CN113196906B - In-situ quick curing method for raw soil - Google Patents

In-situ quick curing method for raw soil Download PDF

Info

Publication number
CN113196906B
CN113196906B CN202110393737.4A CN202110393737A CN113196906B CN 113196906 B CN113196906 B CN 113196906B CN 202110393737 A CN202110393737 A CN 202110393737A CN 113196906 B CN113196906 B CN 113196906B
Authority
CN
China
Prior art keywords
soil
raw
sand
curing
mud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110393737.4A
Other languages
Chinese (zh)
Other versions
CN113196906A (en
Inventor
周建强
方海兰
金一鸣
张敬沙
商侃侃
彭红玲
吕高明
朱爱娜
李鸣
黄伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Construction Engineering Environmental Technology Co ltd
Original Assignee
Shanghai Greenland Environmental Technology Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Greenland Environmental Technology Group Co ltd filed Critical Shanghai Greenland Environmental Technology Group Co ltd
Priority to CN202110393737.4A priority Critical patent/CN113196906B/en
Publication of CN113196906A publication Critical patent/CN113196906A/en
Application granted granted Critical
Publication of CN113196906B publication Critical patent/CN113196906B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/02Methods for working soil combined with other agricultural processing, e.g. fertilising, planting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds

Abstract

The invention discloses a method for in-situ rapid curing of raw soil. The method comprises the following steps: firstly, raw soil index detection is carried out to determine the texture type of raw soil, wherein the method for curing clay/sandy soil raw soil comprises the steps of bottom soil structure construction, core soil structure construction, surface soil structure construction and surface soil curing; the method for curing the raw soil of the soil/clay loam comprises the steps of soil leveling and surface soil curing. According to the method, clay soil testing and sand mixing and sand testing and sand control are carried out by accurately measuring the soil particle composition, so that the method is suitable for raw soil curing of various texture types, and is wide in application range; the particle composition in the improved soil is accurately controlled, the soil texture is fundamentally reconstructed, and the problems of soil hardening, compaction, poor permeability, poor water and fertilizer retention capability and the like are solved.

Description

In-situ quick curing method for raw soil
Technical Field
The invention relates to a method for quickly curing raw soil in situ, belonging to the technical field of soil remediation.
Background
The raw soil refers to 'soil' which is not cultivated by human beings or matured by natural force, is widely existed in coastal reclamation beach areas, urban construction excavation areas, newly-maintained farmlands and natural desertification areas, has the defects of poor soil texture, poor nutrient, acidification or salinization, weak microbial activity and the like, and is not suitable for normal growth of crops. At present, technical measures such as applying soil conditioners, organic fertilizers and returning straws to the field are mainly adopted for raw soil curing, and soil tilth and fertility are continuously improved through cultivation for years.
The traditional curing method has the following defects: firstly, the time consumption is long, namely three or five years for short time and ten or more years for long time; secondly, the soil structure improvement effect is not ideal, for the soil with high viscosity and serious desertification, only the soil fertility is increased, organic fertilizer is applied, the straw is returned to the field, and the like, although the physical structure of the soil can be improved in a short period, the texture of the soil cannot be fundamentally changed; thirdly, only surface soil improvement is carried out, a complete soil layer structure is not formed, the conditions of sand return/stickiness return or nutrient loss and the like caused by the upward movement of lower-layer raw soil are easy to occur, the cured soil is degraded again, and the long-term growth of perennial plants is not facilitated; fourthly, a quantitative and precise improvement technology is lacked, the curing measures are based on experience, the pertinence is not strong, and the efficiency is low.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: the existing raw soil curing method has the problems of long time consumption, unsatisfactory effect on improving the soil structure, incomplete soil layer structure and the like.
In order to solve the technical problems, the invention provides a method for in-situ quick curing of raw soil, which comprises the steps of firstly detecting raw soil indexes to determine the texture type of the raw soil, wherein the method for curing the clay/sandy soil raw soil comprises the steps of constructing a bottom soil structure, constructing a core soil structure, constructing a surface soil structure and curing the surface soil; the method for curing the raw soil of the soil/clay loam comprises the steps of soil leveling and surface soil curing.
Furthermore, the raw soil index detection comprises the detection of soil texture (particle composition) and physicochemical indexes (pH, salt, organic matters, nitrogen, phosphorus and potassium); the raw soil particle composition was determined by a straw method or a densitometer method and classified according to the international classification standards for soil texture as shown in table 1.
TABLE 1 International soil texture Classification
Figure BDA0003017746040000021
Further, the construction of the bottom soil structure comprises land leveling, ditching and sand laying/mud filling; the slope drop after land leveling is less than 1/300; the ditching width is 10-20m, the length is 100-200m, the depth is 0.6-1m, and an interval synchronous alternate ditching mode is adopted, namely, the raw soil regions are divided into strips with the same size and are numbered in sequence, odd-numbered strips are excavated firstly, and the excavated raw soil is stacked on adjacent even-numbered strips, so that the subsequent soil reclamation is facilitated; laying 10-20cm of yellow sand on the bottom of the trench for raw soil with clay texture type, wherein the proportion of the yellow sand with the particle size of 0.4-1 mm is not less than 60%; raw soil with the texture type of sandy soil is poured into the ditch bottom by 5-10 cm (after solidification), and the poured mud can be directly filled with river bottom mud or muddy water is settled for multiple times.
Furthermore, the core-layer soil structure construction comprises soil returning and sand paving/mud filling, and is divided into clay core-layer soil structure construction and sand core-layer soil structure construction according to the texture type of raw soil, and after construction, the content of clay grains in the core-layer structure is lower than 25%, and the content of sand grains is lower than 55%.
Furthermore, the clay core layer soil structure construction comprises soil reclamation and sand paving, the soil reclamation height is 10-20cm, and the sand paving height L Sand According to the water content K of sand Sand Sand volume weight A Sand And the height L of backfilled raw soil Raw material Volume weight A Raw material Clay content N Raw material Sand content S Raw material Water content K Raw material It was determined that the content of agglomerates in the core structure was below 25% and the sand content below 55%, calculated as follows:
Figure BDA0003017746040000022
furthermore, the sandy soil core layer soil structure construction comprises soil return and mud filling, the soil return height is 10-20cm, and the mud filling height L Mud According to the water content K of the irrigation mud Mud Volume weight A Mud Content of clay in mud N Mud Sand content S Mud And the height L of backfilled raw soil Raw material Volume weight A Raw material Clay content N Raw material Sand content S Raw material Water content K Raw material It was determined that the sand content in the core structure was less than 55% and the grit content less than 25%, calculated as follows:
Figure BDA0003017746040000031
further, the clay-like surface layer soil structure construction comprises soil returning, airing, plowing and sand paving, and the thickness of the soil returning and the sand paving is the same as that of the clay-like core layer soil structure construction.
Further, the construction of the sandy soil surface soil structure comprises soil returning, mud filling, airing and turning, the thickness of the soil returning and the mud filling is the same as that of the sandy soil core soil structure, a disc plough is used for turning the mud filling layer, the mud filling layer is aired for 1 to 3 days according to the humidity and weather conditions of the mud filling layer, the turning and the airing are repeated for 2 to 3 times until the mud filling layer is not agglomerated, the water content is preferably 20 to 25 percent, and the maximum particle size is less than 10cm;
further, the curing of the surface soil comprises paving organic improving materials, adding an acid-base regulator, a soil curing agent and a compound microbial inoculum, turning and airing by a disc plough, crushing and airing by a rotary cultivator, crushing and stirring by a stable soil stirrer, planting leguminous plants and returning the harvested straws as the organic improving materials to the field before pod setting.
Furthermore, the organic improved material is a product obtained by crushing and harmlessly treating agricultural straws (including straws harvested before leguminous plant planting and pod setting), greening waste and food plant source waste, wherein the product indexes of the crushed and harmlessly treated greening waste and food plant source waste meet the requirements of greening plant waste treatment and application technical code GB/T31755-2015, and the paving thickness is 10-30% of the surface soil structure.
Furthermore, the acid-base regulator depends on the acidity and alkalinity of raw soil, the acid raw soil acid-base regulator is an alkaline improved material such as lime, the alkaline raw soil acid-base regulator is an acidic improved material such as wood vinegar and citric acid, and the alkaline raw soil acid-base regulator is applied for a plurality of times in a small amount until the pH value of surface soil reaches 6.5-7.5.
Furthermore, the soil curing agent is prepared from polyacrylamide, a phosphorus-potassium compound fertilizer (potassium hydrogen phosphate for acid soil and potassium dihydrogen phosphate for alkaline soil), potassium fulvate and ammonium bicarbonate according to a mass ratio of 1:1:2:2, the dosage per mu is 50-100 kg.
Furthermore, the composite microbial inoculum is prepared from lactic acid bacteria, yeast, bacillus and actinomycetes according to the volume ratio of 1:1:1:1 component, the effective viable count is more than 2 hundred million/gram, and the dosage per mu is 2-3 kg.
Further, the disc plough is ploughed and aired, the ploughing depth is till the bottom of surface soil, a soil returning layer and a sand/mud filling layer of the surface soil are uniformly mixed with an organic improving material, an acid-base regulator, a soil curing agent and a compound microbial inoculum, the ploughing and the airing are repeated for 1 to 3 days according to the soil humidity and the weather condition until the soil is not caked (the maximum particle size is less than 10 cm).
Furthermore, the rotary cultivator is crushed and aired, the rotary tillage depth is consistent with the rotary tillage depth of the disc plough, soil blocks are further crushed, the components are further uniformly mixed, and the rotary cultivator is repeatedly crushed and aired for 2-3 times until the particle size of soil is less than 8cm.
Furthermore, the stabilized soil mixing machine is used for crushing and mixing, the operation depth is consistent with the rotary tillage depth, and the crushing and mixing are repeated until the particle size of the soil is less than 5cm.
Further, the legume plants are preferably herbaceous legumes of large biomass.
Furthermore, the harvesting of the straws before podding is that the harvester directly crushes the straws, plows the surface soil once every 1-2 weeks, and seeds the next batch of leguminous plants after 4-6 weeks.
Compared with the prior art, the invention has the beneficial effects that:
1. according to the method, clay soil testing and sand mixing and sand testing and sand control are carried out by accurately measuring the soil particle composition, so that the method is suitable for raw soil curing of various texture types, and is wide in application range; the particle composition in the improved soil is accurately controlled, the soil texture is fundamentally reconstructed, and the problems of soil hardening, compaction, poor permeability, poor water and fertilizer retention capability and the like are solved;
2. the invention is different from the traditional soil which is only limited to the surface layer, but is constructed from the whole soil layer, and the soil layers are respectively and comprehensively constructed from three layers of a bottom soil layer, a core soil layer and a surface soil layer, so that the sand return or re-adhesion caused by incomplete improvement of the traditional surface soil is avoided, and the thickness of each layer of soil return and sand laying/mud filling is accurately calculated according to the specific indexes of raw soil and sand laying/mud filling, thereby being scientific and reasonable and constructing a complete soil layer structure;
3. the surface soil of the invention ensures the uniform mixing of all components and ensures the improvement and curing effects through various farming measures such as disc plough turning, rotary cultivator grinding, stable soil mixer grinding, mixing and the like;
4. according to the method, leguminous plants are planted in the surface soil, the nitrogen fixation effect of the leguminous plants is fully utilized, the harvesting time is strictly controlled, the leguminous plants are smashed and directly turned into the soil before rhizobia of the leguminous plants grow but no legume exists, and meanwhile, the microbial agent is added to accelerate the decomposition of straws; the surface soil is ploughed once every 1-2 weeks, the next batch of leguminous plants is sowed after 4-6 weeks, the leguminous plant planting and the returning of straws before pods are repeatedly carried out, the soil curing can be realized by repeating the steps for 2-4 times every year and 2-3 years, the soil curing time can be obviously shortened, and the improvement cost can be reduced.
Drawings
FIG. 1 is a schematic flow chart of the method for in-situ rapid curing of raw soil according to the present invention.
FIG. 2 is a graph showing the soil ripening result of clay;
FIG. 3 is a graph showing the soil ripening result;
reference numerals are as follows: 11. a layer of organic modifying material; 12. a surface layer soil sand layer; 13. a surface native soil layer; 21. a core soil sand layer; 22. a core layer original soil layer; 31. a bottom layer soil sand layer; 32. a bottom native layer; 41. a layer of organic modifying material; 42. a surface soil layer; 43. a surface native soil layer; 51. a core soil layer; 52. a core layer original soil layer; 61. a bottom soil layer; 62. the bottom layer is a native soil layer.
Detailed Description
In order to make the invention more comprehensible, preferred embodiments accompanied with figures are described in detail below.
Example 1: curing of deep raw soil (clay) for landscaping
The situation of the area to be improved: a large landscaping project, 8000 mu of area, is located on the alluvial island, and soil formation time is shorter, originally for the paddy field, and early stage civil engineering construction leads to the whole outward transportation or destruction of upper soil, plans to carry out afforestation planting district soil and is basically incessant form deep soil, feels the stickness strong, and the immature soil curing flow is as shown in figure 1, includes the following steps:
(1) Raw soil index detection
Because the regional topography is flat, and soil type is single, will wait to ripen to divide into 48 sample units, adopt chess board method overall arrangement, multiple spot mixed sampling method to take a sample, every 30cm takes a sample, divide 2 layers of samples, soil basicity is strong, salinity content is low, nutrient content is low, the texture is sticky heavy, and specific raw soil index detects as shown in table 2.
TABLE 2 raw soil (clay) index test results
Figure BDA0003017746040000051
(2) Bottom soil structure construction
According to a specific implementation mode, the working area is divided into a plurality of strips of 20m x 200m, and grooves with the depth of 40cm are alternately formed; the bottom of the ditch is paved with 10cm river sand (the weight ratio of 0.4-1.0mm is 66.0%).
(3) Core soil structure construction
And backfilling 20cm of original soil on the sand layer, and calculating to be paved with sand by 7.1-14.6 cm according to a formula, and finally paving sand by 10cm.
(4) Topsoil structure construction
Backfilling 20cm of raw soil, ploughing by using a disc plough, airing for 2 days, ploughing again, ploughing large soil blocks, and constructing a concentric layer soil structure to lay 10cm of sand.
(5) Curing of surface soil
6cm of composted straws are paved, after 80kg of soil curing agent and 3kg of compound microbial inoculum are scattered per mu, 2L of pyroligneous liquor stock solution is diluted by 100 times and sprayed on the surface; the method comprises the steps of turning over by a disc plough, airing, rotary tillage by a rotary cultivator, crushing by a stabilized soil mixer and mixing.
(6) Leguminous plant cultivation
Mixing alfalfa and rhizobia according to the weight ratio of 10:1, sowing according to the sowing amount of 1 kg/mu after mixing, then slightly flattening by using a fence (the depth is not too deep when attention is paid), and then carrying out conventional watering and fertilizing management.
(7) Harvesting and returning straw to field
After the alfalfa grows to 30-50cm (before flowering), smashing the alfalfa by a harvester, drying the alfalfa in the sun for 2-3 days, spraying 80kg of soil curing agent and 3kg of composite microbial inoculum per mu (after 2 crops, the soil curing agent does not need to be sprayed), diluting 2L of wood vinegar stock solution by 100 times, and spraying the diluted wood vinegar stock solution on the surface (the amount of the wood vinegar is adjusted according to the pH condition of soil). The soil was matured 2 years after 2 crops were planted each year, and the results are shown in fig. 2.
Example 2: curing of raw soil (sandy soil) of farmland at certain mud flat
The situation of the area to be improved: the soil is formed by sedimentation of river silt in the yellow river tributary mudflat, pebbles, broken stones and soil are mixed under a shallow soil layer, and the sand content is high.
(1) Raw soil index detection
The areas are distributed along the river in a strip shape, the topography is slightly inclined towards one side of the river channel, the area to be improved is divided into sampling units every 500m along the river flow direction, sampling is carried out by adopting a snake-shaped method layout and a multipoint mixed sampling method, one sample is taken every 30cm, sampling is carried out in 2 layers, the soil is strong in alkalinity, low in salinity, low in partial nutrient content and high in soil sand content, and specific raw soil index detection results are shown in table 3.
TABLE 3 raw soil (sandy soil) index test results
Figure BDA0003017746040000061
Figure BDA0003017746040000071
(2) Construction of subsoil structures
According to a specific implementation mode, the working area is divided into a plurality of long strips of 15m × 100m, and grooves with the depth of 30cm are alternately formed; and (5) paving 10cm of pond sludge at the bottom of the ditch.
(3) Core soil structure construction
And backfilling 15cm of original soil on the mud layer, and according to a formula, calculating that 4.1cm-8.6cm of sand is paved, wherein the final height of the pond sludge is 5cm.
(4) Topsoil structure construction
Backfilling raw soil with a depth of 15cm, airing the pond sludge with a depth of 5cm for 3 days, plowing by using a disc plough, airing again for 2 days, and plowing.
(5) Curing of surface soil
Spreading composted straws 4cm, scattering 50kg of soil curing agent and 3kg of composite microbial inoculum per mu, diluting 1L of wood vinegar stock solution by 100 times, and spraying on the surface; the method comprises the steps of turning over by a disc plough, airing, rotary tillage by a rotary cultivator, crushing by a stabilized soil mixer and mixing.
(6) Leguminous plant cultivation
Alfalfa and rhizobia were mixed according to a 10:1, sowing the seeds according to the sowing amount of 1 kg/mu after mixing, then using a fence to slightly flatten the seeds (the depth is not too deep), and then carrying out conventional watering and fertilization management.
(7) Straw harvesting and returning to field
After the alfalfa grows to 30-50cm (before flowering), the alfalfa is crushed by a harvester and then is dried for 2-3 days, 50kg of soil curing agent and 3kg of composite microbial inoculum are scattered per mu (the soil curing agent is not scattered after 2 crops), 0.5L of wood vinegar stock solution is diluted by 100 times and then is sprayed on the surface (the amount of the wood vinegar is adjusted according to the pH condition of the soil). The soil was matured 2 years after 2 crops were planted each year, and the results are shown in fig. 3.
The above-described embodiments are intended to be preferred embodiments of the present invention only, and not to limit the invention in any way and in any way, it being noted that those skilled in the art will be able to make modifications and additions without departing from the scope of the invention, which shall be deemed to also encompass the scope of the invention.

Claims (3)

1. A method for in-situ rapid curing of raw soil is characterized by comprising the steps of firstly detecting raw soil indexes to determine the texture type of the raw soil, wherein the method for curing the raw soil of clay and sandy soil comprises the steps of constructing a bottom soil structure, constructing a core soil structure, constructing a surface soil structure and curing surface soil; the method for curing the raw soil of the soil and clay loam comprises the steps of leveling the soil and curing surface soil;
the bottom soil structure construction is divided into two types according to the texture type of raw soil, wherein the clay type bottom soil structure construction comprises leveling, ditching and sand paving, and the sand type bottom soil structure construction comprises leveling, ditching and mud filling;
the core-layer soil structure construction is divided into two types according to the texture type of raw soil, wherein the clay core-layer soil structure construction comprises soil return and sand paving, and the sandy soil core-layer soil structure construction comprises soil return and mud filling;
the surface soil structure construction is divided into two types according to the texture type of raw soil, wherein the clay type surface soil structure construction comprises soil returning, airing, plowing and sand spreading, and the sandy soil type surface soil structure construction comprises soil returning, mud filling, airing and plowing;
the thickness L of the sand paving Sand Comprises the following steps:
Figure FDA0003954925390000011
wherein, K Sand Water content of sand, A Sand Is the volume weight of sand, L Raw material For backfilling the height of the raw soil, A Raw material For backfilling the bulk density of raw soil, N Raw material The clay content, S, of the backfilled raw soil Raw material The sand grain content, K, of backfilled raw soil Raw material The water content of the backfilled raw soil;
the thickness L of the grouting mud Mud Comprises the following steps:
Figure FDA0003954925390000012
wherein, K Mud For the water content of the grouting material, A Mud For the volume weight of the mud, N Mud Is the content of clay particles, S, in the grouting mud Mud Is the sand content in the grouting mud, L Raw material To backfill the height of the raw soil, A Raw material For backfilling the bulk weight of the raw soil, N Raw material The clay content of the backfilled raw soil, S Raw material Sand content of backfilled raw soil, K Raw material The water content of the backfilled raw soil.
2. The method for in-situ rapid curing of raw soil according to claim 1, wherein the raw soil index detection comprises detection of particle composition and physicochemical index of raw soil.
3. The method for in-situ rapid curing of raw soil according to claim 1, wherein the curing of surface soil comprises spreading organic modifying materials, adding acid-base regulator, soil curing agent and complex microbial inoculum, turning and airing by disc plough, crushing and airing by rotary cultivator, crushing and stirring by stable soil stirrer, planting leguminous plants and returning the harvested straws as organic modifying materials to field.
CN202110393737.4A 2021-04-13 2021-04-13 In-situ quick curing method for raw soil Active CN113196906B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110393737.4A CN113196906B (en) 2021-04-13 2021-04-13 In-situ quick curing method for raw soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110393737.4A CN113196906B (en) 2021-04-13 2021-04-13 In-situ quick curing method for raw soil

Publications (2)

Publication Number Publication Date
CN113196906A CN113196906A (en) 2021-08-03
CN113196906B true CN113196906B (en) 2023-03-17

Family

ID=77026691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110393737.4A Active CN113196906B (en) 2021-04-13 2021-04-13 In-situ quick curing method for raw soil

Country Status (1)

Country Link
CN (1) CN113196906B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747449A (en) * 2022-04-27 2022-07-15 新疆穗峰绿色农业科技有限公司 Ultra-wide film dry-sowing and wet-out cultivation method for 4.3 m cotton in loam soil
CN114988961A (en) * 2022-06-10 2022-09-02 中节能铁汉生态环境股份有限公司 Improved mixture and method for curing raw soil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EG20132A (en) * 1992-07-31 1997-07-31 Shinetsu Chemical Co An artificial soil structure and a method of preventing land desertification
US7726070B2 (en) * 2007-12-11 2010-06-01 Thrash Tommy K Hydration maintenance apparatus and method
CN207201528U (en) * 2017-08-02 2018-04-10 上海嘉来景观工程有限公司 A kind of clay pattern of farming
CN209234523U (en) * 2018-10-23 2019-08-13 广东省建工设计院有限公司 A kind of plantation paddy field soil structure in alluvial plain
CN109644608A (en) * 2019-01-24 2019-04-19 广州华苑园林股份有限公司 A kind of poor ridge hillside seedling growth soil improvement method
CN111116276A (en) * 2020-01-19 2020-05-08 安徽理工大学 Method for improving sandy soil of mining area by using waste coal slime
CN111642167B (en) * 2020-06-10 2022-05-03 海南瑞茗阁实业有限公司 Water-retention, water-saving, fertilizer-retention and fertilizer-saving treatment method for transforming dry land and sand land into paddy field
CN112272984A (en) * 2020-10-23 2021-01-29 南京朴厚生态科技有限公司 Coastal zone micro-ecological environment restoration system and construction method thereof

Also Published As

Publication number Publication date
CN113196906A (en) 2021-08-03

Similar Documents

Publication Publication Date Title
CN104472052B (en) A kind of engineering-chemical-biological-desalination water saving-information technology improvement saline land method
CN108738457A (en) A kind of synthesis improvement method suitable for inland pole arid area salt-soda soil
Carreker Soil and water management systems for sloping land
CN107087453A (en) The method for improveing salt-soda soil
CN108966718A (en) A kind of saline and alkali land improvement method
CN108934256B (en) Crop cultivation method for improving soil
CN113196906B (en) In-situ quick curing method for raw soil
Venkateswarlu Efficient resource management systems for drylands of India
CN110073756A (en) A kind of beach newly encloses tideland for cultivation the efficient modification method of farmland soil
Amer et al. Impact of some soil amendments on properties and productivity of salt affected soils at Kafr El-Sheikh Governorate
CN109819746A (en) The fertile ecological management of water-saving control and synergy utilize method to one kind heavy salinizedly
CN114391326B (en) Beach soil improvement method
RU2691572C1 (en) Method for biomelioration of low-yield meadows and degraded arable lands
CN110574518A (en) Method for improving and planting shrubs in severe viscous saline-alkali soil and application of method
CN110786196A (en) Method for improving and planting arbor in severe viscous saline-alkali soil and application
RU2663992C2 (en) Method of biomelioration of brown and chestnut soils with solonetz on degradiated bogharic dry land
CN111837499B (en) Method for greening coastal severe viscous saline soil and application thereof
CN108966716A (en) The four-dimensional improved method in salt-soda soil
CN111010919B (en) Biochemical improvement method for severe saline-alkali soil
Rao et al. Coastal saline soils of Gujarat: problems and their management
Bahnas et al. Effect of precision land leveling on faba bean response to compost application in sandy soils
CN113785675A (en) Method for changing sandy sloping field into paddy field
RU2244393C1 (en) Sandy land reclamation method
Bayoumi Impact of mole drains and soil amendments application on management of salt affected soils
CN110073752A (en) A kind of fertile topsoil construction method in saline and alkaline obstacle arable land

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231204

Address after: 200063 Building 9, No. 1000, Caoyang Road, Putuo District, Shanghai

Patentee after: Shanghai Construction Engineering Environmental Technology Co.,Ltd.

Address before: 200080 room 402, building 6, No.500 xijiangwan Road, Hongkou District, Shanghai

Patentee before: Shanghai Greenland Environmental Technology (Group) Co.,Ltd.

TR01 Transfer of patent right