多孔陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN113213962B
CN113213962B CN202110279466.XA CN202110279466A CN113213962B CN 113213962 B CN113213962 B CN 113213962B CN 202110279466 A CN202110279466 A CN 202110279466A CN 113213962 B CN113213962 B CN 113213962B
Authority
CN
China
Prior art keywords
porous ceramic
holes
parts
sintering
organic pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110279466.XA
Other languages
English (en)
Other versions
CN113213962A (zh
Inventor
朱孔军
杜建周
金栋平
石峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202110279466.XA priority Critical patent/CN113213962B/zh
Publication of CN113213962A publication Critical patent/CN113213962A/zh
Application granted granted Critical
Publication of CN113213962B publication Critical patent/CN113213962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种具有贯穿孔的多孔陶瓷,由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、30‑50份烧结助剂、5‑12份粘结剂、12‑18份二氧化锆纤维、2‑10份球形造孔剂和3‑6支三叉形有机造孔剂组成,所述三叉形有机造孔剂由底部相连的三个圆柱体组成,分离角度是15‑30°,其中圆柱体的直径为10‑100μm,三叉形有机造孔剂在烧结前加入反应原料中;所述烧结条件是:从室温以8‑10℃/min的速率升温至450‑550℃后保温2‑5h,以3‑5℃/min的速率升温至950‑1050℃保温2‑3h,再以1‑2℃/min的速率升温至1450‑1550℃后保温5‑8h。本发明还公开了具有贯穿孔的多孔陶瓷的制备方法和其在气浮轴承中的应用。

Description

一种具有贯穿孔的多孔陶瓷及其制备方法和应用
技术领域
本发明属于多孔陶瓷技术领域,具体涉及一种具有贯穿孔的多孔陶瓷及其制备方法和应用。
背景技术
轴承是当今时代各类机械装备中必不可少的基础件,其性能的优劣直接的影响和决定着机械装备的性能好坏。人们认为轴承的摩擦力基本上是轴承材料的函数。直到1883年,工程师彼得罗夫首次对流体润滑。轴承摩擦效应作了理论分析,指出产生这种摩擦效应的主要因素不是轴承材料,而是润滑膜。气浮轴承也叫气体轴承,用空气作为润滑剂的滑动轴承。正常工作时,轴和轴承表面完全由气膜所隔开,凭借气膜中压力的变化来支承轴和外力负荷。由于空气比油粘滞性小,耐高温,无污染,因而气浮轴承可用于高速机器、仪器及放射性装置中。目前应用于气浮轴承的多孔材料主要有:多孔质青铜和多孔质不锈钢。多孔材料的渗透率是决定气浮轴承性能的主要因素,但是因为青铜和不锈钢材料硬度小,用机械加工的方法会产生磨削碎屑,堵塞多孔材料表面的孔隙,降低多孔材料的渗透率,从而影响气浮轴承的性能。
现有的气浮轴承气体流动的槽道多是延内圆的半径向外,这样不能发挥动压的最佳效应,并且气体流动小时承载力不足,气体流动大时,流向及流量分散不稳定。
发明内容
为解决现有技术中以合金作为材质制作的气浮轴承在加工时容易产生碎屑堵孔以及气浮轴承内槽道方向影响气体流量的问题,本发明提供一种具有贯穿孔的多孔陶瓷及其制备方法和应用。
本发明采用的方案如下:
一种具有贯穿孔的多孔陶瓷,由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、30-50份烧结助剂、5-12份粘结剂、12-18份二氧化锆纤维、2-10份球形造孔剂和3-6支三叉形有机造孔剂组成,所述三叉形有机造孔剂由底部相连的三个圆柱体组成,分离角度是15-30°,其中圆柱体的直径为10-100μm,三叉形有机造孔剂在烧结前加入反应原料中;
所述烧结条件是:从室温以8-10℃/min的速率升温至450-550℃后保温2-5h,以3-5℃/min的速率升温至950-1050℃保温2-3h,再以1-2℃/min的速率升温至1450-1550℃后保温5-8h。
作为本发明的一种优选技术方案,所述烧结助剂是氧化镁、氧化钇或氧化铝。
作为本发明的一种优选技术方案,所述粘结剂是浓度为5-10wt%的PVA溶液。
作为本发明的一种优选技术方案,所述二氧化锆纤维的平均长度为20-100μm。
作为本发明的一种优选技术方案,所述球形造孔剂是粒径为20-50μm的石墨粉。
作为本发明的一种优选技术方案,所述三叉形有机造孔剂成分是环氧树脂、聚乙烯、聚丙烯或聚苯乙烯。
一种具有贯穿孔的多孔陶瓷的制备方法,包括以下步骤:
A、按质量份数配比称取碳化硅颗粒、烧结助剂、二氧化锆纤维和球形造孔剂混合,加入等同于上述原料总质量2-3倍的乙醇,球磨6-10h;
B、在60-80℃温度条件下烘干,研磨10-30分钟,加入所述质量份数的粘结剂,造粒、研磨,并过80-120目筛网;
C、将步骤B得到的粉料加入到环形模具中,将3-6支三叉形有机造孔剂埋在模具二分之一高度的位置,三叉形向外,其中三叉形有机造孔剂彼此间分离角度是120-60°、长度至少贯穿粉料;
D、经压制成型后烧结,烧结条件是:从室温以8-10℃/min的速率升温至450-550℃后保温2-5h,以3-5℃/min的速率升温至950-1050℃保温2-3h,再以1-2℃/min的速率升温至1450-1550℃后保温5-8h,冷却至室温得到具有贯穿孔的多孔陶瓷。
作为本发明的一种优选技术方案,步骤C所述三叉形有机造孔剂的方向是使得位于中间的圆柱体与内圆相切。
作为本发明的一种优选技术方案,步骤D冷却时设置降温程序:以1-2℃/min的速率降温至950-1050℃,再以3-5℃/min的速率降温至450-550℃,之后自然冷却至室温。
一种具有贯穿孔的多孔陶瓷在气浮轴承中的应用。
与现有技术相比,本发明具有的有益效果是:
(1)提供一种制备具有贯穿孔的多孔陶瓷的制备方法;
(2)制备得到的具有贯穿孔的多孔陶瓷具有稳定性好、耐磨效果优、使用寿命长、刚性大,、耐高温的优点;
(3)造孔剂的加入使得陶瓷的显气孔率大幅上升,显气孔率有明显的增加,并且都在60%以上,提升了气体在槽道内的运输效率,优化了气体流动方向,应用于气浮轴承时能够提高工作状态下的稳定性;
(4)多孔陶瓷的硬度与未加入造孔剂的陶瓷比相近,并且抗磨损性能相较于未加造孔剂的陶瓷有大幅提升,从0.12g/cm2提升至0.09 g/cm2左右。
附图说明
图1是三叉形有机造孔剂的模型示意图;
图2是烧结前3支三叉形有机造孔剂的方向示意图。
具体实施方式
以下结合实施例对本发明作进一步的描述,实施例仅用于对本发明进行说明,并不构成对权利要求范围的限制,本领域技术人员可以想到的其他替代手段,均在本发明权利要求范围内。
实施例1
一种具有贯穿孔的多孔陶瓷,由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、30份烧结助剂、5份粘结剂、12份二氧化锆纤维、2份球形造孔剂和3支三叉形有机造孔剂组成,所述三叉形有机造孔剂由底部相连的三个圆柱体组成,分离角度是15°,其中圆柱体的直径为10μm,三叉形有机造孔剂在烧结前加入反应原料中;
所述烧结条件是:从室温以8℃/min的速率升温至450℃后保温2-3h,以3℃/min的速率升温至950℃保温2h,再以1℃/min的速率升温至1450℃后保温5h。
具体地,所述烧结助剂是氧化镁。
具体地,所述粘结剂是浓度为5wt%的PVA溶液。
具体地,所述二氧化锆纤维的平均长度为20-100μm。
具体地,所述球形造孔剂是粒径为20-50μm的石墨粉。
具体地,所述三叉形有机造孔剂成分是环氧树脂。
上述具有贯穿孔的多孔陶瓷的制备方法,包括以下步骤:
A、按质量份数配比称取碳化硅颗粒、烧结助剂、二氧化锆纤维和球形造孔剂混合,加入等同于上述原料总质量2倍的乙醇,球磨6h;
B、在60℃温度条件下烘干,研磨10分钟,加入所述质量份数的粘结剂,造粒、研磨,并过80目筛网;
C、将步骤B得到的粉料加入到环形模具中,将3支三叉形有机造孔剂埋在模具二分之一高度的位置,三叉形向外,其中三叉形有机造孔剂彼此间分离角度是120°、长度至少贯穿粉料;
D、经压制成型后烧结,烧结条件是:从室温以8℃/min的速率升温至450℃后保温2h,以3℃/min的速率升温至950℃保温2h,再以1℃/min的速率升温至1450℃后保温5h,冷却至室温得到具有贯穿孔的多孔陶瓷。
具体地,步骤C所述三叉形有机造孔剂的方向是使得位于中间的圆柱体与内圆相切。
具体地,步骤D冷却时设置降温程序:以1℃/min的速率降温至950℃,再以3℃/min的速率降温至450℃,之后自然冷却至室温。
上述制备方法制备得到的具有贯穿孔的多孔陶瓷在气浮轴承中的应用。
实施例2
一种具有贯穿孔的多孔陶瓷,由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、50份烧结助剂、12份粘结剂、18份二氧化锆纤维、10份球形造孔剂和6支三叉形有机造孔剂组成,所述三叉形有机造孔剂由底部相连的三个圆柱体组成,分离角度是30°,其中圆柱体的直径为100μm,三叉形有机造孔剂在烧结前加入反应原料中;
所述烧结条件是:从室温以10℃/min的速率升温至550℃后保温5h,以5℃/min的速率升温至1050℃保温3h,再以2℃/min的速率升温至1550℃后保温8h。
具体地,所述烧结助剂是氧化钇。
具体地,所述粘结剂是浓度为10wt%的PVA溶液。
具体地,所述二氧化锆纤维的平均长度为20-100μm。
具体地,所述球形造孔剂是粒径为20-50μm的石墨粉。
具体地,所述三叉形有机造孔剂成分是聚乙烯。
上述具有贯穿孔的多孔陶瓷的制备方法,包括以下步骤:
A、按质量份数配比称取碳化硅颗粒、烧结助剂、二氧化锆纤维和球形造孔剂混合,加入等同于上述原料总质量3倍的乙醇,球磨10h;
B、在80℃温度条件下烘干,研磨30分钟,加入所述质量份数的粘结剂,造粒、研磨,并过120目筛网;
C、将步骤B得到的粉料加入到环形模具中,将6支三叉形有机造孔剂埋在模具二分之一高度的位置,三叉形向外,其中三叉形有机造孔剂彼此间分离角度是60°、长度至少贯穿粉料;
D、经压制成型后烧结,烧结条件是:从室温以10℃/min的速率升温至550℃后保温5h,以5℃/min的速率升温至1050℃保温3h,再以2℃/min的速率升温至1550℃后保温8h,冷却至室温得到具有贯穿孔的多孔陶瓷。
具体地,步骤C所述三叉形有机造孔剂的方向是使得位于中间的圆柱体与内圆相切。
具体地,步骤D冷却时设置降温程序:以2℃/min的速率降温至1050℃,再以5℃/min的速率降温至550℃,之后自然冷却至室温。
上述制备方法制备得到的具有贯穿孔的多孔陶瓷在气浮轴承中的应用。
实施例3
一种具有贯穿孔的多孔陶瓷,由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、40份烧结助剂、8份粘结剂、15份二氧化锆纤维、5份球形造孔剂和4支三叉形有机造孔剂组成,所述三叉形有机造孔剂由底部相连的三个圆柱体组成,分离角度是20°,其中圆柱体的直径为50μm,三叉形有机造孔剂在烧结前加入反应原料中;
所述烧结条件是:从室温以9℃/min的速率升温至500℃后保温3h,以4℃/min的速率升温至1000℃保温2.5h,再以1.5℃/min的速率升温至1500℃后保温7h。
具体地,所述烧结助剂是氧化铝。
具体地,所述粘结剂是浓度为8wt%的PVA溶液。
具体地,所述二氧化锆纤维的平均长度为20-100μm。
具体地,所述球形造孔剂是粒径为20-50μm的石墨粉。
具体地,所述三叉形有机造孔剂成分是聚丙烯。
上述具有贯穿孔的多孔陶瓷的制备方法,包括以下步骤:
A、按质量份数配比称取碳化硅颗粒、烧结助剂、二氧化锆纤维和球形造孔剂混合,加入等同于上述原料总质量2.5倍的乙醇,球磨8h;
B、在70℃温度条件下烘干,研磨20分钟,加入所述质量份数的粘结剂,造粒、研磨,并过100目筛网;
C、将步骤B得到的粉料加入到环形模具中,将4支三叉形有机造孔剂埋在模具二分之一高度的位置,三叉形向外,其中三叉形有机造孔剂彼此间分离角度是90°、长度至少贯穿粉料;
D、经压制成型后烧结,烧结条件是:从室温以9℃/min的速率升温至500℃后保温3h,以4℃/min的速率升温至1000℃保温2.5h,再以1.5℃/min的速率升温至1500℃后保温7h,冷却至室温得到具有贯穿孔的多孔陶瓷。
具体地,步骤C所述三叉形有机造孔剂的方向是使得位于中间的圆柱体与内圆相切。
具体地,步骤D冷却时设置降温程序:以1℃/min的速率降温至1000℃,再以4℃/min的速率降温至500℃,之后自然冷却至室温。
上述制备方法制备得到的具有贯穿孔的多孔陶瓷在气浮轴承中的应用。
实施例4
一种具有贯穿孔的多孔陶瓷,由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、50份烧结助剂、5份粘结剂、18份二氧化锆纤维、2份球形造孔剂和4支三叉形有机造孔剂组成,所述三叉形有机造孔剂由底部相连的三个圆柱体组成,分离角度是30°,其中圆柱体的直径为60μm,三叉形有机造孔剂在烧结前加入反应原料中;
所述烧结条件是:从室温以10℃/min的速率升温至500℃后保温4h,以3℃/min的速率升温至1000℃保温2h,再以1℃/min的速率升温至1500℃后保温6h。
具体地,所述烧结助剂是氧化铝。
具体地,所述粘结剂是浓度为5wt%的PVA溶液。
具体地,所述二氧化锆纤维的平均长度为20-100μm。
具体地,所述球形造孔剂是粒径为20-50μm的石墨粉。
具体地,所述三叉形有机造孔剂成分是聚苯乙烯。
上述具有贯穿孔的多孔陶瓷的制备方法,包括以下步骤:
A、按质量份数配比称取碳化硅颗粒、烧结助剂、二氧化锆纤维和球形造孔剂混合,加入等同于上述原料总质量2倍的乙醇,球磨8h;
B、在60℃温度条件下烘干,研磨30分钟,加入所述质量份数的粘结剂,造粒、研磨,并过80目筛网;
C、将步骤B得到的粉料加入到环形模具中,将4支三叉形有机造孔剂埋在模具二分之一高度的位置,三叉形向外,其中三叉形有机造孔剂彼此间分离角度是90°、长度至少贯穿粉料;
D、经压制成型后烧结,烧结条件是:从室温以10℃/min的速率升温至500℃后保温4h,以3℃/min的速率升温至1000℃保温2h,再以1℃/min的速率升温至1500℃后保温6h,冷却至室温得到具有贯穿孔的多孔陶瓷。
具体地,步骤C所述三叉形有机造孔剂的方向是使得位于中间的圆柱体与内圆相切。
具体地,步骤D冷却时设置降温程序:以1℃/min的速率降温至1000℃,再以5℃/min的速率降温至500℃,之后自然冷却至室温。
上述制备方法制备得到的具有贯穿孔的多孔陶瓷在气浮轴承中的应用。
对比例
一种具有贯穿孔的多孔陶瓷,由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、50份烧结助剂、5份粘结剂、18份二氧化锆纤维;
所述烧结条件是:从室温以10℃/min的速率升温至500℃后保温4h,以3℃/min的速率升温至1000℃保温2h,再以1℃/min的速率升温至1500℃后保温6h。
具体地,所述烧结助剂是氧化铝。
具体地,所述粘结剂是浓度为5wt%的PVA溶液。
具体地,所述二氧化锆纤维的平均长度为20-100μm。
上述具有贯穿孔的多孔陶瓷的制备方法,包括以下步骤:
A、按质量份数配比称取碳化硅颗粒、烧结助剂和二氧化锆纤维混合,加入等同于上述原料总质量2倍的乙醇,球磨8h;
B、在60℃温度条件下烘干,研磨30分钟,加入所述质量份数的粘结剂,造粒、研磨,并过80目筛网;
C、将步骤B得到的粉料加入到环形模具中;
D、经压制成型后烧结,烧结条件是:从室温以10℃/min的速率升温至500℃后保温4h,以3℃/min的速率升温至1000℃保温2h,再以1℃/min的速率升温至1500℃后保温6h,冷却至室温得到具有贯穿孔的多孔陶瓷。
具体地,步骤D冷却时设置降温程序:以1℃/min的速率降温至1000℃,再以5℃/min的速率降温至500℃,之后自然冷却至室温。
上述制备方法制备得到的陶瓷在气浮轴承中的应用。
对比例和实施例4的工艺步骤基本相同,只是不加入球形造孔剂和三叉形有机造孔剂。
根据GBT1966-1996“多孔陶瓷显气孔率、容重试验方法”测试实施例1-4及对比例的显气孔率,根据GTB16534-1996“工程陶瓷维氏硬度试验方法”测试实施例1-4及对比例的硬度,根据JC/T2345-2015“精细陶瓷常温耐磨性试验方法”测试实施例1-4及对比例的耐磨性能,测试结果如下表1所示。
表1 实施例1-4及对比例的显气孔率、硬度和磨损率的测试结果
显气孔率(%) 硬度(HV) 磨损率(g/cm<sup>2</sup>)
实施例1 65 360 0.09
实施例2 62 370 0.091
实施例3 66 380 0.088
实施例4 63 370 0.095
对比例 23 385 0.124
表1的测试结果表明,造孔剂的加入使得陶瓷的显气孔率大幅上升,加入造孔剂的实施例1-4与对比例相比,显气孔率有明显的增加,并且都在60%以上,同时硬度下降不大,磨损率也有了较高的提升,表明本发明方案提升了显气孔率并且提升了抗磨损性能。
上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

1.一种具有贯穿孔的多孔陶瓷的制备方法,其特征在于:所述具有贯穿孔的多孔陶瓷用于气浮轴承;
所述具有贯穿孔的多孔陶瓷由反应原料烧结而成,所述反应原料按质量份数配比由100份碳化硅颗粒、30-50份烧结助剂、5-12份粘结剂、12-18份二氧化锆纤维、2-10份球形造孔剂和3-6支三叉形有机造孔剂组成,所述三叉形有机造孔剂由底部相连的三个圆柱体组成,分离角度是15-30°,其中圆柱体的直径为10-100μm,三叉形有机造孔剂在烧结前加入反应原料中;
所述具有贯穿孔的多孔陶瓷的制备方法包括以下步骤:
A、按质量份数配比称取碳化硅颗粒、烧结助剂、二氧化锆纤维和球形造孔剂混合,加入等同于上述原料总质量2-3倍的乙醇,球磨6-10h;
B、在60-80℃温度条件下烘干,研磨10-30分钟,加入所述质量份数的粘结剂,造粒、研磨,并过80-120目筛网;
C、将步骤B得到的粉料加入到环形模具中,将3-6支三叉形有机造孔剂埋在模具二分之一高度的位置,三叉形向外,其中三叉形有机造孔剂彼此间分离角度是120-60°、长度至少贯穿粉料;
D、经压制成型后烧结,烧结条件是:从室温以8-10℃/min的速率升温至450-550℃后保温2-5h,以3-5℃/min的速率升温至950-1050℃保温2-3h,再以1-2℃/min的速率升温至1450-1550℃后保温5-8h,冷却至室温得到具有贯穿孔的多孔陶瓷。
2.根据权利要求1所述的具有贯穿孔的多孔陶瓷的制备方法,其特征在于:所述烧结助剂是氧化镁、氧化钇或氧化铝。
3.根据权利要求1所述的具有贯穿孔的多孔陶瓷的制备方法,其特征在于:所述粘结剂是浓度为5-10wt%的PVA溶液。
4.根据权利要求1所述的具有贯穿孔的多孔陶瓷的制备方法,其特征在于:所述二氧化锆纤维的平均长度为20-100μm。
5.根据权利要求1所述的具有贯穿孔的多孔陶瓷的制备方法,其特征在于:所述球形造孔剂是粒径为20-50μm的石墨粉。
6.根据权利要求1所述的具有贯穿孔的多孔陶瓷的制备方法,其特征在于:所述三叉形有机造孔剂成分是环氧树脂、聚乙烯、聚丙烯或聚苯乙烯。
7.根据权利要求1所述的具有贯穿孔的多孔陶瓷的制备方法,其特征在于:步骤C所述三叉形有机造孔剂的方向是使得位于中间的圆柱体与内圆相切。
8.根据权利要求1所述的具有贯穿孔的多孔陶瓷的制备方法,其特征在于:步骤D冷却时设置降温程序:以1-2℃/min的速率降温至950-1050℃,再以3-5℃/min的速率降温至450-550℃,之后自然冷却至室温。
CN202110279466.XA 2021-03-16 2021-03-16 一种具有贯穿孔的多孔陶瓷及其制备方法和应用 Active CN113213962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110279466.XA CN113213962B (zh) 2021-03-16 2021-03-16 一种具有贯穿孔的多孔陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110279466.XA CN113213962B (zh) 2021-03-16 2021-03-16 一种具有贯穿孔的多孔陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113213962A CN113213962A (zh) 2021-08-06
CN113213962B true CN113213962B (zh) 2022-06-17

Family

ID=77084906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110279466.XA Active CN113213962B (zh) 2021-03-16 2021-03-16 一种具有贯穿孔的多孔陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113213962B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768649A (zh) * 2023-06-26 2023-09-19 中国科学院过程工程研究所 一种铁尾矿基土壤改良材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301209A (ja) * 2002-04-12 2003-10-24 Nippon Steel Corp 高炉出銑口及び高炉出銑樋
CN101172883B (zh) * 2007-10-18 2011-06-29 卢建熙 粘结模板法制备微结构的可控多孔陶瓷的方法
CN103819219B (zh) * 2014-01-22 2015-07-08 湖南大学 一种耐酸碱腐蚀的碳化硅多孔支撑体
CN104606712B (zh) * 2014-12-31 2016-08-17 广州熙福医疗器材有限公司 一种具有贯通孔结构的仿生生物陶瓷及其制备方法和应用
CN107216161A (zh) * 2017-07-18 2017-09-29 合肥铭佑高温技术有限公司 一种新型耐高温金属陶瓷复合材料及制备方法
CN108610050A (zh) * 2018-04-16 2018-10-02 长兴科创科技咨询有限公司 一种多孔碳化硅陶瓷及其制备方法
CN108585905A (zh) * 2018-04-16 2018-09-28 长兴科创科技咨询有限公司 一种高强度碳化硅陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113213962A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN113213962B (zh) 一种具有贯穿孔的多孔陶瓷及其制备方法和应用
US4997192A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
US5762895A (en) Bearing material of porous SIC having a trimodal pore composition
CN107460391B (zh) 一种添加石墨烯的梯度硬质合金刀具材料及其快速制备方法
CN113061051B (zh) 一种气浮轴承用多孔陶瓷及其制备方法和应用
US7014367B2 (en) Oil-impregnated sintered sliding bearing
JP3860253B2 (ja) 静圧気体軸受
CN110938770B (zh) 一种动密封材料及其制备方法和应用
CN110081082A (zh) 一种静压气浮径向轴承
CN103834866A (zh) 一种高强度高耐磨性的高温自润滑复合材料及其制备方法
CN106967484B (zh) 一种酚醛环氧树脂固体润滑块及其制备方法
CN201866090U (zh) 全陶瓷轴承
CN111943684A (zh) 一种新型陶瓷轴承复合材料
CN209334700U (zh) 一种柱塞自润滑的压铸机熔杯
CN107584287A (zh) 一种微织构自润滑陶瓷导轨的制备方法
CN100412424C (zh) 密封用滑动元件及其制造方法
CN109719295A (zh) 金属丝冶金结合多孔材料在制造流体润滑机械零件的应用
CN100540926C (zh) 一种由粉末冶金材料制作的轴承中隔圈
CN108467275A (zh) 一种自润滑陶瓷轴承
JPS5919717A (ja) 耐熱性無給油構造体
CN109234559B (zh) 一种多孔自润滑Fe2B-Fe金属陶瓷复合材料及其制备方法
CN107540380A (zh) 具有三形态的孔组成的多孔SiC轴承材料及其制造方法
CN108411160B (zh) 具有自适应特性的自润滑轴承及其制备方法
CN107793157B (zh) 一种立方碳化硅超精油石的制备方法
JP4865146B2 (ja) 炭化珪素焼結部品並びにそれを用いたメカニカルシール及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant