CN113200749B - 一种高压绝缘材料及其制备方法和应用 - Google Patents

一种高压绝缘材料及其制备方法和应用 Download PDF

Info

Publication number
CN113200749B
CN113200749B CN202110428589.5A CN202110428589A CN113200749B CN 113200749 B CN113200749 B CN 113200749B CN 202110428589 A CN202110428589 A CN 202110428589A CN 113200749 B CN113200749 B CN 113200749B
Authority
CN
China
Prior art keywords
silicon nitride
insulating material
oxide
sintering aid
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110428589.5A
Other languages
English (en)
Other versions
CN113200749A (zh
Inventor
张伟儒
李洪浩
孙峰
董廷霞
白健
李新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinoma Advanced Nitride Ceramics Co Ltd
Original Assignee
Sinoma Advanced Nitride Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinoma Advanced Nitride Ceramics Co Ltd filed Critical Sinoma Advanced Nitride Ceramics Co Ltd
Priority to CN202110428589.5A priority Critical patent/CN113200749B/zh
Publication of CN113200749A publication Critical patent/CN113200749A/zh
Application granted granted Critical
Publication of CN113200749B publication Critical patent/CN113200749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种高压绝缘材料及其制备方法和应用,属于绝缘材料技术领域。本发明以具有优异绝缘性的氮化硅材料为原料,利用绝缘性好的烧结助剂,能够减少烧结助剂对氮化硅陶瓷绝缘性的影响,从而保证材料的绝缘性能;本发明采用氮化硅陶瓷,其柱状晶粒结构和高致密度使其抗冲击性能优异;本发明通过在坯体表面涂抹氮化硼,能够隔绝烧结过程中炉体内石墨部件对坯体的渗透,从而提高材料的电阻率,进一步提高其绝缘性能。

Description

一种高压绝缘材料及其制备方法和应用
技术领域
本发明涉及绝缘材料技术领域,尤其涉及一种高压绝缘材料及其制备方法和应用。
背景技术
高压绝缘材料在输电线路和变电站中广泛应用,起着支撑导线和绝缘的作用,其质量好坏直接影响着电网的安全运行。绝缘材料一旦发生断裂,轻则造成短路器损坏、变压器烧损,重则造成大面积停电,严重影响经济发展和社会稳定。
众所周知,由于陶瓷的绝缘性好,传统的高电压绝缘材料多使用陶瓷材料,常见高强度电瓷材料有普通电瓷、高硅质电瓷和铝质电瓷等。然而,一般的电瓷材料存在易碎、抗冲击性差等缺点,因此在超高压、特高压领域被玻璃钢和有机复合绝缘材料所替代。但是,玻璃绝缘难以成型外形大而复杂的制品,有机复合绝缘材料抗老化能力有限,从而限制了高压电力设备的发展。
发明内容
本发明的目的在于提供一种高压绝缘材料及其制备方法和应用,所制备的高压绝缘材料具有优异的抗冲击性能和高绝缘性能,满足户内绝缘及户外绝缘等多种高压环境的使用要求。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高压绝缘材料的制备方法,包括以下步骤:
将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种;
将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料;
将所述混合粉料进行冷等静压成型,得到第一生坯;
在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯;
将所述第二生坯进行气压烧结,得到高压绝缘材料。
优选的,所述氮化硅粉的平均粒径D50<1μm,α相含量>90%;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的平均粒径D50独立地<1μm。
优选的,所述氮化硅粉占所述氮化硅粉与烧结助剂总质量的质量百分比为80~95%;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的质量比为(0~8):(0~8):(0~4):(0~4):(0~4)。
优选的,所述压制的压力为50~150MPa,保压时间为100~200s。
优选的,所述冷等静压成型的压力为200~300MPa,保压时间为100~500s。
优选的,所述氮化硼料浆固相物料的质量含量为30~40%。
优选的,所述气压烧结的温度为1680~1800℃,保温时间为10~20h,压力为2~8MPa;升温至所述气压烧结的温度的升温速率为3~8℃/min。
本发明提供了上述技术方案所述制备方法制备得到的高压绝缘材料,包括β相氮化硅和弥散分布于所述β相氮化硅中的玻璃相,所述玻璃相由烧结助剂形成;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种。
本发明提供了上述技术方案所述高压绝缘材料在高压电力设备中的应用。
本发明提供了一种高压绝缘材料的制备方法,包括以下步骤:将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种;将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料;将所述混合粉料进行冷等静压成型,得到第一生坯;在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯;将所述第二生坯进行气压烧结,得到高压绝缘材料。
本发明以具有优异绝缘性的氮化硅材料为原料,同时所用烧结助剂的绝缘性好,能够减少烧结助剂对氮化硅陶瓷绝缘性的影响,从而保证材料的绝缘性能;本发明采用氮化硅陶瓷,其柱状晶粒结构和高致密度使其抗冲击性能优异;本发明通过在坯体表面涂抹氮化硼料浆,能够隔绝烧结炉体内石墨部件对坯体的渗透,从而提高材料的电阻率,进一步提高其绝缘性能。
本发明制备的高压绝缘材料的体积密度为3.20~3.26g/cm3,维氏硬度HV10≥1460,三点抗弯强度≥700MPa,断裂韧性≥7MPa·m-1/2,体积电阻率>1016Ω×m,表面电阻率>1017Ω,最大气孔尺寸<10μm,具有高体积电阻率和表面电阻率,且抗冲击性能优越,可用于内绝缘及户外绝缘等多种高压环境。
具体实施方式
本发明提供了一种高压绝缘材料的制备方法,包括以下步骤:
将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种;
将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料;
将所述混合粉料进行冷等静压成型,得到第一生坯;
在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯;
将所述第二生坯进行气压烧结,得到高压绝缘材料。
在本发明中,若无特殊说明,所需制备原料均为本领域技术人员熟知的市售商品。
本发明将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆。在本发明中,所述氮化硅粉的平均粒径D50优选<1μm,α相含量>90%;
在本发明中,所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种,更优选为氧化铝、氧化钇和氧化锆,或者氧化铝、氧化钇和氧化镁,或者氧化钇、氧化镁和氧化硅;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的平均粒径D50优选独立地<1μm。在本发明中,所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的质量比优选为(0~8):(0~8):(0~4):(0~4):(0~4),更优选为(2~6):(2~6):(1~3):(1~3):(1~3)。本发明利用烧结助剂促进氮化硅陶瓷的致密化,且所述烧结助剂均不会损害氮化硅陶瓷的绝缘性能,以玻璃相形式存在于氮化硅陶瓷内部。
在本发明中,所述氮化硅粉占所述氮化硅粉与烧结助剂总质量的质量百分比优选为80~95%,更优选为85~90%,所述烧结助剂占所述氮化硅粉与烧结助剂总质量的质量百分比优选为5~20%,更优选为10~15%。
在本发明中,所述研磨介质优选为无水乙醇,本发明对所述研磨介质的具体用量没有特殊的限定,按照本领域熟知的过程调整能够顺利进行研磨即可。
在本发明中,所述湿法研磨所用研磨球优选为氮化硅球;本发明对所述氮化硅球的规格没有特殊的限定,本领域熟知的湿法研磨用氮化硅球即可。
本发明对所述氮化硅粉、烧结助剂和研磨介质混合的过程没有特殊的限定,按照本领域熟知的过程能够将物料混合均匀即可。
在本发明中,所述湿法研磨优选在搅拌磨中进行,本发明对所述搅拌磨没有特殊的限定,本领域熟知的搅拌磨均可;所述湿法研磨的转速优选为200~400r/min,更优选为250~350r/min,研磨时间优选为20~40h,更优选为25~35h。
得到混合料浆后,本发明将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料。在本发明中,所述干燥优选在真空烘箱进行,所述干燥的温度优选为40~50℃;本发明对所述干燥的时间没有特殊的限定,按照本领域熟知的过程能够得到干燥物料即可。
完成所述干燥后,本发明优选将干燥所得粉料装入橡胶容器并密封,然后进行压制。本发明对所述橡胶容器没有特殊的限定,本领域熟知的干燥用橡胶容器即可。在本发明中,所述压制的压力优选为50~150MPa,更优选为80~120MPa;保压时间优选为100~200s,更优选为120~160s。
在本发明中,所述粉碎优选通过旋轮磨机进行,所述混合粉料的粒径优选为50目以下。本发明对所述旋轮磨机没有特殊的限定,选用本领域熟知的旋轮磨机能够得到上述粒径范围的混合粉料即可。本发明通过压制和粉碎的过程造粒,能够提高粉料的松装密度和流动性,从而提高后续坯体的均匀性,防止坯体不均匀导致的烧结坯体开裂。
得到混合粉料后,本发明将所述混合粉料进行冷等静压成型,得到第一生坯。在本发明中,所述冷等静压成型优选在冷等静压机中进行;本发明对所述冷等静压机没有特殊的限定,本领域熟知的相应设备即可;所述冷等静压成型的压力优选为200~300MPa,更优选为220~280MPa,进一步优选为250~260MPa,保压时间优选为100~500s,更优选为150~400s,进一步优选为250~350s。本发明通过冷等静压成型提高坯体的密度,促进坯体的烧结致密化,从而提高坯体的强度。
得到第一生坯后,本发明在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯。在本发明中,所述氮化硼料浆中氮化硼的D50优选<10μm;所述氮化硼料浆所用溶剂优选为无水乙醇;本发明对所述氮化硼料浆的制备过程没有特殊的限定,按照本领域熟知的方法将氮化硼与无水乙醇混合均匀即可得到氮化硼料浆。在本发明中,所述氮化硼料浆中固相物料的质量含量优选为30~40%,更优选为35%。本发明对所述氮化硼与无水乙醇混合的过程没有特殊的限定,按照本领域熟知的过程能够将物料混合均匀即可。本发明利用氮化硼料浆中氮化硼优异的绝缘性和导热性,且高温下保持良好的润滑性,可在隔绝碳渗透的同时不影响坯体的收缩和热传递,从而提高氮化硅陶瓷的电阻率,特别是表面电阻率。
在本发明中,在所述第一生坯表面涂覆氮化硼料浆具体是在第一生坯的整个表面涂覆氮化硼料浆;本发明对所述涂覆的过程没有特殊的限定,按照本领域熟知的过程能够涂覆均匀即可。在本发明中,所述干燥的方式优选为自然晾干,所述自然晾干的温度优选为20~30℃。完成所述干燥后,所述氮化硼料浆在第一生坯表面形成的氮化硼涂层的厚度优选为1~4mm,更优选为2~3mm。
得到第二生坯后,本发明将所述第二生坯进行气压烧结,得到高压绝缘材料。在本发明中,所述气压烧结优选在气氛压力烧结炉中进行;所述气压烧结的温度优选为1680~1800℃,更优选为1700~1750℃;保温时间优选为10~20h,更优选为12~18h;压力优选为2~8MPa,更优选为3~5MPa;升温至所述气压烧结的升温速率优选为3~8℃/min,更优选为5~6℃/min。
在所述气压烧结过程中,烧结助剂形成液相,促进氮化硅由α相转化为柱状晶粒的β相;氮化硼附着在坯体表面,隔绝炉体内碳元素对坯体的渗透,从而提高材料的电阻率,进一步提高其绝缘性能。
完成所述气压烧结后,本发明优选将所得坯体表面的氮化硼层进行打磨,然后加工至成品尺寸,超声洗涤后,得到高压绝缘材料。本发明优选使用金刚石砂纸进行打磨,去除坯体表面的氮化硼层。本发明优选使用精雕机或车床进行所述加工。本发明对所述打磨、加工和超声清洗的具体过程没有特殊的限定,按照本领域熟知的过程进行即可。
本发明提供了上述技术方案所述制备方法制备得到的高压绝缘材料,包括β相氮化硅和弥散分布于所述β相氮化硅中的玻璃相,所述玻璃相由烧结助剂形成;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种。
在本发明中,所述高压绝缘材料的体积密度为3.20~3.26g/cm3,维氏硬度HV10≥1460,三点抗弯强度≥700MPa,断裂韧性≥7MPa·m-1/2,体积电阻率>1016Ω×m,表面电阻率>1017Ω,最大气孔尺寸<10μm。
本发明提供了上述技术方案所述高压绝缘材料在高压电力设备中的应用。本发明对所述应用的方法没有特殊的限定,按照本领域熟知的方法应用即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例中,所述“%”均代表质量百分含量。
实施例1
将85%氮化硅粉(D50=0.8μm,α相含量95%)、8%氧化铝(D50=0.6μm)、4%氧化钇(D50=0.8μm)和3%氧化锆(D50=0.5μm)加入到搅拌磨中,转速250r/min,以无水乙醇为介质,氮化硅球为研磨介质,研磨35h,得到混合料浆;
将所述混合料浆置于真空烘箱中,在40℃下烘干,将所得粉料装入橡胶容器并密封,在压力100MPa,保压120s,使用旋轮磨机将所得块料破碎成50目以下粉料,得到混合粉料;
将所述混合粉料装入模具中,密封后置于冷等静压机中,在压力200MPa,保压200s,得到第一生坯;
以无水乙醇为溶剂,配制固相质量含量30%的氮化硼(D50=6μm)料浆,得到氮化硼料浆;
在所述第一生坯整个表面涂覆氮化硼料浆,25℃条件晾干,在所述第一生坯表面所形成的氮化硼涂层厚度为2mm,得到第二生坯;
将所述第二生坯置于气氛压力烧结炉中,以5℃/min的升温速率升温到1780℃,保温10h,保压4MPa,进行气压烧结;
将所得坯体表面的氮化硼层使用金刚石砂纸打磨干净,然后使用精雕机加工,超声清洗,得到高压绝缘材料。
实施例2
将90%氮化硅粉(D50=0.8μm,α相含量95%)、4%氧化铝(D50=0.6μm)、4%氧化钇(D50=0.8μm)和2%氧化镁(D50=0.5μm)加入到搅拌磨中,转速250r/min,以无水乙醇为介质,氮化硅球为研磨介质,研磨35h,得到混合料浆;
将所述混合料浆置于真空烘箱中,在40℃下烘干,将所得粉料装入橡胶容器并密封,在压力100MPa,保压120s,使用旋轮磨机将所得块料破碎成50目以下粉料,得到混合粉料;
将所述混合粉料装入模具中,密封后置于冷等静压机中,在压力250MPa,保压300s,得到第一生坯;
以无水乙醇为溶剂,配制固相质量含量30%的氮化硼(D50=6μm)料浆,得到第一氮化硼料浆;
在所述第一生坯整个表面涂覆氮化硼料浆,25℃条件晾干,在所述第一生坯表面所形成的氮化硼涂层厚度为2mm,得到第二生坯;
将所述第二生坯置于气氛压力烧结炉中,以3℃/min的升温速率升温到1800℃,保温12h,保压8MPa,进行气压烧结;
将所得坯体表面的氮化硼层使用金刚石砂纸打磨干净,然后使用精雕机加工,超声清洗,得到高压绝缘材料。
实施例3
将88%氮化硅粉(D50=0.8μm,α相含量95%)、4%氧化钇(D50=0.8μm)、4%氧化镁(D50=0.5μm)和4%氧化硅(D50=0.4μm)加入到搅拌磨中,转速250r/min,以无水乙醇为介质,氮化硅球为研磨介质,研磨35h,得到混合料浆;
将所述混合料浆置于真空烘箱中,在40℃下烘干,将所得粉料装入橡胶容器并密封,在压力100MPa,保压120s,使用旋轮磨机将所得块料破碎成50目以下粉料,得到混合粉料;
将所述混合粉料装入模具中,密封后置于冷等静压机中,在压力250MPa保压300s,得到第一生坯;
以无水乙醇为溶剂,配制固相质量含量30%的氮化硼(D50=6μm)料浆,得到氮化硼料浆;
在所述第一生坯整个表面涂覆氮化硼料浆,25℃条件晾干,在所述第一生坯表面所形成的氮化硼涂层厚度为2mm,得到第二生坯;
将所述第二生坯置于气氛压力烧结炉中,以5℃/min的升温速率升温到1750℃,保温10h,保压8MPa,进行气压烧结;
将所得坯体表面的氮化硼层使用金刚石砂纸打磨干净,然后使用精雕机加工,超声清洗,得到高压绝缘材料。
性能测试
对实施例1~3制备的高压绝缘材料进行性能测试,其中,根据GB/T25995方法测试体积密度,根据GB/T16534方法测试维氏硬度,根据GB/T6569方法测试三点抗弯强度,根据GB/T23806方法测试断裂韧性,根据GB/T1410-2006方法测试体积电阻率(测试电压10kV),根据GB/T1410-2006方法测试表面电阻率(测试电压10kV),使用金相显微镜观察材料的气孔尺寸,具体结果见表1:
表1实施例1~3制备的高压绝缘材料的性能数据
项目 实施例1 实施例2 实施例3
体积密度(g/cm<sup>3</sup>) 3.25 3.26 3.25
维氏硬度HV10 1460 1480 1460
三点抗弯强度(MPa) 700 800 750
断裂韧性(MPa·m<sup>-1/2</sup>) 7.5 7.5 8.0
体积电阻率(Ω×m) 1.5×10<sup>16</sup> 2.6×10<sup>16</sup> 1.5×10<sup>16</sup>
表面电阻率(Ω) 1.2×10<sup>17</sup> 1.8×10<sup>17</sup> 1.1×10<sup>17</sup>
最大气孔尺寸(μm) 10 7 7
由表1可知,本发明制备的高压绝缘材料的三点抗弯强度达到700MPa以上,远高于现有电瓷材料(<200MPa),说明本发明制备的高压绝缘材料的抗冲击性能优异;同时,该高压绝缘材料的体积电阻率≥1016Ω×m,表面电阻率≥1017Ω,说明材料的绝缘性能优异,可用于内绝缘及户外绝缘等多种使用环境。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种高压绝缘材料的制备方法,其特征在于,包括以下步骤:
将氮化硅粉、烧结助剂和研磨介质混合,进行湿法研磨,得到混合料浆;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种;
将所述混合料浆依次进行干燥、压制和粉碎,得到混合粉料;
将所述混合粉料进行冷等静压成型,得到第一生坯;
在所述第一生坯表面涂覆氮化硼料浆,干燥后,得到第二生坯;
将所述第二生坯进行气压烧结,得到高压绝缘材料;
所述氮化硼料浆中固相物料的质量含量为30~40%;
所述氮化硅粉的平均粒径D50<1μm,α相含量>90%;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的平均粒径D50独立地<1μm;
所述氮化硅粉占所述氮化硅粉与烧结助剂总质量的质量百分比为80~95%;所述氧化铝、氧化钇、氧化锆、氧化镁和氧化硅的质量比为(0~8):(0~8):(0~4):(0~4):(0~4);
所述压制的压力为50~150MPa,保压时间为100~200s;
所述冷等静压成型的压力为200~300MPa,保压时间为100~500s;
所述气压烧结的温度为1680~1800℃,保温时间为10~20h,压力为2~8MPa;升温至所述气压烧结的温度的升温速率为3~8℃/min。
2.权利要求1所述制备方法制备得到的高压绝缘材料,其特征在于,包括β相氮化硅和弥散分布于所述β相氮化硅中的玻璃相,所述玻璃相由烧结助剂形成;所述烧结助剂包括氧化铝、氧化钇、氧化锆、氧化镁和氧化硅中的至少两种。
3.权利要求2所述高压绝缘材料在高压电力设备中的应用。
CN202110428589.5A 2021-04-21 2021-04-21 一种高压绝缘材料及其制备方法和应用 Active CN113200749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110428589.5A CN113200749B (zh) 2021-04-21 2021-04-21 一种高压绝缘材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110428589.5A CN113200749B (zh) 2021-04-21 2021-04-21 一种高压绝缘材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113200749A CN113200749A (zh) 2021-08-03
CN113200749B true CN113200749B (zh) 2022-05-10

Family

ID=77027522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110428589.5A Active CN113200749B (zh) 2021-04-21 2021-04-21 一种高压绝缘材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113200749B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962297B (zh) * 2010-10-20 2013-05-22 北京中材人工晶体研究院有限公司 一种多晶硅还原炉用氮化硅陶瓷环的制备方法
CN103848631A (zh) * 2012-11-29 2014-06-11 上海彭浦特种耐火材料厂有限公司 一种用于多极镁电解技术中的氮化硅陶瓷绝缘材料
CN107867830A (zh) * 2016-09-27 2018-04-03 青岛东浩软件科技有限公司 无机实心碳电阻及其制造方法
EP3647265A4 (en) * 2018-09-07 2020-09-16 Showa Denko K.K. HEXAGONAL BORON NITRIDE POWDER, ITS PRODUCTION PROCESS, COMPOSITION AND HEAT DISSIPATING MATERIAL USING IT
CN110028324B (zh) * 2019-05-29 2021-01-26 广东工业大学 一种氮化物陶瓷的制备方法
CN112159158A (zh) * 2020-09-01 2021-01-01 浙江创特新材科技有限公司 一种氮化硼块的制造工艺及氮化硼块
CN112552031B (zh) * 2020-12-10 2022-06-10 山东鹏程陶瓷新材料科技有限公司 一种SiO2-BN复相陶瓷及其制备方法
CN112441824B (zh) * 2020-12-11 2021-06-29 湖南兴诚电瓷电器有限公司 一种耐低温高压输电用瓷绝缘子及其制备方法

Also Published As

Publication number Publication date
CN113200749A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN111517756B (zh) 一种易洁陶瓷制品及其制备方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN110590404B (zh) 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
CN110759735A (zh) 一种碳化硼陶瓷复合材料及其制备方法
CN101575203B (zh) Ito溅射靶材的制备方法
CN103553626A (zh) 一种高致密度陶瓷基复合材料及其制备方法和应用
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
CN113943162A (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN106587940B (zh) 一种高纯致密氧化镁靶材及其制备方法
CN105924176A (zh) 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN115849885A (zh) 高纯高强度氧化铝陶瓷基板及其制备方法
CN113200749B (zh) 一种高压绝缘材料及其制备方法和应用
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN108329018B (zh) 一种增韧氧化铝复合陶瓷及其制备方法
CN109748569A (zh) 盘形悬式绝缘子及其制备方法
CN110746202B (zh) 一种石墨材料表面TaB2-SiC超高温陶瓷涂层的制备方法
CN115650732A (zh) 一种陶瓷球的制备方法
CN113149658B (zh) 一种氮化钛基复合陶瓷材料及其制备方法
CN114195513A (zh) 高密度、高纯度、大尺寸陶瓷靶材的制备方法
CN111848137A (zh) 一种高抗热震氧化铝陶瓷及其制备方法
CN116462515B (zh) 一种氮化硅陶瓷基板及其制备方法
CN108640645A (zh) 一种微孔复相装饰陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant