CN113199023A - 电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末 - Google Patents

电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末 Download PDF

Info

Publication number
CN113199023A
CN113199023A CN202110476509.3A CN202110476509A CN113199023A CN 113199023 A CN113199023 A CN 113199023A CN 202110476509 A CN202110476509 A CN 202110476509A CN 113199023 A CN113199023 A CN 113199023A
Authority
CN
China
Prior art keywords
powder
nano
based composite
composite material
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110476509.3A
Other languages
English (en)
Inventor
陈旸
王祥辉
陈�光
祁志祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110476509.3A priority Critical patent/CN113199023A/zh
Publication of CN113199023A publication Critical patent/CN113199023A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明记载了一种电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末,该粉末经机械活化处理。本发明由于不使用溶液和电解质,避免了致使杂质元素残留,纳米粒子在球磨过程中与Ti合金粉末结合强度大大提高,有助于防止纳米粒子在电子束作用下电荷积聚、被斥力吹散,达不到理想成形和实验效果等问题。

Description

电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末
技术领域
本发明属于增材制造技术领域,具体涉及一种电子束选区熔化成形用Ti合金粉末。
背景技术
Ti合金电子束选区熔化微观组织研究表明,凝固形成粗大柱状原始β晶粒形貌,主要原因在于高能电子束使Ti合金过热度大,溶质元素Al、V不易形成成分过冷,非均质形核数量少,同时成形过程较高的温度梯度,利于柱状晶粒的外延生长,在层层堆积过程中,不利于<001>取向的原始β晶粒的生长被抑制。综上可知,能够通过添加晶粒生长限制因子较高的元素或提供更多的非均质形核质点,使初始凝固组织形貌等轴晶化,有助于改善电子束选区熔化组织不均匀性和力学性能各向异性,提高增材制造构件可靠性。
添加晶粒生长限制因子较高的元素进行微合金化由于需要对制粉的铸锭进行合金化处理,周期长,成本高昂。因此本发明基于节约成本、提高效益的理念,将纳米陶瓷颗粒作为非均匀形核质点,使电子束选区熔化成形钛合金的粗大柱状晶转变为细小均匀的等轴晶粒,并作为弥散强化质点强化合金,同步提升钛合金比强度、承温能力、耐腐蚀、耐磨等力学性能,在航空航天、汽车、船舶、军工、医疗等领域具有广阔的应用潜力,是增材制造乃至材料科学与工程应用的热点研究方向。
对比Ti合金的纳米颗粒增强复合材料的粉末混合技术——静电自组装,是采用电解质溶液浸没粉末后烘干带上电解质,再将纳米粒子悬浮溶液浸没粉末后烘干,利用粉末表面带有的电解质吸附纳米颗粒。很明显,这种技术容易导致粉末被溶液和电解质污染,致使杂质元素残留,并且由于静电结合的粉末在电子束的作用下易被斥力作用吹散,达不到理想效果。因此需要一种污染少、结合强度较高、操作简便的混合纳米颗粒与Ti合金粉末的技术方法。
发明内容
本发明目的是提供一种电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末。
实现本发明目的的技术解决方案是:一种电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末,该纳米陶瓷颗粒增强Ti基复合材料粉末经机械活化处理。
较佳的,纳米陶瓷颗粒增强Ti基复合材料粉末由纳米陶瓷颗粒与Ti合金粉末按照一定质量比混合而成。
具体的,纳米陶瓷颗粒包括TiB2、TiC、Y2O3、ZrH2中任意一种或几种。
较佳的,所述的机械活化处理是指:将纳米陶瓷颗粒增强Ti基复合材料粉末置于球磨机中球磨处理。
较佳的,所述的机械活化处理是指:真空条件下,将纳米陶瓷颗粒增强Ti基复合材料粉末置于球磨机中球磨处理。
本发明与现有技术相比,由于不使用溶液和电解质,避免了致使杂质元素残留,纳米粒子在球磨过程中与Ti合金粉末结合强度大大提高,有助于防止纳米粒子在电子束作用下电荷积聚、被斥力吹散,达不到理想成形和实验效果等问题。因此本发明是一种真空污染少、结合强度较高、操作简便的混合纳米颗粒与Ti合金粉末的技术方法。
具体实施方式
下面结合实施方式对本发明进行详细说明。
本发明提供了一种电子束选区熔化成形方法,包括以下步骤:
步骤1:首先清理立式行星球磨机,酸液清洗立式真空不锈钢罐去除表面污渍,使用去离子水冲洗并用无水乙醇擦拭烘干,无水乙醇并烘干清洗氧化锆球。
步骤2:按照一定掺杂比例将纳米陶瓷颗粒与Ti合金粉末混合,将所得混合粉末按一定球料比与烘干的氧化锆球混合,至多填满真空不锈钢罐容积的2/3,将罐内真空度抽至10-3Pa。
步骤3:设置球磨机转速和球磨时间,确保纳米陶瓷颗粒均匀漫散分布于Ti合金粉末表面,保证Ti合金粉末粒径分布不改变,两种粉末具有一定的结合强度。
步骤4:将经机械活化的纳米陶瓷颗粒增强Ti基复合材料粉末加入电子束选区熔化设备成形真空舱室粉斗内,完成加工前准备工作,将待加工构件三维模型数据输入设备。
步骤5:开启电子束选区熔化设备进行预热、熔化加工;
步骤6:并使用回收系统回收粉末,取出成形构件,加工完成。

Claims (5)

1.一种电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末,其特征在于,该粉末经机械活化处理。
2.如权利要求1所述的粉末,其特征在于,纳米陶瓷颗粒增强Ti基复合材料粉末由纳米陶瓷颗粒与Ti合金粉末按照一定质量比混合而成。
3.如权利要求1所述的粉末,其特征在于,纳米陶瓷颗粒包括TiB2、TiC、Y2O3、ZrH2中任意一种或几种。
4.如权利要求1所述的粉末,其特征在于,所述的机械活化处理是指:将纳米陶瓷颗粒增强Ti基复合材料粉末置于球磨机中球磨处理。
5.如权利要求1所述的粉末,其特征在于,所述的机械活化处理是指:真空条件下,将纳米陶瓷颗粒增强Ti基复合材料粉末置于球磨机中球磨处理。
CN202110476509.3A 2021-04-29 2021-04-29 电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末 Pending CN113199023A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110476509.3A CN113199023A (zh) 2021-04-29 2021-04-29 电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110476509.3A CN113199023A (zh) 2021-04-29 2021-04-29 电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末

Publications (1)

Publication Number Publication Date
CN113199023A true CN113199023A (zh) 2021-08-03

Family

ID=77029494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110476509.3A Pending CN113199023A (zh) 2021-04-29 2021-04-29 电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末

Country Status (1)

Country Link
CN (1) CN113199023A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904439A (zh) * 2017-11-16 2018-04-13 淮阴工学院 一种原位纳米多相复合强韧化钛基复合材料及其制备方法
CN109759578A (zh) * 2019-01-28 2019-05-17 华南理工大学 两种超细陶瓷颗粒组装修饰的3d打印用铝基复合粉末及其制备方法与应用
CN111235417A (zh) * 2020-01-15 2020-06-05 华南理工大学 一种基于激光选区熔化成形的高性能铝基复合材料及其制备方法
CN111940723A (zh) * 2020-08-30 2020-11-17 中南大学 一种用于3d打印的纳米陶瓷金属复合粉末及应用
CN112251646A (zh) * 2020-10-21 2021-01-22 吉林大学 内生纳米复合陶瓷颗粒的钛合金粉体及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904439A (zh) * 2017-11-16 2018-04-13 淮阴工学院 一种原位纳米多相复合强韧化钛基复合材料及其制备方法
CN109759578A (zh) * 2019-01-28 2019-05-17 华南理工大学 两种超细陶瓷颗粒组装修饰的3d打印用铝基复合粉末及其制备方法与应用
CN111235417A (zh) * 2020-01-15 2020-06-05 华南理工大学 一种基于激光选区熔化成形的高性能铝基复合材料及其制备方法
CN111940723A (zh) * 2020-08-30 2020-11-17 中南大学 一种用于3d打印的纳米陶瓷金属复合粉末及应用
CN112251646A (zh) * 2020-10-21 2021-01-22 吉林大学 内生纳米复合陶瓷颗粒的钛合金粉体及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
阚文斌: "电子束选区熔化技术制备高Nb-TiAl合金的成形工艺和组织调控研究", 中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑, no. 06, pages 137 *

Similar Documents

Publication Publication Date Title
CN108080644B (zh) 一种高强韧化金属基复合材料的粉末冶金制备方法
CN108796265B (zh) 一种TiB纳米增强钛基复合材料的制备方法
Xie et al. Al matrix composites fabricated by solid-state cold spray deposition: A critical review
Maqbool et al. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites
CN102618774B (zh) 一种高强韧金属基纳米复合材料的制备方法
Srinivasan et al. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications
Dong et al. Plasma assisted milling treatment for improving mechanical and electrical properties of in-situ grown graphene/copper composites
Zhang et al. The effect of annealing on microstructure and mechanical properties of selective laser melting AlSi10Mg
CN114622119B (zh) 一种高铝含量的轻质高强高熵合金及其制备方法
CN111215624A (zh) 添加b4c纳米颗粒原位自生改善增材制造钛合金显微组织的方法
CN114057219A (zh) 一种纳米金属氧化物的制备方法
Chen et al. Different effects of SiC dimensions on the microstructure and mechanical properties of magnesium matrix composites
Gu et al. Bulk-form TiCx/Ti nanocomposites with controlled nanostructure prepared by a new method: selective laser melting
Chand et al. Influence of B4C particles on processing and strengthening mechanisms in aluminum metal matrix composites-a review
CN112593123A (zh) 一种锆基非晶颗粒增强铝基复合材料及其制备方法
Wagih Effect of milling time on morphology and microstructure of Al-Mg/Al2O3 nanocomposite powder produced by mechanical alloying
CN112176211A (zh) 一种铝基复合材料及其制备方法
CN110218913B (zh) 一种具有优良高温变形能力的铝基复合材料及其制备方法
Li et al. Strengthening and toughening mechanisms of CNTs/Mg–Al composites prepared via powder metallurgy combined with hot extrusion
CN113199023A (zh) 电子束选区熔化成形用纳米颗粒增强Ti基复合材料粉末
CN110014161B (zh) 一种制备球形钨基粉末的方法
CN110004316B (zh) 原位纳米陶瓷颗粒增强铝基复合材料的制备方法
CN115572849B (zh) 一种超细晶镍钛基合金及其制备方法与应用
Xu Achieving uniform nanoparticle dispersion in metal matrix nanocomposites
Kim et al. Synthesis of Cu–CNT Nanocomposite Powder by Ball Milling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination