CN113203934A - 一种集成电路信号时间信息的测量电路及方法 - Google Patents

一种集成电路信号时间信息的测量电路及方法 Download PDF

Info

Publication number
CN113203934A
CN113203934A CN202110066073.0A CN202110066073A CN113203934A CN 113203934 A CN113203934 A CN 113203934A CN 202110066073 A CN202110066073 A CN 202110066073A CN 113203934 A CN113203934 A CN 113203934A
Authority
CN
China
Prior art keywords
time
signal
clock
tclk
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110066073.0A
Other languages
English (en)
Other versions
CN113203934B (zh
Inventor
王小龑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Qiying Technology Co ltd
Original Assignee
Hangzhou Qiying Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Qiying Technology Co ltd filed Critical Hangzhou Qiying Technology Co ltd
Priority to CN202110066073.0A priority Critical patent/CN113203934B/zh
Publication of CN113203934A publication Critical patent/CN113203934A/zh
Application granted granted Critical
Publication of CN113203934B publication Critical patent/CN113203934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Abstract

本发明公开了一种集成电路信号时间信息的测量电路及方法,电路中待测信号输入每个D触发器的D端和计数器,时钟信号输入每个D触发器的CK端和计数器,其中,待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N,或时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N,在跳变时刻所处时钟信号周期的末端时刻,对每个D触发器的输出Q端进行快照捕捉后,计算得到待测信号的信号转变过程长度。本发明对信号到达时间或脉宽进行更高精度的测量,且电路结构简单,易于在通用集成电路制造工艺上实现。

Description

一种集成电路信号时间信息的测量电路及方法
技术领域
本发明属于集成电路技术领域,具体涉及一种集成电路信号时间信息的测量电路及方法。
背景技术
在集成电路中,有时候需要精确测量信号的时间信息,例如到达时间信息或信号脉冲宽度信息。一般的做法是通过计数器进行计数,用计数结果评价信号到达时间或持续脉宽。为了提高精度,一般的做法是通过提高时钟频率,从而使计数的精度增加。
但是,集成电路因为受限于工艺实现的原因,无法无限提高计数时钟频率,因此计时精度也就无法继续提高。
但是在某些特殊应用条件下,单纯依靠普通的数字电路计数器进行计数,难以达到所需的计时精度,例如,在测距应用中,有时候需要测量无线电信号在空中飞行的时间,此时,因为测距距离等于光速和时间的乘积,因此,计时精度稍有误差,就会导致测距结果产生很大误差。
发明内容
为了克服上述问题,本发明可以对信号到达时间或脉宽测量进行更高精度的测量,而且电路结构简单,易于在普通的集成电路制造工艺上实现。
采用如下的技术方案:
一种集成电路信号时间信息的测量电路,包括N个D触发器和一个计数器,
其中,
待测信号输入每个D触发器的D端和计数器,时钟信号输入每个D触发器的CK端和计数器,其中,
待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N,
或时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N,
其中,Tclk为时钟信号的周期,
在跳变时刻所处时钟信号周期的末端时刻,对每个D触发器的输出Q端进行快照捕捉后,计算得到待测信号的信号转变过程长度。
优选地,当待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,在第Cm+1个时钟中间某个位置第二次跳变,令第Ca-1个时钟的末端时刻为T1,第Cm+1个时钟的末端时刻为T2,第一次跳变的时刻到T1之间的时长记为P0,第Ca个时钟起点至第Cm个时钟末端的时长记为P1,第Cm个时钟末端时刻至第二次跳变之间的时长记为P2,第二次跳变至T2之间的时长记为P3,待测信号的信号转变过程长度记为Ts,则Ts=P0+P1+P2,其中,P1=[(Cm-Ca)+1]*Tclk;
P0=[(!Q1@T1+!Q2@T1+!Q3@T1+...!QN-1@T1+!QN@T1)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@T1表示在T1时刻进行快照捕捉,以此类推;
P2=Tclk-P3=Tclk-[(Q1@T2+Q2@T2+Q3@T2+...QN-1@T2+QN@T2)/N]*Tclk;
则,
Figure BDA0002902771210000021
Figure BDA0002902771210000022
Figure BDA0002902771210000031
优选地,所述时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,记第一次跳变时刻为Ta,在第Cm个时钟中间某个位置第二次跳变,记第二次跳变时刻为Tb,待测信号的信号转变过程长度即为Tb-Ta,令第Ca-1个时钟的末端时刻为TA,第Cm个时钟的末端时刻为TB,Ta到TA之间的时长记为K0,Tb到TB之间的时长记为K1,Ta时刻的时间为Ca-1*Tclk-K0,Tb时刻的时间为:Cm*Tclk-K1,其中,
K0=[(!Q1@TA+!Q2@TA+!Q3@TA+...!QN-1@TA+!QN@TA)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@TA表示在TA时刻进行快照捕捉,以此类推;
K1=[(Q1@TB+Q2@TB+Q3@TB+...QN-1@TB+QN@TB)/N]*Tclk;
则,
Figure BDA0002902771210000032
Figure BDA0002902771210000033
Figure BDA0002902771210000034
优选地,N个D触发器中的每个D触发器还均与M个D触发器并联,M为偶数,M+1个D触发器并联后,每个D触发器的Q端输出均输入0/1个数判别电路,所述0/1个数判别电路对输入信号的0信号和1信号个数进行判别,0信号的个数多于1信号的个数,则输出0,否则输出1。
优选地,所述0/1个数判别电路包括M+1个与门和一个或门,每个与门的输入连接D触发器的Q端输出,每个与门的输出均输入或门。
基于上述目的,本发明还提供了一种集成电路信号时间信息的测量方法,采用上述集成电路信号时间信息的测量电路,方法为将待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N;或将时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N,
其中,Tclk为时钟信号的周期,
在跳变时刻所处时钟信号周期的末端时刻,对每个D触发器的输出Q端进行快照捕捉后,计算得到待测信号的信号转变过程长度。
优选地,当待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,在第Cm+1个时钟中间某个位置第二次跳变,令第Ca-1个时钟的末端时刻为T1,第Cm+1个时钟的末端时刻为T2,第一次跳变的时刻到T1之间的时长记为P0,第Ca个时钟起点至第Cm个时钟末端的时长记为P1,第Cm个时钟末端时刻至第二次跳变之间的时长记为P2,第二次跳变至T2之间的时长记为P3,待测信号的信号转变过程长度记为Ts,则Ts=P0+P1+P2,其中,P1=[(Cm-Ca)+1]*Tclk;
P0=[(!Q1@T1+!Q2@T1+!Q3@T1+...!QN-1@T1+!QN@T1)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@T1表示在T1时刻进行快照捕捉,以此类推;
P2=Tclk-P3=Tclk-[(Q1@T2+Q2@T2+Q3@T2+...QN-1@T2+QN@T2)/N]*Tclk;
则,
Figure BDA0002902771210000041
Figure BDA0002902771210000042
优选地,当时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,记第一次跳变时刻为Ta,在第Cm个时钟中间某个位置第二次跳变,记第二次跳变时刻为Tb,待测信号的信号转变过程长度即为Tb-Ta,令第Ca-1个时钟的末端时刻为TA,第Cm个时钟的末端时刻为TB,Ta到TA之间的时长记为K0,Tb到TB之间的时长记为K1,Ta时刻的时间为Ca-1*Tclk-K0,Tb时刻的时间为:Cm*Tclk-K1,其中,
K0=[(!Q1@TA+!Q2@TA+!Q3@TA+...!QN-1@TA+!QN@TA)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@TA表示在TA时刻点进行快照捕捉,以此类推;
K1=[(Q1@TB+Q2@TB+Q3@TB+...QN-1@TB+QN@TB)/N]*Tclk;
则,
Figure BDA0002902771210000051
Figure BDA0002902771210000052
Figure BDA0002902771210000053
优选地,N个D触发器中的每个D触发器还均与M个D触发器并联,M为偶数,M+1个D触发器并联后,每个D触发器的Q端输出均输入0/1个数判别电路,所述0/1个数判别电路对输入信号的0信号和1信号个数进行判别,0信号的个数多于1信号的个数,则输出0,否则输出1。
优选地,所述0/1个数判别电路包括M+1个与门和一个或门,每个与门的输入连接D触发器的Q端输出,每个与门的输出均输入或门。
采用本发明具有如下的有益效果:可以大幅提高对信号的计时精度,假如集成电路设计工作在Tclk周期之上,以传统方式对信号进行计时,则得到的信号计时误差就在[-Tclk,+Tclk]之间。但是如果使用本发明使用的新型电路结构,只需要增加N个触发器,就可以让计时精度提高到[-Tclk/N,+Tclk/N]之间。也就是说,让计时精度提高了N倍。以上叙述中,N的取值根据需要达到的时间测量精度以及Tclk的周期来决定。例如,如果Tclk工作在100ns周期上,但是需要达到[-1ns,+1ns]的时间测量精度,就需要取N值为100。此外,N的取值还要考虑具体采用的集成电路工艺制程,不可能无限增大N值。
以测距应用为例,假如测距芯片设计工作在100MHz,如果用普通的计数器工作,那么理论计时误差会在[-10ns,+10ns]之间,根据距离等于光速乘以时间可知,测得的距离误差会在[-3M,+3M]之间。如果使用了本发明提供的新型电路结构,在不提高测距芯片工作频率的情况下,假如只增加10个触发器,可以让理论计时误差会提高到[-lns,+lns]之间,从而让距离误差减小到[-30cm,+30cm]之间。
附图说明
图1为本发明实施例1的集成电路信号时间信息的测量电路结构框图;
图2为本发明实施例1的集成电路信号时间信息的测量电路中信号示意图;
图3为本发明实施例2的集成电路信号时间信息的测量电路结构框图;
图4为本发明实施例2的集成电路信号时间信息的测量电路中信号示意图;
图5为本发明实施例3的集成电路信号时间信息的测量电路结构框图;
图6为本发明实施例3的集成电路信号时间信息的测量电路中触发模块结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种集成电路信号时间信息的测量电路,包括N个D触发器10和一个计数器20,其中,
待测信号输入每个D触发器10的D端和计数器20,时钟信号输入每个D触发器10的CK端和计数器20,其中,
待测信号同时输入每个D触发器10的D端和计数器20,时钟信号到达每个D触发器10的CK端的时间依次增加Tclk/N,
或时钟信号同时输入每个D触发器10的CK端和计数器20,待测信号到达每个D触发器10的D端的时间依次增加Tclk/N,
其中,Tclk为时钟信号的周期,
在跳变时刻所处时钟信号周期的末端时刻,对每个D触发器10的输出Q端进行快照捕捉后,计算得到待测信号的信号转变过程长度。
参见图1,首先,计数器20会对信号S进行计数,得到精度与CLK时钟匹配的计量结果,结果体现在计数器20的输出CNTVALUE中。
其次,信号S被送入D触发器10的阵列中所有的D触发器10的D端,D触发器10的阵列满足以下条件:
a)信号S到所有的D触发器10的D端的时间是相同的;
b)所有D触发器10的CK端,都来自于时钟信号CLK,但是对时钟信号CLK到达每个D触发器10的时间,做严格控制,以CLK到达第一个D触发器10记为D触发器1,时间作为参考时间0点,标记为T0,则控制CLK到达所有D触发器10的时间,为如下表所示:
Figure BDA0002902771210000071
Figure BDA0002902771210000081
参见图2,我们以测量信号S上的脉冲宽度为例,当待测信号S同时输入每个D触发器10的D端和计数器20,时钟信号到达每个D触发器10的CK端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟(本实施例中为C2)中间某个位置第一次跳变,在第Cm+1个时钟中间某个位置第二次跳变,令第C2个时钟的末端时刻为T1,第Cm+1个时钟的末端时刻为T2,第一次跳变的时刻到T1之间的时长记为P0,第C3个时钟起点至第Cm个时钟末端的时长记为P1,第Cm个时钟末端时刻至第二次跳变之间的时长记为P2,第二次跳变至T2之间的时长记为P3,待测信号的信号转变过程长度记为Ts,则Ts=P0+P1+P2,其中,P1=[(Cm-C3)+1]*Tclk;
P0=[(!Q1@T1+!Q2@T1+!Q3@T1+...!QN-1@T1+!QN@T1)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器10的Q端输出,@T1表示在T1时刻进行快照捕捉,以此类推;
P2=Tclk-P3=Tclk-[(Q1@T2+Q2@T2+Q3@T2+...QN-1@T2+QN@T2)/N]*Tclk;
则,
Figure BDA0002902771210000082
Figure BDA0002902771210000083
实施例2
参见图3,首先,计数器20会对信号A进行计数,得到精度与CLK时钟匹配的计量结果,结果体现在计数器20的输出CNTVALUE中。
其次,信号A被送入D触发器10的阵列中所有的D触发器10的D端,D触发器10阵列满足以下条件:
a)CLK信号到所有的D触发器10的CK端的时间是相同的;
b)所有D触发器10的D端,都来自于待测信号A,但是对信号A到达每个D触发器10的时间,做严格控制,以信号A到达D第一个触发器(记为D触发器1)的D端时间作为参考时间0点,标记为t0,则控制A信号到达所有D触发器10的D端时间,为如下表所示:
Figure BDA0002902771210000091
参见图4,我们以给信号A跳变时间点打时间标签为例,阐述上述电路的工作原理。
信号A为待测输入信号,信号A发生了两次状态变化,第一次状态变化发生在计数器20计数值等于C2的时候,第二次状态变化发生在计数器20计数值为Cm的时候。
时钟信号CLK同时输入每个D触发器10的CK端和计数器20,待测信号到达每个D触发器10的D端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟(本实施例中为第C2个时钟)中间某个位置第一次跳变,记第一次跳变时刻为Ta,在第Cm个时钟中间某个位置第二次跳变,记第二次跳变时刻为Tb,待测信号的信号转变过程长度即为Tb-Ta,令第C2个时钟的末端时刻为TA,第Cm个时钟的末端时刻为TB,Ta到TA之间的时长记为K0,Tb到TB之间的时长记为K1,Ta时刻的时间为C2*Tclk-K0,Tb时刻的时间为:Cm*Tclk-K1,其中,
K0=[(!Q1@TA+!Q2@TA+!Q3@TA+...!QN-1@TA+!QN@TA)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器10的Q端输出,@TA表示在TA时刻进行快照捕捉,以此类推;
K1=[(Q1@TB+Q2@TB+Q3@TB+...QN-1@TB+QN@TB)/N]*Tclk;
则,
Figure BDA0002902771210000101
Figure BDA0002902771210000102
Figure BDA0002902771210000103
实施例3
参见图5、图6,为了让上述电路工作更加可靠稳定,可以通过增加一些器件,进一步对电路结构进行如下优化,以下优化对于上述实施例1、实施例2均适用,此处以实施例1为例进行说明。N个D触发器10中的每个D触发器10还均与M个D触发器10并联,M为偶数,M+1个D触发器10并联后,每个D触发器10的Q端输出均输入0/1个数判别电路31,0/1个数判别电路31对输入信号的0信号和1信号个数进行判别,0信号的个数多于1信号的个数,则输出0,否则输出1。上述M+1个D触发器10并联后与0/1个数判别电路31连接,组成的称为触发模块30。
0/1个数判别电路31包括M+1个与门32和一个或门33,每个与门32的输入连接D触发器10的Q端输出,每个与门32的输出均输入或门33。
本实施例中采用3个D触发器10并联后分别输出X、Y、Z给0/1个数判别电路31,0/1个数判别电路31中包括3个与门32和一个或门33,等效表达式为:Qout=(Z&Y)|(Z&X)|(Y&X),只有当X、Y、Z三个信号中,有两个或3个为1的情况下,Qout才为1,否则Qout为0。
经过上述优化之后,能有效减小亚稳态问题对电路精度的不良影响,电路抗干扰能力大大增强,能够更加稳定可靠的工作。上述触发模块30也可以使用更多D触发器10实现该功能,为了避免0信号个数和1信号个数一样多的情况,需要确保前级D触发器10的个数为奇数个,故如前述,一个D触发器10与M个D触发器10并联,组成的M+1个D触发器10,M为偶数,即M+1为奇数。0/1个数判别电路31中的与门32和或门33亦可根据使用D触发器10个数的增多进行扩展。
方法实施例参见装置实施例,不再赘述。
应当理解,本文所述的示例性实施例是说明性的而非限制性的。尽管结合附图描述了本发明的一个或多个实施例,本领域普通技术人员应当理解,在不脱离通过所附权利要求所限定的本发明的精神和范围的情况下,可以做出各种形式和细节的改变。

Claims (10)

1.一种集成电路信号时间信息的测量电路,其特征在于,包括N个D触发器和一个计数器,其中,
待测信号输入每个D触发器的D端和计数器,时钟信号输入每个D触发器的CK端和计数器,其中,
待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N,
或时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N,
其中,Tclk为时钟信号的周期,
在跳变时刻所处时钟信号周期的末端时刻,对每个D触发器的输出Q端进行快照捕捉后,计算得到待测信号的信号转变过程长度。
2.根据权利要求1所述的一种集成电路信号时间信息的测量电路,其特征在于,当待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,在第Cm+1个时钟中间某个位置第二次跳变,令第Ca-1个时钟的末端时刻为T1,第Cm+1个时钟的末端时刻为T2,第一次跳变的时刻到T1之间的时长记为P0,第Ca个时钟起点至第Cm个时钟末端的时长记为P1,第Cm个时钟末端时刻至第二次跳变之间的时长记为P2,第二次跳变至T2之间的时长记为P3,待测信号的信号转变过程长度记为Ts,则Ts=P0+P1+P2,其中,P1=[(Cm-Ca)+1]*Tclk;
P0=[(!Q1@T1+!Q2@T1+!Q3@T1+...!QN-1@T1+!QN@T1)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@T1表示在T1时刻进行快照捕捉,以此类推;
P2=Tclk-P3=Tclk-[(Q1@T2+Q2@T2+Q3@T2+...QN-1@T2+QN@T2)/N]*Tclk;
则,
Figure FDA0002902771200000024
Figure FDA0002902771200000021
3.根据权利要求1所述的一种集成电路信号时间信息的测量电路,其特征在于,所述时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,记第一次跳变时刻为Ta,在第Cm个时钟中间某个位置第二次跳变,记第二次跳变时刻为Tb,待测信号的信号转变过程长度即为Tb-Ta,令第Ca-1个时钟的末端时刻为TA,第Cm个时钟的末端时刻为TB,Ta到TA之间的时长记为K0,Tb到TB之间的时长记为K1,Ta时刻的时间为Ca-1*Tclk-K0,Tb时刻的时间为:Cm*Tclk-K1,其中,
K0=[(!Q1@TA+!Q2@TA+!Q3@TA+...!QN-1@TA+!QN@TA)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@TA表示在TA时刻进行快照捕捉,以此类推;
K1=[(Q1@TB+Q2@TB+Q3@TB+...QN-1@TB+QN@TB)/N]*Tclk;
则,
Figure FDA0002902771200000022
Figure FDA0002902771200000023
4.根据权利要求1所述的一种集成电路信号时间信息的测量电路,其特征在于,N个D触发器中的每个D触发器还均与M个D触发器并联,M为偶数,M+1个D触发器并联后,每个D触发器的Q端输出均输入0/1个数判别电路,所述0/1个数判别电路对输入信号的0信号和1信号个数进行判别,0信号的个数多于1信号的个数,则输出0,否则输出1。
5.根据权利要求4所述的一种集成电路信号时间信息的测量电路,其特征在于,所述0/1个数判别电路包括M+1个与门和一个或门,每个与门的输入连接D触发器的Q端输出,每个与门的输出均输入或门。
6.一种集成电路信号时间信息的测量方法,其特征在于,采用权利要求1-5之一所述的集成电路信号时间信息的测量电路,方法为将待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N;或将时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N,
其中,Tclk为时钟信号的周期,
在跳变时刻所处时钟信号周期的末端时刻,对每个D触发器的输出Q端进行快照捕捉后,计算得到待测信号的信号转变过程长度。
7.根据权利要求6所述的一种集成电路信号时间信息的测量方法,其特征在于,当待测信号同时输入每个D触发器的D端和计数器,时钟信号到达每个D触发器的CK端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,在第Cm+1个时钟中间某个位置第二次跳变,令第Ca-1个时钟的末端时刻为T1,第Cm+1个时钟的末端时刻为T2,第一次跳变的时刻到T1之间的时长记为P0,第Ca个时钟起点至第Cm个时钟末端的时长记为P1,第Cm个时钟末端时刻至第二次跳变之间的时长记为P2,第二次跳变至T2之间的时长记为P3,待测信号的信号转变过程长度记为Ts,则Ts=P0+P1+P2,其中,P1=[(Cm-Ca)+1]*Tclk;
P0=[(!Q1@T1+!Q2@T1+!Q3@T1+...!QN-1@T1+!QN@T1)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@T1表示在T1时刻进行快照捕捉,以此类推;
P2=Tclk-P3=Tclk-[(Q1@T2+Q2@T2+Q3@T2+...QN-1@T2+QN@T2)/N]*Tclk;
则,
Figure FDA0002902771200000041
Figure FDA0002902771200000042
8.根据权利要求6所述的一种集成电路信号时间信息的测量方法,其特征在于,当时钟信号同时输入每个D触发器的CK端和计数器,待测信号到达每个D触发器的D端的时间依次增加Tclk/N时,设待测信号在第Ca-1个时钟中间某个位置第一次跳变,记第一次跳变时刻为Ta,在第Cm个时钟中间某个位置第二次跳变,记第二次跳变时刻为Tb,待测信号的信号转变过程长度即为Tb-Ta,令第Ca-1个时钟的末端时刻为TA,第Cm个时钟的末端时刻为TB,Ta到TA之间的时长记为K0,Tb到TB之间的时长记为K1,Ta时刻的时间为Ca-1*Tclk-K0,Tb时刻的时间为:Cm*Tclk-K1,其中,
K0=[(!Q1@TA+!Q2@TA+!Q3@TA+...!QN-1@TA+!QN@TA)/N]*Tclk;
其中,!表示取反,Q1表示第一个D触发器的Q端输出,@TA表示在TA时刻点进行快照捕捉,以此类推;
K1=[(Q1@TB+Q2@TB+Q3@TB+...QN-1@TB+QN@TB)/N]*Tclk;
则,
Figure FDA0002902771200000043
Figure FDA0002902771200000044
Figure FDA0002902771200000051
9.根据权利要求6所述的一种集成电路信号时间信息的测量方法,其特征在于,N个D触发器中的每个D触发器还均与M个D触发器并联,M为偶数,M+1个D触发器并联后,每个D触发器的Q端输出均输入0/1个数判别电路,所述0/1个数判别电路对输入信号的0信号和1信号个数进行判别,0信号的个数多于1信号的个数,则输出0,否则输出1。
10.根据权利要求9所述的一种集成电路信号时间信息的测量方法,其特征在于,所述0/1个数判别电路包括M+1个与门和一个或门,每个与门的输入连接D触发器的Q端输出,每个与门的输出均输入或门。
CN202110066073.0A 2021-01-18 2021-01-18 一种集成电路信号时间信息的测量电路及方法 Active CN113203934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110066073.0A CN113203934B (zh) 2021-01-18 2021-01-18 一种集成电路信号时间信息的测量电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110066073.0A CN113203934B (zh) 2021-01-18 2021-01-18 一种集成电路信号时间信息的测量电路及方法

Publications (2)

Publication Number Publication Date
CN113203934A true CN113203934A (zh) 2021-08-03
CN113203934B CN113203934B (zh) 2023-05-23

Family

ID=77025185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110066073.0A Active CN113203934B (zh) 2021-01-18 2021-01-18 一种集成电路信号时间信息的测量电路及方法

Country Status (1)

Country Link
CN (1) CN113203934B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202040A (zh) * 2014-09-04 2014-12-10 南京矽力杰半导体技术有限公司 位电平检测电路以及方法
CN104333349A (zh) * 2014-08-21 2015-02-04 中国空气动力研究与发展中心超高速空气动力研究所 一种超高速时序控制装置及方法
CN106443692A (zh) * 2016-09-19 2017-02-22 华中师范大学 一种精确测量跳变沿到达时刻的方法和装置
CN106443184A (zh) * 2016-11-23 2017-02-22 优利德科技(中国)有限公司 一种相位检测装置及相位检测方法
CN106767745A (zh) * 2016-12-09 2017-05-31 清华大学 一种光电传感器测角系统的信号处理方法
CN110635800A (zh) * 2019-09-20 2019-12-31 上海华力微电子有限公司 一种应用于锁相环的基于频率比较的锁定指示电路及方法
CN112118006A (zh) * 2020-09-15 2020-12-22 中国科学院计算技术研究所 用于超导单磁通量子集成电路的n进制计数器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333349A (zh) * 2014-08-21 2015-02-04 中国空气动力研究与发展中心超高速空气动力研究所 一种超高速时序控制装置及方法
CN104202040A (zh) * 2014-09-04 2014-12-10 南京矽力杰半导体技术有限公司 位电平检测电路以及方法
CN106443692A (zh) * 2016-09-19 2017-02-22 华中师范大学 一种精确测量跳变沿到达时刻的方法和装置
CN106443184A (zh) * 2016-11-23 2017-02-22 优利德科技(中国)有限公司 一种相位检测装置及相位检测方法
CN106767745A (zh) * 2016-12-09 2017-05-31 清华大学 一种光电传感器测角系统的信号处理方法
CN110635800A (zh) * 2019-09-20 2019-12-31 上海华力微电子有限公司 一种应用于锁相环的基于频率比较的锁定指示电路及方法
CN112118006A (zh) * 2020-09-15 2020-12-22 中国科学院计算技术研究所 用于超导单磁通量子集成电路的n进制计数器

Also Published As

Publication number Publication date
CN113203934B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN100545780C (zh) 利用相移周期波形进行时间测量的电路、方法、系统及仪器
CN108401445B (zh) 用于测量时间的电路、方法及相关芯片、系统和设备
CN102346236B (zh) 一种时间参数测量系统
US10277213B1 (en) Glitch detection in input/output bus
CN113092858B (zh) 一种基于时频信息测量的高精度频标比对系统及比对方法
CN104202040A (zh) 位电平检测电路以及方法
US20050259239A1 (en) Circuitry and method for measuring time interval with ring oscillator
CN103197139A (zh) 时钟频率测试方法和时钟频率测试电路
CN103186097A (zh) 基于fpga的高分辨率时间间隔测量装置
CN212622809U (zh) 检测电路
CN203275896U (zh) 一种低成本亚纳秒级时间间隔检测电路
CN107422193B (zh) 一种测量单粒子翻转瞬态脉冲长度的电路及方法
CN113917830B (zh) 循环游标延时链电路、时间数字转换器和信号选取方法
CN109444856A (zh) 一种应用于高分辨率时间数字转换器的整数周期测量电路
CN202794346U (zh) 一种脉冲宽度检测电路
CN113203934A (zh) 一种集成电路信号时间信息的测量电路及方法
CN102466779B (zh) 触发器延时的内建测试方法及电路
CN104954014B (zh) 一种超前-滞后型数字鉴相器结构
CN105187053A (zh) 一种用于tdc的亚稳态消除电路
CN113296104B (zh) 一种spad型激光雷达的高效测量方法
US3970941A (en) Fast programmable divider with a new 5-gate flip-flop
CN102035538B (zh) 一种高速的可编程分频器
CN103675383B (zh) 一种量测波形的电路
US4493095A (en) Counter having a plurality of cascaded flip-flops
CN211826248U (zh) 一种脉冲检测电路及检测脉冲信号的设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant