CN113200765A - 一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法 - Google Patents

一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法 Download PDF

Info

Publication number
CN113200765A
CN113200765A CN202110522516.2A CN202110522516A CN113200765A CN 113200765 A CN113200765 A CN 113200765A CN 202110522516 A CN202110522516 A CN 202110522516A CN 113200765 A CN113200765 A CN 113200765A
Authority
CN
China
Prior art keywords
crucible
carbon
coating
ceramic
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110522516.2A
Other languages
English (en)
Other versions
CN113200765B (zh
Inventor
陈振宇
朱苏华
周娩红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Shixin New Materials Co Ltd
Original Assignee
Hunan Shixin New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Shixin New Materials Co Ltd filed Critical Hunan Shixin New Materials Co Ltd
Priority to CN202110522516.2A priority Critical patent/CN113200765B/zh
Publication of CN113200765A publication Critical patent/CN113200765A/zh
Application granted granted Critical
Publication of CN113200765B publication Critical patent/CN113200765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法,由碳陶坩埚基体依次沉积Si3N4涂层、BN涂层制得。本发明以碳陶坩埚为基体,先在其孔隙和表面(内表面和外表面)沉积Si3N4涂层,然后再沉积BN涂层制得,本发明仅需采用单一坩埚生产单晶硅,通过碳陶坩埚基体、Si3N4涂层和BN涂层三者的协同作用,极大的提升了坩埚的高温稳定性能和抗硅蚀能力,同时坩埚表面对硅的润湿性差,避免了生产单晶硅后的硅晶粘锅难以清理,既延长了坩埚的使用寿命,又减少了坩埚更换频次和提升了单晶硅生产效率。

Description

一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法
技术领域
本发明属于单晶硅拉制炉用热场工装/部件技术领域,具体涉及一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法。
背景技术
目前,在生产单晶硅中使用最多的方法是直拉法:即单晶硅炉拉制单晶硅棒,盛装多晶硅的石英坩埚安放在炭炭复合材料坩埚内。但使用该方法生产时,单晶硅炉内温度高达1500℃,盛放多晶硅的石英坩埚在该温度下将出现软化问题,往往在使用400-500小时后就需要更换,更换过程中由于石英坩埚往往与炭炭复合材料坩埚牢牢地粘在一起,取出时非常费力,大大影响了生产效率和提升了生产成本,同时由于生产石英坩埚的原材料高纯石英砂相对紧缺,在未来面对日益火热新能源市场,石英坩埚的供给也将有可能面临问题;同时拖放石英坩埚的炭炭复合材料坩埚在高温下硅蒸汽等将会与之反应,发生侵蚀,随着使用时间的延长,侵蚀加剧,也需定期更换炭炭复合材料坩埚。
因此,解决石英坩埚和炭炭坩埚所存在的问题是单晶硅生产过程中降低成本、解决坩埚需求、减少生产作业流程的关键所在。
发明内容
针对现有单晶硅生产过程中石英坩埚和炭炭坩埚使用时存在的技术问题,本发明的目的在于提供了一种取代石英坩埚和炭炭复合材料坩埚的含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法,以碳陶坩埚为基体,先在其孔隙和表面(内表面和外表面)沉积Si3N4涂层,然后再沉积BN涂层制得,本发明仅需采用单一坩埚生产单晶硅,通过碳陶坩埚基体、Si3N4涂层和BN涂层三者的协同作用,极大的提升了坩埚的高温稳定性能和抗硅蚀能力,同时坩埚表面对硅的润湿性差,避免了生产单晶硅后的硅晶粘锅难以清理,既延长了坩埚的使用寿命,又减少了坩埚更换频次和提升了单晶硅生产效率。
为了实现上述技术目的,本发明采用如下技术方案:
一种含Si3N4和BN复合涂层的碳陶复合材料坩埚,由碳陶坩埚基体依次沉积Si3N4涂层、BN涂层制得。
作为优选,所述碳陶坩埚基体密度为2.15-2.35g/cm3,开孔率为4-6%,残余硅含量不高于0.5wt%。
本发明的碳陶坩埚基体的室温抗压强度大于300MPa、抗弯强度大于200MPa、层间间接强度大于18MPa、抗拉强度大于90MPa,同时在高温工况下,能够在工况1600℃下受载而不变形;开孔率为4-6%,为后续基体涂层的沉积提供了极强的吸附能力,使涂层由内而外生长产生连续均匀且具有一定强度的沉积涂层;而残余硅含量不高于0.5wt%,避免了硅对坩埚基体内部的破坏,包括侵蚀及微裂纹的产生。
作为优选,所述Si3N4涂层的厚度为50-100μm,BN涂层的厚度为10-40μm。
Si3N4涂层具有优异的高温热稳定性及良好的抗热震性、抗热应力等机械性能,但Si3N4涂层表面较为粗糙,且对硅有一定的润湿性,在单晶硅的生产过程中有破坏Si3N4涂层的风险;而BN涂层则生长慢,无法有效的填充碳陶坩埚基体的孔隙,对碳陶坩埚的保护不够充分,因此本发明在碳陶坩埚基体上先沉积Si3N4涂层,能够快速有效填充碳陶坩埚基体的孔隙,由内而外形成致密均匀粗糙的Si3N4保护层和隔离层,然后再引入BN涂层,吸附于粗糙的Si3N4涂层表面,BN涂层同样具有高温热稳定性,且其表面非常光滑,对硅几乎没有润湿性,通过碳陶坩埚基体、Si3N4涂层和BN涂层三者的协同作用,极大的提升了坩埚的高温稳定性能和抗硅蚀能力,既延长了坩埚的使用寿命,又减少了坩埚更换频次和提升了单晶硅生产效率。
本发明还提供了上述含Si3N4和BN复合涂层的碳陶复合材料坩埚的制备方法,包括如下步骤:
(1)针刺制得密度为0.56-0.60g/cm3的碳纤维坩埚预制体;
(2)惰性气氛下,将碳纤维坩埚预制体于1800-2000℃下进行热处理;
(3)在丙烯和氮气的混合气氛下,将热处理后的碳纤维坩埚预制体增密得到密度为1.40-1.55g/cm3的炭炭坩埚;
(4)将炭炭坩埚于2200-2500℃下进行热处理,得到炭炭坩埚基体;
(5)将炭炭坩埚基体置于硅粉上,于1700℃-2000℃下进行高温渗硅,得到碳陶坩埚基体;
(6)对碳陶坩埚基体进行气相沉积Si3N4涂层,得到含Si3N4涂层的碳陶坩埚基体;
(7)对含Si3N4涂层的碳陶坩埚进行气相沉积BN涂层,得到含Si3N4和BN复合涂层的碳陶复合材料坩埚基体;
(8)将含Si3N4和BN复合涂层的碳陶复合材料坩埚基体于1200℃-1600℃下进行热处理得到含Si3N4和BN复合涂层的碳陶复合材料坩埚。
作为优选,步骤(3)中,混合气氛中的丙烯和氮气的体积比为1:1;热处理温度为975-985℃,压力为0.8-1.2KPa。
作为优选,步骤(4)中,炭炭坩埚基体的开孔率为18-24%。
作为优选,步骤(5)中,碳陶坩埚基体密度为2.15-2.35g/cm3,开孔率为4-6%,残余硅含量不高于0.5wt%。高温渗硅过程中,温度偏低时碳陶坩埚基体中残余硅含量高容易产生微裂纹,且开孔率低使得后续涂层的附着效果差;随着温度的升高,碳陶坩埚基体的开孔率增大,残留硅降低,有利于Si3N4的沉积生长,且可使Si3N4涂层由内而外形成致密的保护层和隔离层,同时残留硅含量偏低能够减小坩埚内部的应力,避免裂纹的产生;但温度持续升高后,出现纤维硅化损伤、裂纹等情况,严重影响碳陶坩埚力学性能,同时开孔率过高,孔隙过大,沉积碳化硅难以致密填充碳陶坩埚内部而出现孔隙问题;因此,本发明严格控制其高温渗硅的温度在1700℃-2000℃范围内,得到密度为2.15-2.35g/cm3、开孔率为4-6%、残余硅含量不高于0.5wt%的碳陶坩埚基体。
作为优选,步骤(6)中,N2氛围下,采用HSiCl3-NH3体系气相沉积Si3N4涂层,沉积温度为700-1000℃,沉积压力为0.5-3.0KPa,Si3N4涂层的厚度为50-100μm,含Si3N4涂层的碳陶坩埚基体的密度为2.25-2.45g/cm3,开孔率不高于1%。
作为优选,步骤(7)中,N2氛围下,采用BCl3-NH3体系气相沉积BN涂层,沉积温度为600-1050℃,沉积压力为1.0-5.0KPa,BN涂层的厚度为10-40μm,含Si3N4和BN复合涂层的碳陶复合材料坩埚基体的密度为2.30-2.50g/cm3,开孔率不高于1%。
与现有技术相比,本发明具有以下优点:
(1)本发明采用含Si3N4和BN复合涂层的碳陶复合材料坩埚取代了传统石英坩埚+炭炭坩埚,去除了石英坩埚多次更换和清理步骤,大大节约了成本。
(2)本发明的含Si3N4和BN复合涂层的碳陶复合材料坩埚,涂层致密、均匀且对硅润湿性差,生产单晶硅后坩埚中残留硅晶易清理,大大提升了坩埚的寿命。
(3)本发明的含Si3N4和BN复合涂层的碳陶复合材料坩埚以碳陶坩埚为基体,承载能力强,高温下不变形,且具有极好的力学性能,能够抵抗生产单晶硅过程中的高温高载。
(4)本发明的含Si3N4和BN复合涂层的碳陶复合材料坩埚具有极好的高温稳定性能,良好的保护了坩埚不被硅蒸汽和硅液侵蚀的同时也隔绝了杂质污染单晶硅产品;同时具有良好的强度,不易脱落损坏。
具体实施方式
以下结合实施例和对比例对本发明作进一步说明。
实施例1
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1±0.2KPa下通入1:1的丙烯和氮气增密至1.45g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1900℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚基体;
(6)Si3N4涂层沉积工艺:N2氛围下,在850℃、压力0.8-1.5KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)BN涂层沉积工艺:N2氛围下,在800℃、压力2.0-3.0KPa采用BCl3-NH3体系(摩尔比:BCl3:NH3=1:3)气相沉积BN涂层;
(8)复合涂层坩埚热处理:将沉积出炉后的坩埚在1400℃下热处理2小时后出炉得到复合涂层坩埚成品。
本实施例中,炭炭坩埚密度为1.45g/cm3,开孔率为22.1%,抗压强度为163.64MPa、抗弯强度为183.25MPa、层间剪切强度为14.36MPa、抗拉强度为80.32MPa、冲击韧性为57.34KJ/m2
碳陶坩埚基体密度为2.26g/cm3,开孔率为4.68%,抗压强度为333.24MPa、抗弯强度为232.58MPa、层间剪切强度为22.45MPa、抗拉强度为105.32MPa、冲击韧性为60.34KJ/m2;经化学腐蚀失重后测得硅含量仅为0.43%,层间及表面明显无微裂纹,切割后刨面色泽孔隙均一,渗硅均匀无差异;
复合涂层坩埚成品密度为2.39g/cm3,开孔率为0.08%,力学性能对比与纯碳陶坩埚基体略有提升,层间试验中涂层未脱落,证明涂层有足够的强度;碳陶坩埚表面Si3N4涂层厚度为78μm,表面BN涂层厚度为32μm,制备所得复合涂层坩埚表面涂层致密、光滑、无缺陷;
本实施例复合涂层坩埚在拉制单晶硅棒的生产作业中共计服役285天。
实施例2
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1KPa下通入1:1的丙烯和氮气增密至1.44g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1900℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚基体;
(6)Si3N4涂层沉积工艺:N2氛围下,在700℃、压力1.0KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)BN涂层沉积工艺:N2氛围下,在800℃、压力2.5KPa采用BCl3-NH3体系(摩尔比:BCl3:NH3=1:3)气相沉积BN涂层;
(8)复合涂层坩埚热处理:将沉积出炉后的坩埚在1400℃下热处理2小时后出炉得到复合涂层坩埚成品。
本实施例中,炭炭坩埚密度为1.44g/cm3,开孔率为22.8%;
碳陶坩埚基体密度为2.24g/cm3,开孔率为4.95%;
复合涂层坩埚成品密度为2.31g/cm3,开孔率为0.95%。
本复合涂层坩埚在剪切实验中涂层发生脱落,表面结合情况一般,复合涂层坩埚对比碳陶坩埚力学无明显变化;碳陶坩埚表面Si3N4涂层厚度为60μm,表面BN涂层厚度为26μm;
本实施例复合涂层坩埚在拉制单晶硅棒的生产作业中共计服役183天因涂层质量而报废;这是由于Si3N4沉积温度偏低,涂层与坩埚结合力下降,同时温度低,沉积速率过低,涂层厚度减少;因沉积涂层问题使得复合涂层坩埚开孔率偏高,涂层对碳陶坩埚基体的保护能力下降,导致硅液和硅蒸汽侵蚀碳陶坩埚,故而大大影响了使用寿命。
实施例3
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1KPa下通入1:1的丙烯和氮气增密至1.46g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1900℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚基体;
(6)Si3N4涂层沉积工艺:N2氛围下,在1000℃、压力1.0KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)BN涂层沉积工艺:N2氛围下,在800℃、压力2.5KPa采用BCl3-NH3体系(摩尔比:BCl3:NH3=1:3)气相沉积BN涂层;
(8)复合涂层坩埚热处理:将沉积出炉后的坩埚在1400℃下热处理2小时后出炉得到复合涂层坩埚成品。
本实施例中,炭炭坩埚密度为1.46g/cm3,开孔率为21.7%;
碳陶坩埚基体密度为2.27g/cm3,开孔率为4.40%;
复合涂层坩埚密度为2.39g/cm3,开孔率为0.25%;
本复合涂层坩埚在剪切实验中涂层发生脱落,表面结合情况一般,复合涂层坩埚对比碳陶坩埚力学无明显变化;碳陶坩埚表面Si3N4涂层厚度为86μm,表面BN涂层厚度为33μm;实验中BN涂层厚度有所增加是因为Si3N4沉积温度过高,制得Si3N4涂层表面较为粗糙,故有利于BN涂层的沉积;
本实施例复合涂层坩埚在拉制单晶硅棒的生产作业中共计服役165天因涂层质量而报废;这是由于Si3N4沉积温度偏高,虽然涂层厚度足够但碳陶基体内部孔洞未被完全填充,Si3N4仅仅附着在表面,在使用过程中由于承载导致涂层脱落形成孔洞,故大大降低了坩埚使用寿命,严重时可能会腐蚀坩埚内部,甚至污染产品。
实施例4
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1KPa下通入1:1的丙烯和氮气增密至1.46g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1900℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚;
(6)Si3N4涂层沉积工艺:N2氛围下,在850℃、压力1.0KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)BN涂层沉积工艺:N2氛围下,在650℃、压力2.5KPa采用BCl3-NH3体系(摩尔比:BCl3:NH3=1:3)气相沉积BN涂层;
(8)复合涂层坩埚热处理:将沉积出炉后的坩埚在1400℃下热处理2小时后出炉得到复合涂层坩埚成品。
本实施例中,炭炭坩埚密度为1.46g/cm3,开孔率为21.5%;
碳陶坩埚基体密度为2.25g/cm3,开孔率为4.80%;
复合涂层坩埚密度为2.36g/cm3,开孔率为0.33%;
本复合涂层坩埚在剪切实验中涂层未发生脱落,但出现裂纹情况,表面结合情况良好,复合涂层坩埚对比碳陶坩埚力学无明显变化;碳陶坩埚表面Si3N4涂层厚度为76μm,表面BN涂层厚度为22μm;
本实施例复合涂层坩埚在拉制单晶硅棒的生产作业中共计服役235天;复合涂层坩埚寿命偏低是由于BN沉积温度偏低,BN表面虽非常光滑,但与Si3N4涂层的结合能力有所下降,故使用一定期限后,涂层质量下降导致复合涂层坩埚寿命出现一定幅度降低。
实施例5
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1KPa下通入1:1的丙烯和氮气增密至1.46g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1900℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚基体;
(6)Si3N4涂层沉积工艺:N2氛围下,在850℃、压力1.0KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)BN涂层沉积工艺:N2氛围下,在950℃、压力2.5KPa采用BCl3-NH3体系(摩尔比:BCl3:NH3=1:3)气相沉积BN涂层;
(8)复合涂层坩埚热处理:将沉积出炉后的坩埚在1400℃下热处理2小时后出炉得到复合涂层坩埚成品。
本实施例中,炭炭坩埚密度为1.46g/cm3,开孔率为21.2%;
碳陶坩埚基体密度为2.26g/cm3,开孔率为4.70%;
复合涂层坩埚密度为2.41g/cm3,开孔率为0.11%;
本复合涂层坩埚在剪切实验中涂层未发生脱落,但出现裂纹情况,表面结合情况良好,复合涂层坩埚对比碳陶坩埚力学无明显变化;碳陶坩埚表面Si3N4涂层厚度为75μm,表面BN涂层厚度为36μm;
本实施例复合涂层坩埚在拉制单晶硅棒的生产作业中共计服役266天;复合涂层坩埚寿命略有下降是由于BN沉积温度偏高,BN涂层厚度虽有增大但BN表面较为粗糙,对硅的润湿性没有光滑的BN涂层差,故服役寿命略有降低。
对比例1
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1KPa下通入1:1的丙烯和氮气增密至1.30g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1900℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚基体;
(6)Si3N4涂层沉积工艺:N2氛围下,在850℃、压力1.0KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)BN涂层沉积工艺:N2氛围下,在880℃、压力2.5KPa采用BCl3-NH3体系(摩尔比:BCl3:NH3=1:3)气相沉积BN涂层;
(8)复合涂层坩埚热处理:将沉积出炉后的坩埚在1400℃下热处理2小时后出炉得到复合涂层坩埚成品。
本对比例中,炭炭坩埚密度为1.30g/cm3,开孔率为28.1%,抗压强度为140.84MPa、抗弯强度为162.56MPa、层间剪切强度为13.85MPa、抗拉强度为76.33MPa、冲击韧性为58.02KJ/m2
碳陶坩埚基体密度为2.25g/cm3,开孔率为7.69%,抗压强度为268.26MPa、抗弯强度为184.38MPa、层间剪切强度为18.44MPa、抗拉强度为89.32MPa、冲击韧性为57.34KJ/m2;经化学腐蚀失重后测得硅含量为1.01%,层间及表面明显无微裂纹,切割后刨面色泽孔隙均一,渗硅均匀无差异;通过以上力学数据说明炭炭坩埚基体密度偏低,会严重影响力学性能;
复合涂层坩埚密度为2.40g/cm3,开孔率为2.31%;力学性能对比与纯碳陶坩埚基体略有提升,层间试验中涂层未脱落,证明涂层有足够的强度,但复合涂层坩埚表面出现大孔洞,表面状态差,说明碳陶坩埚基体开孔率很高,涂层沉积无法致密填充坩埚内部;碳陶坩埚表面Si3N4涂层厚度为65μm,表面BN涂层厚度为35μm;
因本对比例复合涂层坩埚开孔率严重偏高,故不应用于单晶硅生产,避免生产事故发生。
对比例2
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1KPa下通入1:1的丙烯和氮气增密至1.45g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1600℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚基体;
(6)Si3N4涂层沉积工艺:N2氛围下,在850℃、压力1.0KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)BN涂层沉积工艺:N2氛围下,在800℃、压力2.5KPa采用BCl3-NH3体系(摩尔比:BCl3:NH3=1:3)气相沉积BN涂层;
(8)复合涂层坩埚热处理:将沉积出炉后的坩埚在1400℃下热处理2小时后出炉得到复合涂层坩埚成品。
本对比例中,炭炭坩埚密度为1.45g/cm3,开孔率为22.5%;
碳陶坩埚基体密度为2.36g/cm3,开孔率为0.98%;样品经化学腐蚀失重后测得硅含量为7.85%,由于残余硅含量高样品内部存在众多微裂纹;
复合涂层坩埚密度为2.44g/cm3,开孔率0.04%,层间试验中涂层脱落,证明涂层没有足够的强度;碳陶坩埚表面Si3N4涂层厚度为70μm,表面BN涂层厚度为31μm,制备所得复合涂层坩埚表面涂层致密、光滑;
但本对比例复合涂层坩埚在拉制单晶硅棒的生产作业中共计服役123天,这是因为高温工况下碳陶坩埚基体内部少量残余硅液化对涂层有破坏作用,同时由于碳陶坩埚基体开孔率低,涂层沉积的过程中Si3N4涂层未能由内而外生长仅吸附在碳陶坩埚基体表面,结合强度偏低而发生破坏;随着涂层的破坏,碳陶坩埚基体内部被侵蚀,使用寿命大大降低,同时还可能污染产品。
而提升炭炭坩埚基体高温渗硅温度(高于2000℃),则碳陶坩埚基体开孔率会显著上升,涂层无法有效填充孔隙,且温度过高反应快速,纤维可能损伤出现微裂纹影响力学性能。
对比例3
(1)针刺预制体:针刺制备密度为0.58±0.02g/cm3的碳纤维坩埚预制体;
(2)预制体热处理:将碳纤维坩埚预制体在2000℃氩气保护氛围下高温热处理,密度变化为0.56±0.02g/cm3
(3)预制体增密:将密度为0.56±0.02g/cm3的碳纤维坩埚预制体在980±5℃、炉压1KPa下通入1:1的丙烯和氮气增密至1.46g/cm3得到炭炭坩埚;
(4)炭炭热处理:将炭炭坩埚在2300℃下热处理3h,得到炭炭坩埚基体;
(5)高温渗硅:将炭炭坩埚基体置于硅粉之上,然后在1900℃、炉压低于1000pa的要求下渗硅反应得到碳陶坩埚基体;
(6)Si3N4涂层沉积工艺:N2氛围下,在850℃、压力1.0KPa采用HSiCl3-NH3体系(摩尔比:HSiCl3:NH3=1:3)气相沉积Si3N4涂层;
(7)Si3N4涂层坩埚热处理:将沉积Si3N4涂层后的坩埚在1400℃下热处理2小时后出炉得到单一涂层坩埚成品。
本对比例中,炭炭坩埚密度为1.46g/cm3
碳陶坩埚基体密度为2.28g/cm3
单一涂层坩埚密度为2.36g/cm3,开孔率0.94%,涂层表面略为粗糙,层间试验中涂层未脱落,证明涂层有足够的强度;碳陶坩埚表面Si3N4涂层厚度为79μm。
本对比例的单一涂层坩埚在拉制单晶硅棒的生产作业中仅仅服役125天,这是因为Si3N4涂层表面较为粗糙,且对硅有一定的润湿性,在单晶硅的生产过程中对Si3N4涂层有一定破坏作用,故而使单一Si3N4涂层效果不显著。
而当仅使用单一BN涂层时,BN涂层生长慢,无法有效的填充碳陶坩埚基体的孔隙,对碳陶坩埚的保护不够充分;当先沉积BN涂层再沉积Si3N4涂层仍然存在Si3N4涂层对硅有一定润湿性问题。

Claims (9)

1.一种含Si3N4和BN复合涂层的碳陶复合材料坩埚,其特征在于:由碳陶坩埚基体依次沉积Si3N4涂层、BN涂层制得。
2.根据权利要求1所述的含Si3N4和BN复合涂层的碳陶复合材料坩埚,其特征在于:所述碳陶坩埚基体密度为2.15-2.35g/cm3,开孔率为4-6%,残余硅含量不高于0.5wt%。
3.根据权利要求1所述的含Si3N4和BN复合涂层的碳陶复合材料坩埚,其特征在于:所述Si3N4涂层的厚度为50-100μm,BN涂层的厚度为10-40μm。
4.权利要求1-3任一项所述的含Si3N4和BN复合涂层的碳陶复合材料坩埚的制备方法,其特征在于,包括如下步骤:
(1)针刺制得密度为0.56-0.60g/cm3的碳纤维坩埚预制体;
(2)惰性气氛下,将碳纤维坩埚预制体于1800-2000℃下进行热处理;
(3)在丙烯和氮气的混合气氛下,将热处理后的碳纤维坩埚预制体增密得到密度为1.40-1.55g/cm3的炭炭坩埚;
(4)将炭炭坩埚于2200-2500℃下进行热处理,得到炭炭坩埚基体;
(5)将炭炭坩埚基体置于硅粉上,于1700℃-2000℃下进行高温渗硅,得到碳陶坩埚基体;
(6)对碳陶坩埚基体进行气相沉积Si3N4涂层,得到含Si3N4涂层的碳陶坩埚基体;
(7)对含Si3N4涂层的碳陶坩埚进行气相沉积BN涂层,得到含Si3N4和BN复合涂层的碳陶复合材料坩埚基体;
(8)将含Si3N4和BN复合涂层的碳陶复合材料坩埚基体于1200℃-1600℃下进行热处理得到含Si3N4和BN复合涂层的碳陶复合材料坩埚。
5.根据权利要求4所述的制备方法,其特征在于:步骤(3)中,混合气氛中的丙烯和氮气的体积比为1:1;热处理温度为975-985℃,压力为0.8-1.2KPa。
6.根据权利要求4所述的制备方法,其特征在于:步骤(4)中,炭炭坩埚基体的开孔率为18-24%。
7.根据权利要求4所述的制备方法,其特征在于:步骤(5)中,碳陶坩埚基体密度为2.15-2.35g/cm3,开孔率为4-6%,残余硅含量不高于0.5wt%。
8.根据权利要求4所述的制备方法,其特征在于:步骤(6)中,N2氛围下,采用HSiCl3-NH3体系气相沉积Si3N4涂层,沉积温度为700-1000℃,沉积压力为0.5-3.0KPa,Si3N4涂层的厚度为50-100μm,含Si3N4涂层的碳陶坩埚基体的密度为2.25-2.45g/cm3,开孔率不高于1%。
9.根据权利要求4所述的制备方法,其特征在于:步骤(7)中,N2氛围下,采用BCl3-NH3体系气相沉积BN涂层,沉积温度为600-1050℃,沉积压力为1.0-5.0KPa,BN涂层的厚度为10-40μm,含Si3N4和BN复合涂层的碳陶复合材料坩埚基体的密度为2.30-2.50g/cm3,开孔率不高于1%。
CN202110522516.2A 2021-05-13 2021-05-13 一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法 Active CN113200765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110522516.2A CN113200765B (zh) 2021-05-13 2021-05-13 一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110522516.2A CN113200765B (zh) 2021-05-13 2021-05-13 一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法

Publications (2)

Publication Number Publication Date
CN113200765A true CN113200765A (zh) 2021-08-03
CN113200765B CN113200765B (zh) 2022-10-25

Family

ID=77031095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110522516.2A Active CN113200765B (zh) 2021-05-13 2021-05-13 一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法

Country Status (1)

Country Link
CN (1) CN113200765B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227800A (ja) * 1983-05-20 1984-12-21 Sumitomo Electric Ind Ltd 化合物半導体製造用部材
CN103102170A (zh) * 2011-11-11 2013-05-15 浙江昱辉阳光能源有限公司 一种坩埚及其制备方法
CN103305910A (zh) * 2012-03-15 2013-09-18 阿特斯(中国)投资有限公司 硅铸锭用坩埚及其内侧涂层的制备方法
CN106222740A (zh) * 2016-08-19 2016-12-14 西安华晶电子技术股份有限公司 一种降低多晶硅铸锭底部氧含量的多晶硅铸锭方法
CN106283186A (zh) * 2016-08-10 2017-01-04 中联西北工程设计研究院有限公司 一种多晶硅铸锭用坩埚涂层的制备方法以及坩埚
CN107244943A (zh) * 2017-07-10 2017-10-13 巩义市泛锐熠辉复合材料有限公司 一种反应熔体浸渗法制备C/C‑SiC复合材料用石墨坩埚表面涂层的制备方法
CN107698271A (zh) * 2017-09-11 2018-02-16 西北工业大学 耐高温高强韧性氮化硅基透波复合材料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227800A (ja) * 1983-05-20 1984-12-21 Sumitomo Electric Ind Ltd 化合物半導体製造用部材
CN103102170A (zh) * 2011-11-11 2013-05-15 浙江昱辉阳光能源有限公司 一种坩埚及其制备方法
CN103305910A (zh) * 2012-03-15 2013-09-18 阿特斯(中国)投资有限公司 硅铸锭用坩埚及其内侧涂层的制备方法
CN106283186A (zh) * 2016-08-10 2017-01-04 中联西北工程设计研究院有限公司 一种多晶硅铸锭用坩埚涂层的制备方法以及坩埚
CN106222740A (zh) * 2016-08-19 2016-12-14 西安华晶电子技术股份有限公司 一种降低多晶硅铸锭底部氧含量的多晶硅铸锭方法
CN107244943A (zh) * 2017-07-10 2017-10-13 巩义市泛锐熠辉复合材料有限公司 一种反应熔体浸渗法制备C/C‑SiC复合材料用石墨坩埚表面涂层的制备方法
CN107698271A (zh) * 2017-09-11 2018-02-16 西北工业大学 耐高温高强韧性氮化硅基透波复合材料及制备方法

Also Published As

Publication number Publication date
CN113200765B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
RU2176628C2 (ru) Композит (варианты) и способ его приготовления, способ обработки волоконной заготовки (варианты)
JP5209195B2 (ja) 窒化ケイ素を含有する耐久性ハードコーティング
CN110256082B (zh) 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN113549895A (zh) 在石墨基材表面制备碳化钽涂层的方法及石墨器件
JPH05186268A (ja) 金属窒化物で被覆された繊維強化材を有する炭化ケイ素複合材
CN109912316A (zh) 一种C/SiC复合材料表面纳米线增韧涂层的制备方法
CN114455982B (zh) 一种含有氧化铝涂层和碳化硅涂层的炭/炭复合材料坩埚
CN112694347B (zh) 一种具有碳化硅涂层的炭炭复合材料坩埚及制备方法
CN113754442B (zh) 一种SiC/SiC复合材料高致密多层基体及制备方法
CN107759251B (zh) 一种多孔陶瓷表面高韧性陶瓷涂层的制备方法
CN112851387B (zh) 一种在炭炭复合材料表面制备碳化硅涂层的方法
CN110372408A (zh) 一种陶瓷纤维增韧cvd碳化硅复合材料及其制备方法和应用
CN114057467A (zh) 一种高强度的陶瓷砖及其制备方法
CN113200765B (zh) 一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法
CN115353414B (zh) 一种SiC与碳氮化物互穿抗烧蚀涂层及其制备方法
CN114455969B (zh) 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚
CN114368975B (zh) 一种含有α-Al2O3涂层的低密度C/C-SiC复合材料坩埚
CN114455963B (zh) 一种含有α-Al2O3涂层的炭/炭-碳化硅复合材料坩埚
JPH06183838A (ja) 金属炭化物で被覆された繊維強化材を有する炭化ケイ素複合材
CN110066185B (zh) 一种C/C-SiC-Al复合材料及制备方法
CN109180209B (zh) 一种采用原位自生法制备碳化硅纳米线增强石墨-碳化硅复合材料的方法
FR2653113A1 (fr) Compositions verrieres oxyazotees, leurs precurseurs et leur application a la preparation de compositions vitroceramiques et de materiaux composites.
CN114455971B (zh) 一种含有α-Al2O3涂层的高密度C/C-SiC复合材料坩埚
CN114455981B (zh) 一种含有α-Al2O3涂层的中密度C/C-SiC复合材料坩埚
CN116768653B (zh) 一种含复合陶瓷涂层的碳碳热场坩埚及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant