CN113196423B - 取向电工钢板及其制造方法 - Google Patents

取向电工钢板及其制造方法 Download PDF

Info

Publication number
CN113196423B
CN113196423B CN201980084619.6A CN201980084619A CN113196423B CN 113196423 B CN113196423 B CN 113196423B CN 201980084619 A CN201980084619 A CN 201980084619A CN 113196423 B CN113196423 B CN 113196423B
Authority
CN
China
Prior art keywords
steel sheet
oxide layer
electrical steel
oriented electrical
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980084619.6A
Other languages
English (en)
Other versions
CN113196423A (zh
Inventor
权五烈
金佑信
朴钟泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN113196423A publication Critical patent/CN113196423A/zh
Application granted granted Critical
Publication of CN113196423B publication Critical patent/CN113196423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

根据本发明的一个实施例的取向电工钢板的制造方法,其包括:制造冷轧板的步骤;将激光照射到冷轧板上以形成沟槽的步骤;以及去除形成在冷轧板表面上的氧化层的一部分使残留氧化层的厚度为1至5nm的步骤,在氧化物层下部的沟槽下部具有球形度为0.5至0.9的0.25个/μm2以下的小岛。

Description

取向电工钢板及其制造方法
技术领域
本发明涉及一种取向电工钢板及其制造方法。更具体地,本发明涉及一种取向电工钢板及其制造方法,在形成沟槽之后,通过去除部分氧化层来适当地形成小岛,从而改善磁性,同时改善与绝缘涂层的附着性。
背景技术
取向电工钢板用作变压器等电气产品的铁芯材料。因此,为了降低电气设备的功率损耗以及提高能量转换效率,需要铁芯材料的铁损优异以及层叠和卷取时占空比高的钢板。
取向电工钢板是指具有通过热轧、冷轧及退火工艺二次再结晶的晶粒沿轧制方向排列成{110}<001>取向的织构(又称“高斯织构(Goss Texture)”)的功能性钢板。
作为降低取向电工钢板铁损的方法,已知有磁畴细化方法。也就是说,针对磁畴,通过形成划痕或者施加能量冲击,使得取向电工钢板所具有的大磁畴的尺寸细化。在此情况下,当磁畴磁化及其方向发生变化时,与磁畴尺寸大时相比,可以减少能量消耗量。磁畴细化方法有热处理后也保持改善效果的永久磁畴细化和不会保持改善效果的临时磁畴细化。
在出现恢复(Recovery)的热处理温度以上的去应力热处理后也显示出铁损改善效果的永久磁畴细化方法可分为蚀刻法、辊压法及激光法。蚀刻法是通过溶液中的选择性电化学反应在钢板表面上形成沟槽(groove),因此难以控制沟槽形状,从而在宽度方向上难以均匀地确保最终产品的铁损特性。同时,由于用作溶剂的酸溶液,存在不环保的缺陷。
基于压辊的永久磁畴细化方法是具有铁损改善效果的磁畴细化技术,在压辊上加工出突起形状后,对压辊或板件施压,从而在板件表面上形成具有一定宽度和深度的沟槽,然后进行退火,使得局部产生沟槽下部的再结晶。辊压法的缺点在于,对机械加工的稳定性、难以确保基于厚度的稳定铁损的可靠性及工艺性复杂,并且形成沟槽后(去应力退火前)铁损和磁通密度特性衰减。
基于激光的永久磁畴细化方法所采用的方法是将高功率激光照射到快速移动的电工钢板表面部,通过照射激光来形成随着基底部熔化而产生的沟槽(groove)。然而,这样的永久磁畴细化方法也难以将磁畴细化成最小尺寸。
对于临时磁畴细化,当前技术专注于涂覆状态下施加激光后不再涂覆,因此不会照射一定强度以上的激光。这是因为,当施加一定强度以上的激光时,由于涂层损坏,难以正常发挥张力效果。
对于永久磁畴细化,通过挖沟槽来扩大可接收静磁能的自由电荷面积,因此需要尽可能深的沟槽深度。当然,由于沟槽深度深,也会出现磁通密度下降等副作用。因此,为了减少磁通密度衰减,将沟槽深度控制为适当的深度。
另一方面,采用磁畴细化技术制造的取向电工钢板,其经过成型和热处理过程制成变压器铁芯等产品。此外,由于产品在相对高温环境下使用,不仅需要确保铁损特性,还需要确保与绝缘涂层的附着性。
发明内容
(一)要解决的技术问题
本发明的一个实施例中提供一种取向电工钢板及其制造方法。具体地,本发明的一个实施例中旨在提供一种取向电工钢板及其制造方法,在形成沟槽之后,通过去除部分氧化层来适当地形成小岛,从而改善磁性,同时改善与绝缘涂层的附着性。
(二)技术方案
根据本发明的一个实施例的取向电工钢板,其包括:沟槽,其位于电工钢板表面上;金属氧化物层,其位于沟槽上;以及金属氧化物系小岛,其位于沟槽下部,并且不连续地分散和分布,位于沟槽下部的小岛的平均球形度为0.5至0.9。
位于沟槽下部的小岛的密度可为0.25个/μm2以下。
相对于轧制垂直方向,沟槽可以不连续地存在2至10个。
沟槽的长度方向与钢板的轧制方向可以形成75至88°的角度。
根据本发明的一个实施例的取向电工钢板的制造方法,其包括:制造冷轧板的步骤;将激光照射到冷轧板上以形成沟槽的步骤;以及去除形成在冷轧板表面上的氧化层的一部分使残留氧化层的厚度为1至5nm的步骤。
在形成沟槽的步骤中,激光的扫描速率可为10m/s以上。
在形成沟槽的步骤中,可以向沟槽以与轧制方向呈70°以下的角度喷射气体。
所喷射的气体的压力可为0.02kg/cm2以上。
所喷射的气体中水分的含量可为50wt%以下。
在形成沟槽的步骤之后,冷轧板表面上可以存在厚度为4至10nm的氧化层。
(三)有益效果
根据本发明的一个实施方案,在形成沟槽之后,去除部分氧化层,从而可以改善磁性,同时可以改善与绝缘涂层的附着性。
附图说明
图1是根据本发明的一个实施例的取向电工钢板的轧制面(ND面)的示意图。
图2是根据本发明的一个实施例的沟槽的示意图。
图3是根据本发明的一个实施例的沟槽的截面示意图。
具体实施方式
第一、第二、第三等词汇用于描述各部分、成分、区域、层和/或段,但这些部分、成分、区域、层和/或段不应该被这些词汇限制。这些词汇仅用于区分某一部分、成分、区域、层和/或段与另一部分、成分、区域、层和/或段。因此,在不脱离本发明的范围内,下面描述的第一部分、成分、区域、层和/或段也可以被描述为第二部分、成分、区域、层和/或段。
本文所使用的术语只是出于描述特定实施例,并不意在限制本发明。除非上下文中另给出明显相反的含义,否则本文所使用的单数形式也意在包括复数形式。在说明书中使用的“包括”可以具体指某一特性、领域、整数、步骤、动作、要素和/或成分,但并不排除其他特性、领域、整数、步骤、动作、要素、成分和/或组的存在或附加。
如果某一部分被描述为在另一个部分之上,则可以直接在另一个部分上面或者其间存在其他部分。当某一部分被描述为直接在另一个部分上面时,其间不存在其他部分。
虽然没有另作定义,但是本文中使用的所有术语(包括技术术语和科学术语)的含义与本发明所属领域的普通技术人员通常理解的意思相同。对于辞典中定义的术语,应该被解释为具有与相关技术文献和本文中公开的内容一致的意思,而不应该以理想化或过于正式的含义来解释它们的意思。
在下文中,将详细描述本发明的实施例,以使本发明所属领域的普通技术人员容易实施本发明。然而,本发明能够以各种不同方式实施,并不限于本文所述的实施例。
图1中示出根据本发明的一个实施例磁畴细化后的取向电工钢板10的示意图。
如图1所示,根据本发明的一个实施例的取向电工钢板10,其电工钢板的一面或两面上形成有沿着与轧制方向(RD方向)交叉的方向形成的线状沟槽20。
在本发明的一个实施例中,通过激光来形成沟槽,并且沟槽形成过程中去除所存在的氧化层的一部分,从而在后续二次再结晶退火过程中形成均匀的金属氧化物层,最终可以改善磁性,同时可以改善与绝缘涂层的附着性。此时,金属氧化物层可以是镁橄榄石(Frosterite,FeMg2SiO4)层。
根据本发明的一个实施例的取向电工钢板的制造方法,其包括:制造冷轧板的步骤;将激光照射到冷轧板上以形成沟槽的步骤;以及去除形成在冷轧板表面上的氧化层的一部分使残留氧化层的厚度为1至5nm的步骤。
下面按照各步骤具体描述。
首先,制造冷轧板。在本发明的一个实施例中,其特征在于,制造冷轧板后的磁畴细化方法,作为磁畴细化对象的冷轧板,可以不受限制地使用取向电工钢板领域中使用的冷轧板。尤其,无论取向电工钢板的合金组分如何,都会表征本发明的效果。因此,省略对取向电工钢板的合金组分的具体描述。作为一个实例,以重量%计,冷轧板可包括C:0.10%以下、Si:1.0至6.5%、Mn:0.005至3.0%、Nb+V+Ti:0.015%以下、Cr+Sn:1.0%以下、Al:3.0%以下、P+S:0.09%以下、稀土类和其他杂质总和:0.3%以下、及余量的Fe。
对于冷轧板制造方法,也可以不受限制地使用取向电工钢板领域中使用的冷轧板制造方法,对此省略具体描述。
接下来,将激光照射到冷轧板上,以形成沟槽。
将平均功率为500W至10KW的TEMoo(M2≤1.25)激光束照射到冷轧板表面上,从而可以形成沟槽。激光的激发方式不受限制,可以采用任何方式。也就是说,可以采用连续激发或脉冲方式(Pulsed mode)。如此照射激光,使得表面光束吸收率能够达到钢板的熔化热以上,从而形成图1和图2所示的沟槽20。
此时,激光的扫描速率(scanning rate)可为10m/s以上。如果激光的扫描速率过低,则可能发生不会适当地形成沟槽的问题。更具体地,激光的扫描速率可为10m/s至30m/s。
在形成沟槽的步骤中,可以向沟槽以与轧制方向(RD方向)呈70°以下的角度喷射气体。此时,角度是以轧制垂直面(TD面)为基准。通过适当地喷射气体,可以防止熔化物在沟槽内凝固。如果角度过大,则可能无法适当地去除熔化物。
此时,气体的压力可为0.02kg/cm2以上。如果气体的压力过低,则可能无法适当地去除熔化物。更具体地,气体的压力可为0.02至0.2kg/cm2
所喷射的气体中水分的含量可为为50wt%以下。如果水分的含量过高,则由于气体喷射,钢板表面上可能会形成不均匀且较厚的氧化层。该氧化层在后续二次再结晶退火过程中形成不均匀的金属氧化物层,最终可能对附着性和磁性产生不良影响。更具体地,所喷射的气体中水分的含量可为25wt%以下。
如图1所示,相对于轧制垂直方向,可以不连续地形成2至10个沟槽。但是,不限于此,也可以连续形成沟槽。
如图1和图2所示,沟槽20的长度方向(X方向)与轧制方向(RD方向)可以形成75至88°的角度。当形成前述的角度时,可有助于改善取向电工钢板的铁损。
沟槽的宽度W可为10至200μm。如果沟槽20的宽度小或大,则无法获得适当的磁畴细化效果。
另外,沟槽的深度H可为钢板厚度的3至5%。如果沟槽的深度H过浅,则难以获得适当的铁损改善效果。如果沟槽的深度H过深,则由于强烈的激光照射,钢板10的组织特性会发生很大变化或者形成大量的隆起和飞溅物,可能会造成磁性衰减。因此,可以将沟槽20的深度控制在前述的范围。
在形成沟槽的步骤之后,由于激光所产生的热以及空气中的氧气和水分、喷射气体中的氧气和水分,钢板表面发生部分氧化,可能会存在氧化层。具体地,氧化层的厚度可为4至10nm。此外,相对于钢板整体表面,氧化层可以不均匀地形成,前述的氧化层的厚度是指相对于钢板整体表面的平均厚度。
当氧化层形成得过厚时,即使在下述的氧化层去除步骤中去除氧化层,也可能发生氧化层残留较厚的问题。
沟槽下部和侧部上可能会形成激光的热影响导致的再凝固层。再凝固层的厚度可为6.5μm以下。当再凝固层形成得过厚时,由于热影响部增加,附着性和铁损可能会变差。再凝固层含有平均粒径为1至10μm的再结晶晶体,区别于制造中的电工钢板的整体组织。
接下来,去除形成在冷轧板表面上的氧化层的一部分,以使残留氧化层的厚度为1至5nm。
当不去除氧化层时,不均匀的氧化层残留较厚,二次再结晶退火过程中形成的金属氧化物层会形成得不均匀且较厚,从而成为导致磁性和金属氧化层与基体组织的附着性衰减的原因。
通过刷除或酸洗去除沟槽形成过程中形成的隆起或飞溅物的技术是已知的,但是在去除隆起或飞溅物之外,一并去除氧化层的方面上,去除熔化物凝固而成的隆起或飞溅物和去除氧化层是完全不同的。
作为氧化层去除方法,可以利用研磨纸或研磨辊,通过研磨辊(研磨纸)与氧化层的摩擦来去除。
使氧化层的残留厚度为1nm至5nm。如果氧化层的残留厚度过厚,则金属氧化物层形成得不均匀且较厚,从而成为导致磁性和附着性衰减的原因。如果氧化层的残留厚度过薄,则不会形成适当的金属氧化物层,从而成为导致磁性和附着性衰减的原因。更具体地,可以使氧化层残留2至5nm。
使氧化层残留的步骤之后,还可包括对冷轧板进行一次再结晶退火的步骤。
一次再结晶退火的步骤是取向电工钢板领域中众所周知的,因此不再赘述。一次再结晶退火过程中可包括脱碳或脱碳和氮化,为了脱碳或脱碳和氮化,可以在潮湿环境下进行退火。一次再结晶退火的步骤中的均热温度可为800至950℃。
在一次再结晶退火的步骤之后,还可包括涂覆退火隔离剂并进行二次再结晶退火的步骤。退火隔离剂是众所周知的,因此不再赘述。作为一个实例,可以使用MgO作为主成分的退火隔离剂。
二次再结晶退火的目的大致在于,通过二次再结晶形成{110}<001>织构以及通过一次再结晶退火时形成的氧化层与MgO的反应形成玻璃质膜层,以赋予绝缘性,并去除不利于磁特性的杂质。通过二次再结晶退火的方法,在发生二次再结晶前的升温段用氮气和氢气的混合气体保持,以保护作为晶粒生长抑制剂的氮化物,使得二次再结晶顺利发达,当完成二次再结晶后,均热步骤中在100%的氢气环境下长时间保持,以去除杂质。
二次再结晶退火的步骤可以在900至1210℃的均热温度下进行。
二次再结晶退火过程中退火隔离剂内的MgO成分与形成在钢板表面上的氧化层发生反应,从而可以在钢板和沟槽的表面上形成金属氧化物层。图3中示意性地示出金属氧化物层30。在本发明的一个实施例中,由于二次再结晶退火前形成沟槽,不仅钢板上形成金属氧化物层30,沟槽的表面上也会形成金属氧化物层30。
在本发明的一个实施例中,当形成沟槽之后,去除形成在钢板表面上的氧化层的一部分,因此氧化层的厚度变薄,退火隔离剂内的MgO会渗透或穿透到氧化层,从而可以在金属氧化物层30下部形成小岛40。该小岛40可包括镁橄榄石。
图3中示意性地示出小岛40。如图3所示,可以在金属氧化物层30下部与金属氧化物层30隔开形成小岛40。小岛40由类似于金属氧化物层30的合金成分组成,因此有别于电工钢板基体组织。
通过不连续地适当形成小岛40,可有助于改善金属氧化物层30与钢板的附着性。具体地,在沟槽下部包括金属氧化物的小岛的密度可为0.25个/μm2以下。此时,基准是包括钢板轧制方向(RD方向)和厚度方向(ND方向)的截面(TD面)中相对于沟槽20下部5μm以内的深度面积的小岛密度。
位于沟槽20下部的小岛40,其平均球形度(短轴/长轴)可为0.5至0.9。此时,基准是包括钢板轧制方向(RD方向)和厚度方向(ND方向)的截面(TD面)。从前述的平均粒径的计算中排除位于没有形成沟槽20的表面下部的小岛40。通过控制小岛40的平均球形度,可以改善磁性,同时可以改善与绝缘涂层的附着性。更具体地,位于沟槽20下部的小岛40,其平均球形度(短轴/长轴)可为0.6至0.8。
在二次再结晶退火的步骤之后,还可包括将绝缘涂层形成在金属氧化物层上的步骤。
对形成绝缘涂层的方法没有特别限制,可以使用任何方法,作为一个实例,通过涂覆含有磷酸盐的绝缘涂覆液的方式,可以形成绝缘膜层。这种绝缘涂覆液优选使用含有胶态二氧化硅和金属磷酸盐的涂覆液。此时,金属磷酸盐可以是Al磷酸盐、Mg磷酸盐或它们的组合,相对于绝缘涂覆液的重量,Al、Mg或它们的组合的含量可为15重量%以上。
根据本发明的一个实施例的取向电工钢板,其包括:沟槽20,其位于电工钢板10的表面上;金属氧化物层30,其位于沟槽20上;以及小岛40,其位于沟槽下部。
位于沟槽下部的小岛40,其平均球形度(短轴/长轴)可为0.5至0.9。通过控制小岛40的平均球形度,可以改善磁性,同时可以改善与绝缘涂层的附着性。更具体地,位于沟槽20下部的小岛40,其平均球形度可为0.6至0.8。如果平均球形度小于0.5,则由于镁橄榄石与基底部的附着性变差,绝缘涂覆后镁橄榄石龟裂或爆裂,因此附着性测试时圆柱体的直径显示为20mm以上。
在沟槽20下部小岛40的密度可为0.25个/μm2以下。此时,基准是包括钢板轧制方向(RD方向)和厚度方向(ND方向)的截面(TD面)中相对于沟槽20下部5μm以内的深度面积的小岛密度。更具体地,位于沟槽20下部的小岛40的密度可为0.1个/μm2以下。
在下文中,将通过实施例更详细地描述本发明。然而,这些实施例只是意在例示本发明,本发明不限于本文所述的实施例。
实施例
准备冷轧后的厚度为0.27mm的冷轧板。对该冷轧板以10m/s的扫描速率照射1.0kW的高斯模式(Gaussian mode)的连续波激光,以形成与RD方向呈85°角度的沟槽。在形成沟槽时,以0.02kg/cm2的压力将去除水分的干燥空气以与轧制方向呈70°的角度喷射到上部。然后,利用研磨布研磨钢板的整个表面,以将氧化层厚度调节成如下表1所示的5nm以下。如果氧化层厚度大于5nm,则附着性会变差。然后,进行一次再结晶退火,并且涂覆MgO后进行二次再结晶,随后形成绝缘涂层。
对于附着性,通过将产品钢板在具有不同直径的棒状圆柱体(cylinder)上弯曲,用绝缘涂层没有剥离或龟裂的最小直径来表示。附着性越优异,棒状的直径逐渐减小。
【表1】
如表1所示,与比较例相比,形成沟槽后适当地去除氧化层的实施例具有优异的附着性,并且具有优异的铁损。
此外,实施例1~10是在沟槽下部的小岛40的平均球形度分别为0.5至0.90以及密度为0.25个/μm2以下时确认了铁损和附着性。
另一方面,比较例是小岛40的平均球形度小于0.5,而且确认到形成多个小岛40密度大于0.25个/μm2
本发明能以各种不同方式实施,并不局限于上述的实施例,本发明所属技术领域的普通技术人员可以理解在不改变本发明的技术思想或必要特征的情况下能够通过其他具体方式实施本发明。因此,应该理解上述的实施例在所有方面都是示例性的,并不是限制性的。
附图标记说明
10:取向电工钢板
20:沟槽
30:金属氧化物层
40:小岛

Claims (9)

1.一种取向电工钢板,其包括:
沟槽,其位于电工钢板表面上;
金属氧化物层,其位于所述沟槽上;以及
金属氧化物系小岛,其位于所述沟槽下部,并且不连续地分散和分布,并且与所述金属氧化物层隔开,
位于所述沟槽下部的小岛的平均球形度为0.5至0.9,
位于所述沟槽下部的所述金属氧化物系小岛的密度为0.25个/μm2以下。
2.根据权利要求1所述的取向电工钢板,其中,
相对于横向方向,沟槽不连续地存在2至10个,其中所述横向方向为在钢板表面并且与轧制方向垂直的方向。
3.根据权利要求1所述的取向电工钢板,其中,
所述沟槽的长度方向与钢板的轧制方向形成75至88°的角度。
4.一种根据权利要求1-3中任一项所述的取向电工钢板的制造方法,其包括:
制造冷轧板的步骤;
将激光照射到所述冷轧板上以形成沟槽的步骤;以及
去除形成在所述冷轧板表面上的氧化层的一部分使残留氧化层的厚度为1至5nm的步骤。
5.根据权利要求4所述的取向电工钢板的制造方法,其中,
在所述形成沟槽的步骤中,激光的扫描速率为10m/s以上。
6.根据权利要求4所述的取向电工钢板的制造方法,其中,
在所述形成沟槽的步骤中,向沟槽以与轧制方向呈70°以下的角度喷射气体。
7.根据权利要求6所述的取向电工钢板的制造方法,其中,
所述喷射的气体的压力为0.02kg/cm2以上。
8.根据权利要求6所述的取向电工钢板的制造方法,其中,
所述喷射的气体中水分的含量为50wt%以下。
9.根据权利要求4所述的取向电工钢板的制造方法,其中,
在所述形成沟槽的步骤之后,并且在部分去除氧化层之前,冷轧板表面上存在厚度为4至10nm的氧化层。
CN201980084619.6A 2018-12-19 2019-12-18 取向电工钢板及其制造方法 Active CN113196423B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180165643A KR102133910B1 (ko) 2018-12-19 2018-12-19 방향성 전기강판 및 그의 제조 방법
KR10-2018-0165643 2018-12-19
PCT/KR2019/018034 WO2020130646A1 (ko) 2018-12-19 2019-12-18 방향성 전기강판 및 그의 제조 방법

Publications (2)

Publication Number Publication Date
CN113196423A CN113196423A (zh) 2021-07-30
CN113196423B true CN113196423B (zh) 2024-04-30

Family

ID=71102174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980084619.6A Active CN113196423B (zh) 2018-12-19 2019-12-18 取向电工钢板及其制造方法

Country Status (6)

Country Link
US (1) US20220044855A1 (zh)
EP (1) EP3901969A4 (zh)
JP (1) JP2022514792A (zh)
KR (1) KR102133910B1 (zh)
CN (1) CN113196423B (zh)
WO (1) WO2020130646A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154595A (zh) * 2006-09-29 2008-04-02 海力士半导体有限公司 半导体器件中凹陷栅极的制造方法
JP2015105220A (ja) * 2013-12-02 2015-06-08 旭硝子株式会社 結晶化ガラス粉末、ガラスペースト、軟磁性複合材、および圧粉磁心
CN104726672A (zh) * 2013-12-24 2015-06-24 Posco公司 取向电工钢板及其制造方法
JP2017095745A (ja) * 2015-11-19 2017-06-01 新日鐵住金株式会社 方向性電磁鋼板およびその製造方法
CN107109511A (zh) * 2014-12-24 2017-08-29 Posco公司 取向电工钢板及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208871B (en) * 1987-08-22 1991-03-27 British Steel Plc Processing grain-oriented "electrical" steel
JP4276547B2 (ja) * 2003-01-15 2009-06-10 新日本製鐵株式会社 高磁場鉄損と被膜特性に優れる超高磁束密度一方向性電磁鋼板
RU2639905C2 (ru) * 2013-02-08 2017-12-25 Тиссенкрупп Илектрикел Стил Гмбх Раствор для образования изоляционного покрытия и лист текстурированной электротехнической стали
US10793929B2 (en) * 2013-07-24 2020-10-06 Posco Grain-oriented electrical steel sheet and method for manufacturing same
KR101719231B1 (ko) * 2014-12-24 2017-04-04 주식회사 포스코 방향성 전기강판 및 그 제조방법
WO2016105053A1 (ko) * 2014-12-24 2016-06-30 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101693529B1 (ko) * 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기 강판의 자구 미세화 방법 및 그 장치
JP6168173B2 (ja) * 2015-01-30 2017-07-26 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP6455593B2 (ja) * 2015-04-20 2019-01-23 新日鐵住金株式会社 方向性電磁鋼板
KR101751525B1 (ko) * 2015-12-24 2017-07-11 주식회사 포스코 방향성 전기강판 및 그의 제조 방법
KR101884429B1 (ko) * 2016-12-22 2018-08-01 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154595A (zh) * 2006-09-29 2008-04-02 海力士半导体有限公司 半导体器件中凹陷栅极的制造方法
JP2015105220A (ja) * 2013-12-02 2015-06-08 旭硝子株式会社 結晶化ガラス粉末、ガラスペースト、軟磁性複合材、および圧粉磁心
CN104726672A (zh) * 2013-12-24 2015-06-24 Posco公司 取向电工钢板及其制造方法
CN107109511A (zh) * 2014-12-24 2017-08-29 Posco公司 取向电工钢板及其制造方法
JP2017095745A (ja) * 2015-11-19 2017-06-01 新日鐵住金株式会社 方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
CN113196423A (zh) 2021-07-30
JP2022514792A (ja) 2022-02-15
EP3901969A4 (en) 2022-03-09
US20220044855A1 (en) 2022-02-10
EP3901969A1 (en) 2021-10-27
WO2020130646A1 (ko) 2020-06-25
KR20200076502A (ko) 2020-06-29
KR102133910B1 (ko) 2020-07-14

Similar Documents

Publication Publication Date Title
US11772199B2 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
KR102288802B1 (ko) 방향성 전기강판 및 그 제조방법
US11638971B2 (en) Grain-oriented silicon steel with low core loss and manufacturing method therefore
US11313011B2 (en) Method for refining magnetic domains of grain-oriented electrical steel sheet
CN114829639B (zh) 取向电工钢板及其磁畴细化方法
CN113196423B (zh) 取向电工钢板及其制造方法
CN113228204B (zh) 取向电工钢板及其制造方法
CN113243034B (zh) 取向电工钢板及其制造方法
JP7365416B2 (ja) 方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Seoul, South Kerean

Applicant after: POSCO Holdings Co.,Ltd.

Address before: Gyeongbuk, South Korea

Applicant before: POSCO

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230619

Address after: Gyeongbuk, South Korea

Applicant after: POSCO Co.,Ltd.

Address before: Seoul, South Kerean

Applicant before: POSCO Holdings Co.,Ltd.

GR01 Patent grant
GR01 Patent grant