CN112118006A - 用于超导单磁通量子集成电路的n进制计数器 - Google Patents
用于超导单磁通量子集成电路的n进制计数器 Download PDFInfo
- Publication number
- CN112118006A CN112118006A CN202010965078.2A CN202010965078A CN112118006A CN 112118006 A CN112118006 A CN 112118006A CN 202010965078 A CN202010965078 A CN 202010965078A CN 112118006 A CN112118006 A CN 112118006A
- Authority
- CN
- China
- Prior art keywords
- superconducting
- output
- flip
- flop
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 claims abstract description 5
- 238000010586 diagram Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K21/00—Details of pulse counters or frequency dividers
- H03K21/02—Input circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K21/00—Details of pulse counters or frequency dividers
- H03K21/08—Output circuits
Landscapes
- Manipulation Of Pulses (AREA)
Abstract
提供一种用于超导单磁通量子集成电路的N进制计数器,所述N进制计数器包括:串联连接的n个超导T触发器,其中,N=2n,且n为正整数;其中,每个超导T触发器包括用于接收输入信号的输入端,以及用于将信号输出的输出端,并且仅当每个超导T触发器的输入端接收到偶数个信号时,其输出端有信号输出;以及其中,第i个超导T触发器的输出端与第i+1个超导T触发器的输入端相连接,1≤i<n,第一个超导T触发器的输入端为该N进制计数器的输入端,第n个超导T触发器的输出端为该N进制计数器的输出端。
Description
技术领域
本发明涉及超导单磁通量子集成电路和微处理器领域,尤其涉及一种用于超导单磁通量子集成电路的N进制计数器。
背景技术
现有的大部分数字电路都是基于CMOS(硅互补金属氧化物)半导体技术。但是随着摩尔定律越来越接近其物理极限,后摩尔时代已经到来。现有的半导体技术面临着缩小集成电路线宽尺寸和增加单位面积晶体管的集成度两方面的挑战。随着集成电路线宽尺寸接近原子直径,继续缩小半导体集成电路的线宽尺寸从经济上来说已经不再可取。
因此研制基于新型器件的高性能低功耗的计算机是很有必要的。超导单磁通量子(Single-flux-quantum,SFQ)集成电路技术因其具有数十GHz运算速度的同时能保持mW量级功耗的特性备受研究者的关注,可满足未来能源高效的高性能计算机系统的需要。
在实现位串行(bit-serial)体系结构的超导微处理器时,必须对数据进行计数才能实现指令操作,作为超导单磁通量子数字集成电路的基础,需要设计针对超导单磁通量子集成电路的计数器。
发明内容
本发明为了解决超导集成电路或微处理器中的计数问题,首次提出了一种用于超导单磁通量子集成电路的N进制计数器,所述N进制计数器包括:
串联连接的n个超导T触发器,其中,N=2n,且n为正整数;
其中,每个超导T触发器包括用于接收输入信号的输入端,以及用于将信号输出的输出端,并且仅当所述每个超导T触发器的输入端接收到偶数个信号时,其输出端有信号输出;以及
其中,第i个超导T触发器的输出端与第i+1个超导T触发器的输入端相连接,1i,第一个超导T触发器的输入端为所述N进制计数器的输入端,第n个超导T触发器的输出端为所述N进制计数器的输出端。
优选地,其中,8进制计数器包括串联连接的3个超导T触发器。
优选地,其中,所述输入信号为时钟信号。
作为超导单磁通量子数字集成电路的基础,本发明首次针对超导单磁通量子集成电路提出了N进制计数器。利用现有超导器件库设计了8进制计数器,并可以扩展至N进制计数器,为以后实现高能效的SFQ微处理器以及SFQ数字电路的发展奠定了基础。
附图说明
图1是本发明一个实施例的超导T触发器的示意图;
图2是本发明一个实施例的N进制计数器的示意图;
图3是本发明一个实施例的8进制计数器的逻辑电路图。
具体实施方式
为了使本发明的目的、技术方案以及优点更加清楚明白,下面结合附图通过具体实施例对本发明作进一步详细说明。
在本发明中,术语“信号”指的是超导SFQ电路中的SFQ脉冲,术语“时钟”或“时钟信号”,指的是SFQ时钟脉冲。
图1是本发明一个实施例的超导T触发器的示意图。与其它超导SFQ器件不同,超导T触发器不需要时钟驱动。该超导T触发器(在本发明中也可以简称为T触发器)包括用于接收输入信号的输入端din,以及用于将信号输出的输出端dout。其中,当该T触发器在输入端接收到偶数个信号时,其输出端有信号输出。为便于理解,在本发明中,将该有信号输出的情况定义为输出“1”。当该T触发器在输入端接收到奇数个信号时,其输出端没有信号输出。为便于理解,在本发明中,将该没有信号输出的情况定义为输出“0”。根据本发明的其他实施例,也可以将有信号输出的情况定义为输出“0”,没有信号输出的情况定义为输出“1”。
图2是本发明一个实施例的N进制计数器的示意图。如图2所示,本发明的N进制计数器由n个图1所示的T触发器串联实现,T触发器1、T触发器2…T触发器n,其中n=log2N,n为正整数。该N进制计数器包括用于接收输入信号的输入端din,以及用于将信号输出的输出端dout。该N进制计数器可实现数十GHz的高频,且其功耗在mW甚至μW量级。
具体地,在该N进制计数器中,当第一个输入信号通过输入端din到达T触发器1时(此时计数为1),T触发器1没有信号输出,即输出“0”,T触发器2…T触发器n没有信号输出,即输出“0”,因此该N进制计数器的输出端dout的输出为“0”;当第二个输入信号到达T触发器1(此时计数为2),T触发器1的输出端产生输出,即输出“1”,该信号传输到T触发器2的输入端,T触发器2的输出端不产生输出,即输出仍然为“0”,T触发器3…T触发器n的输出端均没有输出,因此该N进制计数器的输出端的输出为“0”;当第三个输入信号到达T触发器1(此时计数为3),T触发器1没有信号输出,即输出“0”,T触发器2…T触发器n没有信号输出,即输出“0”,因此该N进制计数器的输出端的输出为“0”;……以此类推,直到第N个输入信号到达T触发器1(此时计数为N),T触发器1的输出端产生输出,即输出“1”,该信号传输到T触发器2的输入端,T触发器2的输出端产生输出,即输出“1”,该信号传输到T触发器3的输入端,……T触发器n-1的输出端产生输出,即输出“1”,该信号传输到T触发器n的输入端,T触发器n的输出端产生输出,即输出“1”,此时该N进制计数器的输出端的输出为“1”。也就是说,N进制计数器当且仅当计数满N后才输出“1”。此后,该N进制计数器从1重新开始计数。
下面结合具体实施例对本发明作进一步详细的说明。本实施例以对时钟信号计数的8进制计数器为例,对本发明进行详细说明。应当注意,本实施例虽然以时钟信号为例进行说明,但本发明不限于此,实际应用中也可以根据需要使用其他信号。
图3是本发明一个实施例的8进制计数器的逻辑电路图。该8进制计数器由3个图1所示的T触发器串联实现,T触发器31、T触发器32和T触发器33。当第一个时钟信号clk到达T触发器31(此时计数为1),T触发器31没有信号输出,即输出“0”,T触发器32和T触发器33没有信号输出,即输出“0”,因此该8进制计数器的输出端的输出为“0”;当第二个时钟信号到达T触发器31(此时计数为2),T触发器31的输出端产生输出,即输出“1”,该信号传输到T触发器32的输入端,T触发器32的输出端不产生输出,即输出仍然为“0”,T触发器33没有信号输出,即输出“0”,因此该8进制计数器的输出端的输出为“0”;当第三个时钟信号到达T触发器31(此时计数为3),T触发器31没有信号输出,即输出“0”,T触发器32和T触发器33没有信号输出,即输出“0”,因此该8进制计数器的输出端的输出为“0”;当第四个时钟信号到达T触发器31(此时计数为4),T触发器31的输出端再次产生输出,即输出“1”,该信号传输到T触发器32的输入端,T触发器32的输出端产生输出,即输出“1”,该信号传输到T触发器33的输入端,T触发器33没有信号输出,即输出“0”,因此该8进制计数器的输出端的输出为“0”;当第五个时钟信号到达T触发器31(此时计数为5),T触发器31没有信号输出,即输出“0”,T触发器32和T触发器33没有信号输出,即输出“0”,因此该8进制计数器的输出端的输出为“0”;当第六个时钟信号到达T触发器31(此时计数为6),T触发器31的输出端再次产生输出,即输出“1”,该信号传输到T触发器32的输入端,此时T触发器32没有信号输出,即输出“0”,T触发器33也没有信号输出,即输出“0”,因此该8进制计数器的输出端的输出为“0”;当第七个时钟信号到达T触发器31(此时计数为7),T触发器31没有信号输出,即输出“0”,T触发器32和T触发器33没有信号输出,即输出“0”,因此该8进制计数器的输出端的输出为“0”;当第八个时钟信号到达T触发器31(此时计数为8),T触发器31的输出端再次产生输出,即输出“1”,该信号传输到T触发器32的输入端,T触发器32的输出端再次产生输出,即输出“1”,该信号传输到T触发器33的输入端,T触发器33的输出端产生输出,即输出“1”,因此该8进制计数器的输出端的输出为“1”。因此,该计数器可以实现对时钟信号计数满8后输出“1”。此后,该8进制计数器从1重新开始计数。
本发解决了超导SFQ微处理器和集成电路的计数问题,提出了一种可扩展的N进制计数系统。本发明的用于超导单磁通量子集成电路的N进制计数器由超导T触发器串联构成,能实现高速低耗,且结构简单,易于扩展。可实现任何N(2的幂次方)进制的计数操作。
最后应该说明的是,以上实施例仅用以解释本发明的技术方案而非限制。尽管上文参照实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
Claims (3)
1.一种用于超导单磁通量子集成电路的N进制计数器,所述N进制计数器包括:
串联连接的n个超导T触发器,其中,N=2n,且n为正整数;
其中,每个超导T触发器包括用于接收输入信号的输入端,以及用于将信号输出的输出端,并且仅当所述每个超导T触发器的输入端接收到偶数个信号时,其输出端有信号输出;以及
其中,第i个超导T触发器的输出端与第i+1个超导T触发器的输入端相连接,1≤i<n,第一个超导T触发器的输入端为所述N进制计数器的输入端,第n个超导T触发器的输出端为所述N进制计数器的输出端。
2.根据权利要求1所述的用于超导单磁通量子集成电路的N进制计数器,其中,8进制计数器包括串联连接的3个超导T触发器。
3.根据权利要求1所述的用于超导单磁通量子集成电路的N进制计数器,其中,所述输入信号为时钟信号。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010965078.2A CN112118006A (zh) | 2020-09-15 | 2020-09-15 | 用于超导单磁通量子集成电路的n进制计数器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010965078.2A CN112118006A (zh) | 2020-09-15 | 2020-09-15 | 用于超导单磁通量子集成电路的n进制计数器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112118006A true CN112118006A (zh) | 2020-12-22 |
Family
ID=73801917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010965078.2A Pending CN112118006A (zh) | 2020-09-15 | 2020-09-15 | 用于超导单磁通量子集成电路的n进制计数器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112118006A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113203934A (zh) * | 2021-01-18 | 2021-08-03 | 杭州起盈科技有限公司 | 一种集成电路信号时间信息的测量电路及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5942997A (en) * | 1997-08-29 | 1999-08-24 | Trw Inc. | Correlated superconductor single flux quantum analog-to-digital converter |
CN108494433A (zh) * | 2018-05-29 | 2018-09-04 | 深圳市力生美半导体股份有限公司 | 一种单线通信方法及其电路实现 |
CN108880531A (zh) * | 2018-07-09 | 2018-11-23 | 电子科技大学 | 一种偶数次格雷码计数器电路 |
CN111049503A (zh) * | 2019-12-19 | 2020-04-21 | 中国科学院计算技术研究所 | 一种超导触发器及其运行方法 |
-
2020
- 2020-09-15 CN CN202010965078.2A patent/CN112118006A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5942997A (en) * | 1997-08-29 | 1999-08-24 | Trw Inc. | Correlated superconductor single flux quantum analog-to-digital converter |
CN108494433A (zh) * | 2018-05-29 | 2018-09-04 | 深圳市力生美半导体股份有限公司 | 一种单线通信方法及其电路实现 |
CN108880531A (zh) * | 2018-07-09 | 2018-11-23 | 电子科技大学 | 一种偶数次格雷码计数器电路 |
CN111049503A (zh) * | 2019-12-19 | 2020-04-21 | 中国科学院计算技术研究所 | 一种超导触发器及其运行方法 |
Non-Patent Citations (1)
Title |
---|
郑尖: ""基于忆阻器的触发器及其应用电路的设计"", 《硕士电子期刊》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113203934A (zh) * | 2021-01-18 | 2021-08-03 | 杭州起盈科技有限公司 | 一种集成电路信号时间信息的测量电路及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109314506B (zh) | 低时钟功率数据门控触发器 | |
Yang | Low-power and area-efficient shift register using pulsed latches | |
CN102916687B (zh) | 基于cmos工艺的三值时钟发生器 | |
CN111147045B (zh) | 一种超导电路的清零方法及系统 | |
CN114095027A (zh) | 一种低压低功耗的异步逐次逼近式模数转换器装置 | |
CN112118006A (zh) | 用于超导单磁通量子集成电路的n进制计数器 | |
Kumar Mishra et al. | Design and analysis of ultra‐low power 18T adaptive data track flip‐flop for high‐speed application | |
Thota et al. | A high speed counter for analog-to-digital converters | |
Alamgir et al. | Improved bus-shift coding for low-power I/O | |
CN214480526U (zh) | 一种基于差分采样的剩余时间采样电路和时间数字转换器 | |
Hao et al. | The principle and applications of asynchronous FIFO | |
Sneha et al. | A modified partially parallel polar encoder architecture | |
Staney et al. | PTL-and clock-pulse circuit driven novel shift register architecture | |
Agrawal et al. | LVCMOS Based 4-Bit Register | |
CN220273668U (zh) | 并行信号转串行信号的电路 | |
Surekha et al. | Design of Shift Register using Ssaspl for Power Optimization | |
Bhalghare et al. | Comparative study of shift register using flip flop and latches | |
Zhao et al. | Ultra-low-voltage low-power self-adaptive static pulsed latch | |
CN109525241B (zh) | 一种格雷码计数器 | |
Xiao | High-performance LFSR circuit design based on XOR gates | |
Gowthami et al. | Design of 8-Bit shift register using power Pc-style flip flop | |
Gise | Using a Kogge Stone Adder to Create Low-Area-Delay Pulsed Latches for a Shift Register | |
Singar et al. | Power analysis of novel glitch resistant DET-FF | |
Murugesan et al. | Power Efficiency Evaluation of Dual Edge Triggered Flip-Flops-A Comparative Analysis | |
CN113691243A (zh) | 一种时序控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201222 |
|
WD01 | Invention patent application deemed withdrawn after publication |