CN112176211A - 一种铝基复合材料及其制备方法 - Google Patents

一种铝基复合材料及其制备方法 Download PDF

Info

Publication number
CN112176211A
CN112176211A CN202010914939.4A CN202010914939A CN112176211A CN 112176211 A CN112176211 A CN 112176211A CN 202010914939 A CN202010914939 A CN 202010914939A CN 112176211 A CN112176211 A CN 112176211A
Authority
CN
China
Prior art keywords
nano
ball milling
aluminum
composite material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010914939.4A
Other languages
English (en)
Other versions
CN112176211B (zh
Inventor
王俊
李京京
梁加淼
鞠江
张震
罗逸飞
王朦朦
谢跃煌
穆迪琨祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010914939.4A priority Critical patent/CN112176211B/zh
Publication of CN112176211A publication Critical patent/CN112176211A/zh
Application granted granted Critical
Publication of CN112176211B publication Critical patent/CN112176211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

本发明公开了一种纳米SiC颗粒增强铝基复合材料及其制备方法。所述铝基复合材料的组织结构由超细晶粒,纳米SiC颗粒和纳米析出相构成,具体制备方法包括如下步骤:将纳米SiC与铝合金粉末混合;通过高能球磨至超细晶级别,实现纳米颗粒粉末的均匀分散;将混合粉末通过放电等离子烧结制成块状样品;将块状样品进行加热,在一定的压强及挤压比下进行热挤压,固结得到全致密铝基复合材料棒材;将挤出的铝基复合材料棒材进行T6热处理,此过程中发生粗大析出相溶解,以及细小且均匀分散的纳米析出相析出。本发明制备得到超细结构纳米铝基复合材料,有高强度、高延伸率的优点。

Description

一种铝基复合材料及其制备方法
技术领域
本发明涉及粉末冶金领域,具体是一种纳米SiC颗粒增强的铝基复合材料及其制备方法。
背景技术
铝基复合材料(Aluminum matrix composites,AMCs)被誉为21世纪新材料,其中研究和发展最快的是颗粒增强铝基复合材料。由于其具有平衡机械和物理性能的能力以及优异的摩擦学特性和高温强度,显示出单一铝合金材料所不可比拟的性能,成为国内外研究的热点,在航空航天、汽车、电子封装、体育器材等领域内有广阔应用前景。
人们希望制造兼具高强度和良好塑性的轻质材料,但是强度和塑性通常是相互排斥的。对颗粒增强铝基复合材料而言,当增强体颗粒尺寸在几至几十微米时,复合材料受力时易于在颗粒/基体界面处萌生裂纹并扩展,材料强度提升的同时却伴随着塑性的下降,材料变形抗力较大,后续加工困难,使其工业化应用受到了很大程度的限制。当增强相颗粒降低到纳米级,颗粒与基体界面结合更加致密,大大减少缺陷的产生。由于纳米颗粒的尺寸非常小,因此能够与晶格缺陷相互作用,使新的加强机制得以启动。因此,纳米颗粒增强铝基复合材料的设计为复合材料提供了一个新的概念,有利于进一步提高传统复合材料的性能。
精细的微观结构通常被认为是金属的理想特性:超细晶和纳米晶材料显示出前所未有的高强度,通常比其粗晶粒的同类材料高几倍。通过引入纳米颗粒钉扎晶界和位错,可以抑制变形和热处理过程中发生的再结晶和晶粒粗化,产生超细晶组织并引入颗粒强化,显著提高了纳米复合材料的强度。例如S.Deb等人(S.Deb,S.K.Panigrahi,M.Weiss,Theeffect of annealing treatment on the evolution of the microstructure,themechanical properties and the texture of nano SiC reinforced aluminium matrixalloys with ultrafine grained structure,Mater.Charact.154(2019)80-93.)采用低温变形制造工艺制备出的纳米颗粒增强超细晶铝基复合材料,具有复杂的晶界结构,累积了高密度的位错。加入SiC增强相的复合材料屈服强度从175MPa提高到250MPa,而延伸率只从14%降低到13.7%。对于可热处理铝合金的力学性能,析出特征和行为同样对其有重要影响,如析出相的成分、尺寸、分布和析出顺序。纳米增强相的加入会改善合金元素的溶解性,促进析出纳米尺度且弥散分布的析出相。这些纳米析出相在材料发生塑性变形时阻碍位错运动并减小应力集中,产生析出强化。同时,超细晶纳米复合材料的析出行为受到大量晶界以及相界面的影响,易于在晶界或相界面形核长大,如何调控析出相的尺寸和分布仍面临挑战。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是如何通过设计精细的微观结构,进一步提升颗粒增强铝基复合材料的综合性能。
为实现上述目的,本发明利用高能球磨结合放电等离子体烧结和热挤压工艺,制备了纳米颗粒增强的超细结构铝基复合材料。超细晶纳米铝基复合材料的组织结构,具备超细的晶粒、分散均匀的增强相纳米颗粒、细小弥散的纳米析出相以及一定密度的可动位错,耦合细晶强化、位错强化、析出强化及颗粒强化等多种机制,从而使得纳米颗粒增强铝复合材料在强度和塑性等力学性能方面拥有更显著的表现。
铝基复合材料的组织结构由超细晶粒,纳米SiC颗粒和纳米析出相构成,其中纳米SiC颗粒和纳米析出相分布均匀、晶粒细小,在保持较高塑性的同时提高复合材料的强度。
进一步地,所述超细晶粒的尺寸为200~500nm,所述纳米析出相的尺寸为5~20nm,纳米SiC颗粒的尺寸为20~80nm。
本发明还公开铝基复合材料的制备方法,包括如下步骤:
步骤一、配料:将纳米SiC粉末和铝合金粉混合配料;
步骤二、球磨:将所述纳米SiC与所述铝合金粉末混合均匀,并通过高能球磨将其晶粒尺寸细化至超细晶级别,实现纳米颗粒粉末的均匀分散;
步骤三、烧结:将球磨好的混合粉末通过放电等离子烧结制成块状样品;
步骤四、热挤压:将所述块状样品进行加热,然后把加热后的所述块状样品移入预热的挤压模具进行热挤压,固结成型得到全致密铝基复合材料棒材;
步骤五、热处理:将挤出的所述铝基复合材料棒材进行T6热处理,此过程中发生粗大析出相溶解,以及细小均匀分散的纳米析出相析出。
进一步地,所述球磨、所述烧结和所述热挤压的过程均在与大气隔离的密闭系统内进行。
进一步地,所述密闭系统充入高纯氩气,确保操作系统中的氧含量始终低于1000ppm。
进一步地,所述步骤二中原料混合均匀是通过低能球磨实现的,球磨参数为:磨球与所述纳米SiC与原料的质量比为1:1~20:1,球磨转速为100~300rpm,球磨时间为1~10小时;原料的晶粒尺寸细化和纳米颗粒粉末的均匀分散是通过高能球磨实现的,其球磨参数为:所述磨球与原料的质量比为1:1~20:1,球磨转速为400~500rpm,球磨时间为12~36小时。
进一步地,所述低能球磨和所述高能球磨可采用行星式球磨机、搅拌式球磨机或滚筒式球磨机进行。
进一步地,所述步骤三的所述放电等离子烧结参数为:烧结温度为400~500℃,烧结压力为50~100MPa,保温保压时间为1~10min。
进一步地,所述步骤四的加热和预热挤压模具温度为400~500℃,保温时间为1~10min;热挤压的参数为:压强为500~1000MPa,挤压比为5:1~50:1范围内。
进一步地,所述步骤五的所述T6热处理的参数为:固溶温度470~520℃,固溶时间1~3h,然后采用水淬;时效温度100~140℃,时效时间为4~64h,然后采用空冷。
本发明的有益效果:
1、通过高能球磨过程中严重塑性变形对最初的粗颗粒结构进行结构分解/细化产生纳米结构晶粒,打破颗粒团簇来实现更好的纳米颗粒粉末分散。
2、经过放电等离子烧结和热挤压过程,最大限度的消除了缺陷,提高复合材料的致密度,均匀性。由于增强相颗粒在粒子界面保持较高的位错密度并且刺激了连续再结晶过程,加速了基体的硬化和进一步的晶粒细化。
3、经过T6热处理,彻底消除了挤压过程中复合材料中的粗大析出相,减少应力集中,纳米析出相和增强相与位错的相互作用可以同时大幅度增强纳米颗粒增强铝基复合材料的强度并保持较好塑性。
4、通过调整球磨时间、加热速率、保温温度和冷却速率等工艺参数以及增强相体积含量,本发明能够灵活地调整微观结构晶粒的尺寸和纳米析出相和纳米增强相的分布,实现块体材料强度和塑性在一定范围内的调整。
附图说明
图1本发明制备的SiC/Al-Zn-Mg-Cu纳米复合材料的TEM图。(a:0vol.%-挤压态、b:3vol.%-挤压态、c:3vol.%-热处理态);
图2本发明制备的SiC/Al-Zn-Mg-Cu纳米复合材料的常温拉伸应力应变曲线图。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
实施例1
称取1.8g(3vol.%)的SiC粉末与48.2g的Al-Zn-Mg-Cu铝合金粉末及450g钢球装入球磨罐中,球料质量比为9:1,再加入0.5g的硬脂酸,在60℃下真空干燥2h用惰性气体封罐。
先进行200rpm的混合粉末2h,然后再500rpm高能球磨24h,高能球磨过程中每3h停止30min。然后将粉末在500℃以50MPa的压力下放电等离子烧结5min。将烧结的块体进行简单的磨抛,去除表面的石墨和氧化层。对处理好的块状样品加热,然后把加热后的块状样品移入预热的挤压模具中,在500℃下保温5min后以800-1000MPa的压强挤出。
最后对制备好的纳米复合材料进行热处理,铝箔包好的样品先490℃下固溶2h后迅速进行淬火,然后在120℃下时效32h。
图1(c)热处理态3vol.%SiC/Al-Zn-Mg-Cu纳米复合材料晶粒细小,晶内和晶界纳米析出相弥散均匀,SiC纳米颗粒的分布均匀。结合图2中3号曲线的常温力学性能分析,抗拉强度为588MPa,屈服强度为580MPa,延伸率得到较好的保持为10.2%。
对比例1
与实施例1的不同点在于:未加SiC粉末,未进行热处理,为挤压态的0vol.%SiC/Al-Zn-Mg-Cu样品。
对比例2
与实施例1的不同点在于:未进行热处理,为挤压态的3vol.%SiC/Al-Zn-Mg-Cu样品。
通过图1(a)和1(b)可以看出,挤压态下,晶粒和晶内析出相尺寸不均匀,晶界析出相尺寸较大,容易产生应力集中,降低材料的塑性。结合图2中1号和2号曲线,SiC的加入可以提高材料的强度,但是会一定程度上降低材料的塑性。我们再结合良好热处理工艺,最终获得组织均匀、性能优异的高强塑SiC/Al-Zn-Mg-Cu纳米复合材料。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种铝基复合材料,其特征在于所述铝基复合材料的组织结构由超细晶粒,纳米SiC颗粒和纳米析出相构成。
2.根据权利要求1所述的铝基复合材料,其特征在于所述超细晶粒的尺寸为200~500nm,所述纳米析出相的尺寸为5~20nm,纳米SiC颗粒的尺寸为20~80nm。
3.一种铝基复合材料的制备方法,其特征在于,包括如下步骤:
步骤一、配料:将纳米SiC粉末和铝合金粉混合配料;
步骤二、球磨:将所述纳米SiC与所述铝合金粉末混合均匀,并通过高能球磨将其晶粒尺寸细化至超细晶级别,实现纳米颗粒粉末的均匀分散;
步骤三、烧结:将球磨好的混合粉末通过放电等离子烧结制成块状样品;
步骤四、热挤压:将所述块状样品进行加热,然后把加热后的所述块状样品移入预热的挤压模具进行热挤压,固结成型得到全致密铝基复合材料棒材;
步骤五、热处理:将挤出的所述铝基复合材料棒材进行T6热处理,此过程中发生粗大析出相溶解,以及细小均匀分散的纳米析出相析出。
4.根据权利要求3所述的制备方法,其特征在于,所述球磨、所述烧结和所述热挤压的过程均在与大气隔离的密闭系统内进行。
5.根据权利要求4所述的制备方法,其特征在于,所述密闭系统充入高纯氩气,确保操作系统中的氧含量始终低于1000ppm。
6.根据权利要求3所述的制备方法,其特征在于,所述步骤二中原料混合均匀是通过低能球磨实现的,球磨参数为:磨球与所述纳米SiC与原料的质量比为1:1~20:1,球磨转速为100~300rpm,球磨时间为1~10小时;原料的晶粒尺寸细化和纳米颗粒粉末的均匀分散是通过高能球磨实现的,其球磨参数为:所述磨球与原料的质量比为1:1~20:1,球磨转速为400~500rpm,球磨时间为12~36小时。
7.根据权利要求4所述的制备方法,其特征在于,所述低能球磨和所述高能球磨可采用行星式球磨机、搅拌式球磨机或滚筒式球磨机进行。
8.根据权利要求3所述的制备方法,其特征在于,所述步骤三的所述放电等离子烧结参数为:烧结温度为400~500℃,烧结压力为50~100MPa,保温保压时间为1~10min。
9.根据权利要求3所述的制备方法,其特征在于,所述步骤四的加热和预热挤压模具温度为400~500℃,保温时间为1~10min;热挤压的参数为:压强为500~1000MPa,挤压比为5:1~50:1范围内。
10.根据权利要求3所述的制备方法,其特征在于,所述步骤五的所述T6热处理的参数为:固溶温度470~520℃,固溶时间1~3h,然后采用水淬;时效温度100~140℃,时效时间为4~64h,然后采用空冷。
CN202010914939.4A 2020-09-03 2020-09-03 一种铝基复合材料及其制备方法 Active CN112176211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010914939.4A CN112176211B (zh) 2020-09-03 2020-09-03 一种铝基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010914939.4A CN112176211B (zh) 2020-09-03 2020-09-03 一种铝基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112176211A true CN112176211A (zh) 2021-01-05
CN112176211B CN112176211B (zh) 2022-04-08

Family

ID=73924772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010914939.4A Active CN112176211B (zh) 2020-09-03 2020-09-03 一种铝基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112176211B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114226730A (zh) * 2021-12-24 2022-03-25 南京理工大学 放电等离子烧结制备多局域析出异构铝合金材料的方法
CN114619024A (zh) * 2022-03-04 2022-06-14 武汉理工大学 一种同时提高超细晶Al-Mg合金强度和韧性的方法
CN115747681A (zh) * 2022-11-01 2023-03-07 哈尔滨工业大学 一种提高石墨烯与碳化硅混杂增强铝基复合材料断裂功的热处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137218A1 (en) * 2002-07-31 2004-07-15 Asm Automation Assembly Ltd Particulate reinforced aluminum composites, their components and the near net shape forming process of the components
CN106064242A (zh) * 2016-07-25 2016-11-02 哈尔滨工业大学 一种采用SPS制备SiC 颗粒增强铝基复合材料的方法
CN109280795A (zh) * 2018-09-10 2019-01-29 郑州轻工业学院 一种纳微米SiC颗粒增强耐磨铝基复合材料及其制备方法
CN109852848A (zh) * 2017-11-30 2019-06-07 沈阳东青科技有限公司 一种SiC颗粒增强Al-Cu-Mg基复合材料
CN109897987A (zh) * 2019-04-04 2019-06-18 上海交通大学 一种铝基纳米复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137218A1 (en) * 2002-07-31 2004-07-15 Asm Automation Assembly Ltd Particulate reinforced aluminum composites, their components and the near net shape forming process of the components
CN106064242A (zh) * 2016-07-25 2016-11-02 哈尔滨工业大学 一种采用SPS制备SiC 颗粒增强铝基复合材料的方法
CN109852848A (zh) * 2017-11-30 2019-06-07 沈阳东青科技有限公司 一种SiC颗粒增强Al-Cu-Mg基复合材料
CN109280795A (zh) * 2018-09-10 2019-01-29 郑州轻工业学院 一种纳微米SiC颗粒增强耐磨铝基复合材料及其制备方法
CN109897987A (zh) * 2019-04-04 2019-06-18 上海交通大学 一种铝基纳米复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘志辉: "SiC颗粒增强铝基复合材料断裂韧性的研究进展", 《云南师范大学学报(自然科学版)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114226730A (zh) * 2021-12-24 2022-03-25 南京理工大学 放电等离子烧结制备多局域析出异构铝合金材料的方法
CN114226730B (zh) * 2021-12-24 2024-04-16 南京理工大学 放电等离子烧结制备多区域析出异构铝合金材料的方法
CN114619024A (zh) * 2022-03-04 2022-06-14 武汉理工大学 一种同时提高超细晶Al-Mg合金强度和韧性的方法
CN115747681A (zh) * 2022-11-01 2023-03-07 哈尔滨工业大学 一种提高石墨烯与碳化硅混杂增强铝基复合材料断裂功的热处理方法

Also Published As

Publication number Publication date
CN112176211B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Duan et al. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering
CN112176211B (zh) 一种铝基复合材料及其制备方法
CN108080644B (zh) 一种高强韧化金属基复合材料的粉末冶金制备方法
Akbarpour et al. The influence of CNTs on the microstructure and strength of Al-CNT composites produced by flake powder metallurgy and hot pressing method
Liu et al. Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing
Yang et al. Enhanced age-hardening behavior in Al–Cu alloys induced by in-situ synthesized TiC nanoparticles
Hassan et al. Effect of mechanical milling on the morphologyand structural evaluation of Al-Al2O3 nanocomposite powders
Ma et al. Improving ductility of bimodal carbon nanotube/2009Al composites by optimizing coarse grain microstructure via hot extrusion
CN111621670B (zh) 一种多晶粒尺度核壳结构钛合金块体材料及其制备方法
CN111408714B (zh) 双尺度结构原位生长石墨烯增强铜基复合材料的制备方法
Gao et al. Effects of nanosized TiCp dispersion on the high-temperature tensile strength and ductility of in situ TiCp/Al-Cu-Mg-Si nanocomposites
Zeng et al. High-ductility fine-grained Mg-1.92 Zn-0.34 Y alloy fabricated by semisolid and then hot extrusion
Chen et al. Microstructures and mechanical properties of nano-C and in situ Al2O3 reinforced aluminium matrix composites processed by equal-channel angular pressing
NIE et al. Microstructure and mechanical properties of TiC nanoparticle-reinforced Mg− Zn− Ca matrix nanocomposites processed by combining multidirectional forging and extrusion
Fan et al. Achieving high strength and ductility in a heterogeneous bimodal grain structured TiC/AZ61 magnesium nanocomposites via powder metallurgy
Li et al. Fabrication and strengthening mechanism of dual-phased and bimodal-sized (Si3N4p+ TiB2p)/6061Al hybrid composite
Zhou et al. The aging behavior of Ni-coated carbon fibers and ZrC particles reinforced 2024Al matrix composites
Xu et al. In situ Al4C3 nanorods and carbon nanotubes hybrid-reinforced aluminum matrix composites prepared by a novel two-step ball milling
Zhang et al. Characteristics of alumina particles in dispersion-strengthened copper alloys
Liu et al. Re-dissolution behavior of secondary phases and mechanical response of CNT/2024Al composites
CN111334694B (zh) 一种原生纳米弥散相改性镁合金中lpso结构的方法
Chen et al. High-strength molybdenum matrix composites with in-situ Mo2C by graphene addition
Du et al. Preparation and characterization of magnesium matrix composites reinforced with graphene nano-sheets
HE et al. Microstructures and properties of cold drawn and annealed submicron crystalline Cu-5% Cr alloy
Tao et al. New powder metallurgy preparation method of homogeneous and isomeric Al− Cu− Mg mixed crystal materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant