CN113209945B - 一种用于去除全氟化合物的磁性纳米颗粒及其制备方法 - Google Patents

一种用于去除全氟化合物的磁性纳米颗粒及其制备方法 Download PDF

Info

Publication number
CN113209945B
CN113209945B CN202110327714.3A CN202110327714A CN113209945B CN 113209945 B CN113209945 B CN 113209945B CN 202110327714 A CN202110327714 A CN 202110327714A CN 113209945 B CN113209945 B CN 113209945B
Authority
CN
China
Prior art keywords
nano particles
magnetic
modified
solution
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110327714.3A
Other languages
English (en)
Other versions
CN113209945A (zh
Inventor
刘川
王君玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tai'an Dearto Automation Instrument Co ltd
Original Assignee
Tai'an Dearto Automation Instrument Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tai'an Dearto Automation Instrument Co ltd filed Critical Tai'an Dearto Automation Instrument Co ltd
Priority to CN202110327714.3A priority Critical patent/CN113209945B/zh
Publication of CN113209945A publication Critical patent/CN113209945A/zh
Application granted granted Critical
Publication of CN113209945B publication Critical patent/CN113209945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种用于去除全氟化合物的磁性纳米颗粒及其制备方法,其特征在于,含有磁性四氧化三铁、二氧化硅、聚4‑苯乙烯磺酸钠和聚二甲基二烯丙基氯化铵;本申请应用于处理全氟化合物,具有去除速度快,去除效果好的优势。

Description

一种用于去除全氟化合物的磁性纳米颗粒及其制备方法
技术领域
本发明涉及一种用于去除全氟化合物的磁性纳米颗粒及其制备方法。
背景技术
全氟化合物(Perfluorinated compounds ,PFC)是一种饮用水处理领域里新的关注焦点的有机污染物。由于其结构中存在难以断裂的碳氟键,全氟化合物具有很高的热稳定性和化学稳定性,被广泛用于制造普通家用物品和工业产品,例如不粘锅涂层,耐火和防水的衣服材料,清洁剂和个人护理产品等。全氟化合物的高稳定性导致在自然环境中,其很难被水解,光解或生物降解,并具有生物累积性。天然环境及饮用水系统中最常见的两类全氟化合物是全氟羧酸(Perfluoroalkyl Carboxylic Acids,PFCAs)和全氟磺酸(Perfluoroalkyl Sulfonic Acids, PFSAs),其中两种最典型全氟化合物是全氟辛酸(Perfluorooctanoic Acid,PFOA)和全氟辛磺酸(Perfluorooctanoic sulfonate,PFOS)。毒理学研究表明,饮用水中存在的全氟化合物对人体存在潜在的安全危害。常用的水处理方法如高级氧化,生物滤膜,以及传统的混凝沉淀等工艺对PFC处理效果都不好。能够去除PFC的水处理工艺包括活性炭吸附,离子交换以及高压膜处理。活性炭吸附对于PFC的去除效果较为稳定,且吸附剂容易购买,工艺较成熟。其缺点为吸附平衡时间长,对于短链的PFC吸附效率较低,且会受到水中天然有机物的影响,降低吸附效率。阴离子交换树脂对具有羧酸或磺酸等阴离子基团的PFC有较好的去除效果,且有较快的反应速率,但是对于没有阴离子基团的PFC以及长链的PFC去除效果较差。高压膜在PFC的处理中的应用优点是对大多数PFC的处理效果都很好,缺点是因为需要额外提供压力,运行成本很高,且长时间运行会有膜污染带来的效率降低。此外,这些已有技术对吸附PFC的选择性较差。
磁性纳米材料由于其具有比表面积大,吸附速率快,可磁分离等优点,近年来在水处理应用中得到广泛关注。特别是如何通过合适的修饰方法使得磁性纳米材料能够获得对特定污染物的良好吸附效果值得深入研究。例如有专利:饮用水高效除氟Fe3O4@ZrO(OH)2磁性纳米吸附材料的制备方法(申请号:201010129474.8),介绍了通过在磁性纳米四氧化三铁表面修饰氢氧化锆,利用水中的氟离子与锆离子形成络合物沉淀的原理,可以去除饮用水中的氟离子。但是该方法原理是应用于去除可以在水中产生氟离子的无机化合物,而非应用于全氟化合物这种主要以碳氟键组成的有机类化合物。在已有专利文献中,尚未有研究磁性及聚合物改性的纳米颗粒用于全氟化合物的去除。另外,使用无机重金属盐直接在四氧化三铁磁性纳米颗粒表面修饰可能会使纳米颗粒容易聚集,且稳定性较差,因而对实际处理应用造成影响。
发明内容
本发明所要解决的技术问题是,提供一种用于去除全氟化合物的磁性纳米颗粒及其制备方法,解决的技术问题是去除水中的全氟化合物。
为了解决上述技术问题,本发明采用以下技术方案:
一种用于去除全氟化合物的磁性纳米颗粒,含有磁性四氧化三铁、二氧化硅、聚4-苯乙烯磺酸钠(PSS)和聚二甲基二烯丙基氯化铵(pDADMAC);所述全氟化合物是全氟羧酸(PFCA)和全氟磺酸(PFSA)。
所述聚4-苯乙烯磺酸钠和聚二甲基二烯丙基氯化铵聚通过层层自组装的方法涂层于磁性四氧化三铁的表面。
一种用于去除全氟化合物的磁性纳米颗粒的制备方法,按照以下步骤进行:
1)制备混合液:将70 mmol/L柠檬酸钠、150 mmol/L尿素、7.5 mg/mL聚丙烯酰胺和25 mmol/L氯化铁加入到15 mL 去离子水中,得混合液;
2)制备粗品:将混合液在60W超声下处理1小时,超声处理后的混合液在200℃条件下保温12小时,分别用去离子和乙醇洗涤3次,得粗品;
3)制备磁性四氧化三铁纳米颗粒:将粗品在70°C的干燥箱中干燥2小时,得磁性四氧化三铁纳米颗粒;
4)制备预修饰液:将磁性四氧化三铁纳米颗粒加入到含有12 mol/L的乙醇和0.15mol/L的氢氧化铵的水溶液中,制成磁性四氧化三铁浓度为1.5 mg/mL的纳米颗粒溶液,将纳米颗粒溶液在40 W超声下处理10分钟,移至离心管中混匀,即得预修饰液;
5)制备二氧化硅修饰的磁性氧化铁纳米颗粒:向预修饰液中加入1 mol/L的正硅酸乙酯,至预修饰液中正硅酸乙酯的浓度为50 mmol/L,静置18小时,过滤,使用乙醇洗涤,在70°C条件下干燥,得二氧化硅修饰的磁性氧化铁纳米颗粒;
分别配置10 g/L的聚二甲基二烯丙基氯化铵溶液和10 g/L的聚4-苯乙烯磺酸钠溶液;
6)制备聚二甲基二烯丙基氯化铵修饰纳米颗粒:将二氧化硅修饰的磁性氧化铁纳米颗粒加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚二甲基二烯丙基氯化铵修饰纳米颗粒;
7)制备聚4-苯乙烯磺酸钠修饰纳米颗粒:将聚二甲基二烯丙基氯化铵修饰纳米颗粒加入到聚4-苯乙烯磺酸钠溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚4-苯乙烯磺酸钠修饰纳米颗粒;
8)制备产品A:至少重复步骤6)和7)一次,得产品A;
9)制备磁性纳米颗粒:将产品A加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得磁性纳米颗粒。
所述去离子水和乙醇洗涤用量为50~100mL。
优选地,所述步骤4)中所述混匀是涡旋震荡。
所述正硅酸乙酯的加入为分多次加入,相邻两次加入的间隔时间是20分钟。
步骤5)乙醇洗涤次数为3次,每次使用乙醇的用量是50~100mL。
步骤6)中二氧化硅修饰的磁性氧化铁纳米颗粒和聚4-苯乙烯磺酸钠溶液的质量比是5~6:10;
步骤7)中,聚二甲基二烯丙基氯化铵修饰纳米颗粒和聚4-苯乙烯磺酸钠溶液的质量比是5~6:10。
步骤8)中所述重复次数为4次。
发明具有以下有益技术效果:
1.本申请使用的磁纳米吸附材料,可以有效去除饮用水系统中的PFC。外层经过修饰类似于阴离子交换位的基团使得其对具有亲水性基团以及小分子的PFC具有特异性吸附效果,同时保持了吸附材料本身对于疏水性大分子PFC的吸附效果。相对于饮用水中的污染物,该纳米材料对PFC有较好的选择性。由于纳米材料具有较大的比表面积,所以对PFC具有较快的吸附速率。同时由于其具有磁性,可以通过磁铁将吸附过PFC的纳米颗粒从饮用水处理系统中分离出去。
2.本申请中使用了聚二甲基二烯丙基氯化铵和聚4-苯乙烯磺酸钠以层层沉积自组装的方式修饰到磁性纳米颗粒表面,该修饰方法基于带相反电荷的聚合物层之间的静电吸引,使用这种方法操作简单且修饰效果好。申请中使用的聚二甲基二烯丙基氯化铵作为最外层的修饰物质可以提供季铵盐官能团,因此对于全氟化合物中最常见的具有羧酸和磺酸基团有优秀的离子交换吸附效果。申请中使用的聚4-苯乙烯磺酸钠保证了修饰效果的稳定。在使用聚二甲基二烯丙基氯化铵修饰前,先在磁性四氧化三铁纳米颗粒表面修饰了二氧化硅,这样可以防止纳米颗粒的氧化还原,增加其稳定性,减少纳米颗粒的聚集,同时更有利于后续聚合物的修饰。
3.本申请使用聚二甲基二烯丙基氯化铵和聚4-苯乙烯磺酸钠交替修饰了共9层,在修饰到第9层的聚二甲基二烯丙基氯化铵后,ζ电位结果显示出约+ 36.8 mV的正表面电荷,ζ电位绝对值大于30mV意味着纳米颗粒在水中具有较好的稳定性,不易于凝聚。
附图说明
图1为磁性四氧化三铁纳米颗粒TEM图像,从左至右依次为裸露的磁性四氧化三铁纳米颗粒(CSA);SiO2包覆的磁性四氧化三铁纳米颗粒(SiO2/CSA);聚合物层层自组装修饰(LbL)涂层的SiO2/CSA颗粒。
图2为在SiO2包覆的磁性Fe3O4纳米颗粒表面层层修饰聚二甲基二烯丙基氯化铵和聚4-苯乙烯磺酸钠过程的ζ电位。
图3磁性纳米颗粒对7种全氟化合物的吸附动力学实验结果。
具体实施方式
下面结合具体实例进一步说明本发明。
实施例1
一种用于去除全氟化合物的磁性纳米颗粒,含有磁性四氧化三铁、二氧化硅、聚4-苯乙烯磺酸钠(PSS)和聚二甲基二烯丙基氯化铵(pDADMAC);所述全氟化合物是全氟羧酸(PFCA)和全氟磺酸(PFSA)。
所述聚4-苯乙烯磺酸钠和聚二甲基二烯丙基氯化铵通过层层自组装的方法涂层于磁性四氧化三铁的表面。
一种用于去除全氟化合物的磁性纳米颗粒的制备方法,按照以下步骤进行:
1)制备混合液:将70 mmol/L柠檬酸钠、150 mmol/L尿素、7.5 mg/mL聚丙烯酰胺和25 mmol/L氯化铁加入到15 mL 去离子水中,得混合液;
2)制备粗品:将混合液在60W超声下处理1小时,超声处理后的混合液在200℃条件下保温12小时,分别用去离子和乙醇洗涤3次,得粗品;
3)制备磁性四氧化三铁纳米颗粒:将粗品在70°C的干燥箱中干燥2小时,得磁性四氧化三铁纳米颗粒;
4)制备预修饰液:将磁性四氧化三铁纳米颗粒加入到含有12 mol/L的乙醇和0.15mol/L的氢氧化铵的水溶液中,制成磁性四氧化三铁浓度为1.5 mg/mL的纳米颗粒溶液,将纳米颗粒溶液在40 W超声下处理10分钟,移至离心管中混匀,即得预修饰液;
5)制备二氧化硅修饰的磁性氧化铁纳米颗粒:向预修饰液中加入1 mol/L的正硅酸乙酯,至预修饰液中正硅酸乙酯的浓度为50 mmol/L,静置18h,过滤,使用乙醇洗涤,在70°C条件下干燥,得二氧化硅修饰的磁性氧化铁纳米颗粒;
分别配置10 g/L的聚二甲基二烯丙基氯化铵溶液和10 g/L的聚4-苯乙烯磺酸钠溶液;
6)制备聚二甲基二烯丙基氯化铵修饰纳米颗粒:将二氧化硅修饰的磁性氧化铁纳米颗粒加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚二甲基二烯丙基氯化铵修饰纳米颗粒;
7)制备聚4-苯乙烯磺酸钠修饰纳米颗粒:将聚二甲基二烯丙基氯化铵修饰纳米颗粒加入到聚4-苯乙烯磺酸钠溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚4-苯乙烯磺酸钠修饰纳米颗粒;
8)制备产品A:重复步骤6)和7)4次,即得产品A;
9)将产品A加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得磁性纳米颗粒。
所述去离子水和乙醇洗涤用量为80mL。
所述步骤4)中所述混匀是涡旋震荡。
所述正硅酸乙酯的加入为分3次加入,相邻两次加入的间隔时间是20分钟。
步骤5)乙醇洗涤次数为3次,每次使用乙醇的用量是80mL。
步骤6)中二氧化硅修饰的磁性氧化铁纳米颗粒和聚4-苯乙烯磺酸钠溶液的质量比是5:10;
步骤7)中,阴离子修饰纳米颗粒和聚二甲基二烯丙基氯化铵溶液的质量比是5:10。
实施例2
一种用于去除全氟化合物的磁性纳米颗粒,含有磁性四氧化三铁、二氧化硅、聚4-苯乙烯磺酸钠和聚二甲基二烯丙基氯化铵;所述全氟化合物是全氟羧酸和全氟磺酸。
所述聚4-苯乙烯磺酸钠和聚二甲基二烯丙基氯化铵通过层层自组装的方法涂层于磁性四氧化三铁的表面。
一种用于去除全氟化合物的磁性纳米颗粒的制备方法,按照以下步骤进行:
1)制备混合液:将70 mmol / L柠檬酸钠、150 mmol/L尿素、7.5 mg/mL聚丙烯酰胺和25 mmol/L氯化铁加入到15 mL 去离子水中,得混合液;
2)制备粗品:将混合液在60W超声下处理1小时,超声处理后的混合液在200℃条件下保温12小时,分别用去离子和乙醇洗涤3次,得粗品;
3)制备磁性四氧化三铁纳米颗粒:将粗品在70°C的干燥箱中干燥2小时,得磁性四氧化三铁纳米颗粒;
4)制备预修饰液:将磁性四氧化三铁纳米颗粒加入到含有12 mol/L的乙醇和0.15mol/L的氢氧化铵的水溶液中,制成磁性四氧化三铁浓度为1.5 mg/mL的纳米颗粒溶液,将纳米颗粒溶液在40 W超声下处理10分钟,移至离心管中混匀,即得预修饰液;
5)制备二氧化硅修饰的磁性氧化铁纳米颗粒:向预修饰液中加入1 mol/L的正硅酸乙酯,至预修饰液中正硅酸乙酯的浓度为50 mmol/L,静置18小时,过滤,使用乙醇洗涤,在70°C条件下干燥,得二氧化硅修饰的磁性氧化铁纳米颗粒;
分别配置10 g/L的聚二甲基二烯丙基氯化铵溶液和10 g/L的聚4-苯乙烯磺酸钠溶液;
6)制备聚二甲基二烯丙基氯化铵修饰纳米颗粒:将二氧化硅修饰的磁性氧化铁纳米颗粒加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚二甲基二烯丙基氯化铵修饰纳米颗粒;
7)制备聚4-苯乙烯磺酸钠修饰纳米颗粒:将聚二甲基二烯丙基氯化铵修饰纳米颗粒加入到聚4-苯乙烯磺酸钠溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚4-苯乙烯磺酸钠修饰纳米颗粒;
8)制备产品A:重复步骤6)和7)5次,即得产品A;
9)将产品A加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得磁性纳米颗粒。
所述去离子水和乙醇洗涤用量为60mL。
所述步骤4)中所述混匀是涡旋震荡。
所述正硅酸乙酯的加入为分4次加入,相邻两次加入的间隔时间是20分钟。
步骤5)乙醇洗涤次数为3次,每次使用乙醇的用量是60mL。
步骤6)中二氧化硅修饰的磁性氧化铁纳米颗粒和聚4-苯乙烯磺酸钠溶液的质量比是6:10;
步骤7)中,阴离子修饰纳米颗粒和聚二甲基二烯丙基氯化铵溶液的质量比是6:10。
下面结合实验数据进一步说明本发明的有益效果:
实验一
纳米粒子的ζ电位测试:
修饰了SiO2的磁性Fe3O4纳米颗粒(SiO2/CSA),之后使用聚二甲基二烯丙基氯化铵(pDADMAC)和聚4-苯乙烯磺酸钠(PSS)交替层层修饰在SiO2/CSA表面(先修饰pDADMAC,再修饰PSS,所以奇数层第1,、3、5、7、9层为pDADMAC,偶数层为PSS),因为吸附功能材料是pDADMAC,所以最外层修饰的是奇数层的pDADMAC。
测试方法:
在SiO2修饰过的纳米颗粒上,交替层层修饰pDADMAC和PSS,方法如步骤6)-步骤9)。每修饰一层聚合物,使用Zeta电位分析仪测量一次纳米颗粒的Zeta电位;每修饰一层聚合物是指使用pDADMAC单独修饰一层或者使用PSS单独修饰一层。
具体结果见附图2。
在Zeta电势数据中,pDADMAC和PSS的交替涂层导致Zeta电势的正负变化。在约9个涂层后,ζ电位结果显示出约+ 36.8 mV的正表面电荷,ζ电位绝对值大于30mV意味着纳米粒子具有相关的稳定性。
实验二
1. 材料和方法
(1)材料:
实施例1制备好的磁性纳米颗粒;7种PFC分别为:全氟丁酸:PerfluorobutanoicAcid (PFBA ),全氟己酸:Perfluorohexanoic Acid (PFHxA ),全氟辛酸:Perfluorooctanoic Acid (PFOA ),全氟葵酸:Perfluorodecanoic Acid (PFDA ),全氟丁磺酸:Perfluorobutanoic sulfonate (PFBS),全氟己磺酸:Perfluorohexanoicsulfonate (PFHxS),全氟辛磺酸:Perfluorooctanoic sulfonate (PFOS);1L容量的不透明聚丙烯塑料瓶7个;定轨振荡器;0.45 µm滤膜。
(2)实验方法:
使用了瓶点法在超纯水中对本申请实施例1制备的磁性纳米颗粒进行了吸附动力学实验,以测试其对PFC的吸附性能。在所有动力学实验中,称取等量的纳米颗粒50毫克(以干重计算),并添加到每一个样品瓶中,样品瓶体积为1 L。每个样品中都加入了7种PFC的混合物,每种PFC浓度均为3.0μg/ L。将装有1 L PFC样品和纳米颗粒的不透明聚丙烯瓶在室温下以每分钟150转的速度放在定轨振荡器上。磁性纳米颗粒样品的接触时间为0、1、3、6、12、24和48小时。在所列出的每个接触时间点取出样品并进行分析。在分析之前,将样品放在磁铁上,以使纳米颗粒沉淀到瓶底。然后采集液体上清液样品,并使用0.45 µm滤膜过滤,以确保除去所有纳米颗粒。
2. 结果与分析
见附图3
实施例1制备的磁性纳米颗粒在超纯水中的PFC吸附动力学实验结果(初始PFC浓度均为3μg/ L;修饰磁性纳米颗粒剂量为干重50 mg / L)。
图中显示的磁性纳米颗粒对于PFC的吸附结果表明,修饰的纳米颗粒在平衡状态对多数PFC都具有较高的平衡去除率。对于短链全氟羧酸(如PFBA和PFHxA)分别仅具有20%和40%的平衡去除率;对于短链的全氟磺酸PFBS具有90%左右的平衡去除率。对于其他PFC的去除率均超过99%。与全氟羧酸相比,对于去除全氟磺酸的具有较好的去除效果。与短链PFC相比,长链PFC的去除效果更好。作为长链PFC,修饰磁性纳米颗粒对PFDA和PFOS的最大去除率超过99.9%。磁性纳米颗粒对所有的PFC吸附的速率都很快,在8-10个小时就能达到吸附平衡。
使用吸附的伪二阶模型(Pseudo-second-order model)用于计算使用纳米颗粒吸附PFC的动力学参数。
吸附动力学的伪二阶模型:
其中t是经过的天数或小时数,qt是在时间t吸附的溶质的量,k2是吸附速率常数,qe是在平衡状态下吸附的溶质的总量。
表1 伪二阶模型计算得到的磁性纳米颗粒吸附PFC的吸附动力学参数
表1为使用伪二阶模型计算得到的实施例1制备的磁性纳米颗粒的吸附动力学参数。在表1中汇总了伪二阶模型参数(包括k2,qe和R2)以及实验得到的qe(qe,exp)和最大去除百分比(Maximium removal)。在超纯水中使用修饰纳米颗粒的所有PFC吸附动力学均达到大于0.98的高R2值,这意味着吸附动力学数据很好地拟合了伪二级模型。
用伪二级模型计算的的所有目标PFC的k2值都很高,这表明磁性纳米颗粒对所有目标PFC具有高吸附率。修饰的磁性纳米颗粒吸附PFC有较高的qe和qe,exp值。相较而言,短链全氟羧酸(如PFBA和PFHxA)的qe值低;长链PFC(如PFOA、PFDA、PFOS)的qe值接近或达到60ng/mg,去除率最大。这些结果表明,修饰纳米颗粒用于吸附PFC具有较短的平衡时间,对长链PFC的吸附能力优异。
实验三
吸附去除PFC的工艺
将实施例1制备的磁性纳米颗粒应用于PFC水处理工艺中,采用混悬接触吸附方式。将磁性纳米吸附颗粒加入水处理反应器中,投加浓度为50 mg/L,搅拌速率150 r/min,接触时间9小时,可以达到对常见PFC(PFOA和PFOS)超过99%的去除率。
磁分离工艺
通过瓶点法模拟测试了实施例1制备的磁性纳米颗粒的磁分离性能,使用高性能磁铁放置在水处理反应容器底部,分离时间20分钟,可以将磁性纳米吸附颗粒吸到容器底部,从而与上部的处理后的饮用水分离,达到99.99%以上的饮用水系统中磁性纳米颗粒的分离效率。

Claims (7)

1.一种磁性纳米颗粒在去除全氟化合物中的应用,其特征在于,所述全氟化合物是全氟羧酸和全氟磺酸,该磁性纳米颗粒的制备方法按照以下步骤进行:
1)制备混合液:将70 mmol/L柠檬酸钠、150 mmol/L尿素、7.5 mg/mL聚丙烯酰胺和25mmol/L氯化铁加入到15 mL 去离子水中,得混合液;
2)制备粗品:将混合液在60W超声下处理1小时,超声处理后的混合液在200℃条件下保温12小时,分别用去离子和乙醇洗涤3次,得粗品;
3)制备磁性四氧化三铁纳米颗粒:将粗品在70°C的干燥箱中干燥2小时,得磁性四氧化三铁纳米颗粒;
4)制备预修饰液:将磁性四氧化三铁纳米颗粒加入到含有12 mol/L的乙醇和0.15mol/L的氢氧化铵的水溶液中,制成磁性四氧化三铁浓度为1.5 mg/mL的纳米颗粒溶液,将纳米颗粒溶液在40 W超声下处理10分钟,移至离心管中混匀,即得预修饰液;
5)制备二氧化硅修饰的磁性四氧化三铁纳米颗粒:向预修饰液中加入1 mol/L的正硅酸乙酯,至预修饰液中正硅酸乙酯的浓度为50 mmol/L,静置18小时,过滤,使用乙醇洗涤,在70°C条件下干燥,得二氧化硅修饰的磁性氧化铁纳米颗粒;
分别配置10 g/L的聚二甲基二烯丙基氯化铵溶液和10 g/L的聚4-苯乙烯磺酸钠溶液;
6)制备聚二甲基二烯丙基氯化铵修饰纳米颗粒:将二氧化硅修饰的磁性四氧化三铁纳米颗粒加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚二甲基二烯丙基氯化铵修饰纳米颗粒;
7)制备聚4-苯乙烯磺酸钠修饰纳米颗粒:将聚二甲基二烯丙基氯化铵修饰纳米颗粒加入到聚4-苯乙烯磺酸钠溶液中,搅拌1小时,过滤,用超纯水洗涤,得聚4-苯乙烯磺酸钠修饰纳米颗粒;
8)制备产品A:至少重复步骤6)和7)一次,得产品A;
9)制备磁性纳米颗粒:将产品A加入到聚二甲基二烯丙基氯化铵溶液中,搅拌1小时,过滤,用超纯水洗涤,得磁性纳米颗粒。
2.如权利要求1所述的应用,其特征在于所述去离子水和乙醇洗涤用量为50~100mL。
3.如权利要求1所述的应用,其特征在于,所述步骤4)中所述混匀是涡旋震荡。
4.如权利要求1所述的应用,其特征在于,所述正硅酸乙酯的加入为分多次加入,相邻两次加入的间隔时间是20分钟。
5.如权利要求1所述的应用,其特征在于,步骤5)乙醇洗涤次数为3次,每次使用乙醇的用量是50~100mL。
6.如权利要求1所述的应用,其特征在于,步骤6)中二氧化硅修饰的磁性四氧化三铁纳米颗粒和聚4-苯乙烯磺酸钠溶液的质量比是5~6:10;
步骤7)中,聚二甲基二烯丙基氯化铵修饰纳米颗粒和聚4-苯乙烯磺酸钠溶液的质量比是5~6:10。
7.如权利要求1所述的应用,其特征在于,步骤8)中所述重复次数为4次。
CN202110327714.3A 2021-03-26 2021-03-26 一种用于去除全氟化合物的磁性纳米颗粒及其制备方法 Active CN113209945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110327714.3A CN113209945B (zh) 2021-03-26 2021-03-26 一种用于去除全氟化合物的磁性纳米颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110327714.3A CN113209945B (zh) 2021-03-26 2021-03-26 一种用于去除全氟化合物的磁性纳米颗粒及其制备方法

Publications (2)

Publication Number Publication Date
CN113209945A CN113209945A (zh) 2021-08-06
CN113209945B true CN113209945B (zh) 2024-03-08

Family

ID=77084207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110327714.3A Active CN113209945B (zh) 2021-03-26 2021-03-26 一种用于去除全氟化合物的磁性纳米颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN113209945B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272648A (zh) * 2013-03-30 2013-09-04 温州大学 一种磁性多孔负载型金属手性催化剂及其应用
CN105903032A (zh) * 2016-05-31 2016-08-31 武汉理工大学 超顺磁性靶向双药物缓释载体材料及其制备方法
CN112236225A (zh) * 2018-03-28 2021-01-15 普瑞菲蒂有限公司 接枝到微粒状固体载体上的改性多胺作为用于从流体中去除目标物质的吸附剂材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272648A (zh) * 2013-03-30 2013-09-04 温州大学 一种磁性多孔负载型金属手性催化剂及其应用
CN105903032A (zh) * 2016-05-31 2016-08-31 武汉理工大学 超顺磁性靶向双药物缓释载体材料及其制备方法
CN112236225A (zh) * 2018-03-28 2021-01-15 普瑞菲蒂有限公司 接枝到微粒状固体载体上的改性多胺作为用于从流体中去除目标物质的吸附剂材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Preparation and characterization of polymer composite multilayers on SiO2";Heather Trotter et al.;《Journal of Colloid and Interface Science》;20050203;第286卷;第233-238页 *
"Self-Cleaning Antireflective Coatings Assembled from Peculiar Mesoporous Silica Nanoparticles";Xiaoyu Li et al.;《Langmuir》;20100720;第26卷(第16期);第13528-13534页 *

Also Published As

Publication number Publication date
CN113209945A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
Pishnamazi et al. Metal organic framework nanoparticles loaded-PVDF/chitosan nanofibrous ultrafiltration membranes for the removal of BSA protein and Cr (VI) ions
Zhang et al. Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes
Lu et al. Magnetic chitosan–based adsorbent prepared via Pickering high internal phase emulsion for high-efficient removal of antibiotics
Park et al. Selective lithium and magnesium adsorption by phosphonate metal-organic framework-incorporated alginate hydrogel inspired from lithium adsorption characteristics of brown algae
CN106732818A (zh) 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用
Sarker et al. Evaluation of the adsorption of sulfamethoxazole (SMX) within aqueous influents onto customized ordered mesoporous carbon (OMC) adsorbents: Performance and elucidation of key adsorption mechanisms
CN101247880A (zh) 含有交换树脂的多孔膜
Jin et al. Efficient adsorption of Congo red by MIL-53 (Fe)/chitosan composite hydrogel spheres
CN108996598A (zh) 一种双官能团金属螯合型树脂吸附剂的废水除氟应用
CN106378105A (zh) 一种磁性壳聚糖复合吸附剂的制备方法
Karmakar et al. Multicomponent transport model-based scaling up of long-term adsorptive filtration of MOF incorporated mixed matrix hollow fiber membrane: Treatment of textile effluent
Ma et al. Polypropylene membranes with high adsorption capacity and anti-adhesion properties achieved by hydrophobic interactions and hydrogen bonded self-assembly for uranium extraction from seawater
WO2023241689A1 (zh) 一种多孔胺化有机氟胶囊及其制法与应用
CN105642255A (zh) 一种Fe3O4聚间苯二胺MnO2磁性核壳结构纳米复合材料及其制备和应用方法
CN105080367A (zh) 一种含有复合纳米粒子的复合纳滤膜及制备方法
Tao et al. Highly efficient Li+/Mg2+ separation of monovalent cation permselective membrane enhanced by 2D metal organic framework nanosheets
Zhu et al. The simple synthesis of metal organic frameworks with high fluoride adsorption performance from water
CN103157388A (zh) 一种亲水性反渗透复合膜及其制备方法
Yin et al. Preparation of Metal–organic framework/polyvinylidene fluoride mixed matrix membranes for water treatment
Wu et al. Membrane-associated molecularly imprinted surfaces with tailor-made SiO2@ polydopamine-based recognition sites for selective separation of artemisinin
CN113209945B (zh) 一种用于去除全氟化合物的磁性纳米颗粒及其制备方法
CN107952419B (zh) 快速吸附去除水中有机微污染物的可再生吸附材料及制备方法
Seidypoor et al. Double-layer electrodialysis cation exchange membrane by introducing chitosan/TiO2 thin-film nanocomposite on PVC-based substrate for Cu removal from water
Yu et al. Synthesis of Ag–SiO2–APTES Nanocomposites by blending poly (Vinylidene Fluoride) Membrane with potential applications on dye wastewater treatment
Ma et al. Freestanding flexible molecularly imprinted nanocomposite membranes for selective separation applications: an imitated core–shell PEI@ SiO 2-based MIM design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant