CN113195748A - 由低碳、高强度9%镍钢形成的低温压力容器 - Google Patents

由低碳、高强度9%镍钢形成的低温压力容器 Download PDF

Info

Publication number
CN113195748A
CN113195748A CN201980082720.8A CN201980082720A CN113195748A CN 113195748 A CN113195748 A CN 113195748A CN 201980082720 A CN201980082720 A CN 201980082720A CN 113195748 A CN113195748 A CN 113195748A
Authority
CN
China
Prior art keywords
pressure vessel
alloy
minutes
cryogenic pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980082720.8A
Other languages
English (en)
Other versions
CN113195748B (zh
Inventor
乔治·杰伊·弗雷利
弗雷德里克·弗莱彻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN113195748A publication Critical patent/CN113195748A/zh
Application granted granted Critical
Publication of CN113195748B publication Critical patent/CN113195748B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

由ASTM A553型1低温钢合金形成的低温压力容器,所述低温钢合金以重量%计包含:C:0.01至0.04;Mn:高至2.0;P:高至0.02;S:高至0.15;Si:高至1.0;Ni:7至11;Cr:高至1.0;Mo:高至0.75;V:高至0.2;Nb:高至0.1;Al:高至0.1;以及N:高至0.01。钢合金可以具有至少900MPa的极限抗拉强度、至少20%的总延伸率;包含5面积%至20面积%的逆转变奥氏体和剩余部分的回火马氏体的显微组织;‑196℃下的至少27J的横向夏比冲击能量;以及‑196℃下的至少0.381mm的横向膨胀。

Description

由低碳、高强度9%镍钢形成的低温压力容器
技术领域
本发明涉及由低温钢形成的、更具体地由ASTM A553低温钢形成的低温压力容器。最具体地,本发明涉及由满足ASTM A553合金的所有机械规格并且具有比现有ASTM A553合金显著更高的极限抗拉强度的9%Ni低温钢形成的低温压力容器。
背景技术
数十年来,对于低温压力容器的许多低温服务条件和可靠构造而选择的钢一直是ASTM A553(本文中也称为9%Ni钢)。这种钢具有690MPa的抗拉强度并在-196℃下进行了冲击测试。这种9%镍钢最初由国际镍公司(International Nickel Company)开发。其通常被用于构建低温温度下流体例如液态天然气的储存容器。虽然这些钢在使用中表现优异,但近年来开发用于低温储存的低成本方案受到关注。
各种钢生产商引进了旨在直接替代该等级的新材料。这些材料被设计成受益于较低的合金成本的同时,达到ASTM A553的强度要求和韧性要求。这为罐设计者提供了在同时满足功能和安全标准的同时降低罐构建成本的机会。
本发明人确定,不是减少昂贵合金成分的量,而是通过减少容器制造所需的钢厚度,提高低温钢的特性将允许在这样的本发明的低温压力容器的构建中使用更少的钢。这将允许客户订购更少的材料以及更低的容器重量的附加益处。因此,本领域需要由低温钢形成的新低温压力容器,所述低温钢具有比现有的ASTM A553合金更高的强度,并且还满足ASTM A553规格的夏比冲击能量(Charpy impact energy)吸收要求(在-196℃下的TCVN为27J的最小ASTM要求)。
发明内容
本发明是由ASTM A553低温钢合金形成的低温压力容器,所述ASTM A553低温钢合金与现有技术9%Ni钢相比具有较低的C以及Mo和V的添加,同时具有显著更高的极限抗拉强度。形成本发明的低温压力容器的低温钢合金以重量%计包含:C:0.01至0.06;Mn:高至2.0;P:高至0.02;S:高至0.15;Si:高至1.0;Ni:7至11;Cr:高至1.0;Mo:高至0.75;V:高至0.2;Nb:高至0.1;Al:高至0.1;和N:高至0.01。低温钢合金可以具有至少900MPa的极限抗拉强度、至少20%的总延伸率;包含5面积%至20面积%的逆转变奥氏体(revertedaustenite)和剩余部分的回火马氏体的显微组织;-196℃下的至少27J的横向夏比冲击能量;以及-196℃下的至少0.381mm的横向膨胀。
低温钢合金可以更优选地以重量%计包含:C:0.04至0.06;Mn:0.5至0.7;Si:0.2至0.4;Ni:7.5至9.5;Cr:0.25至0.5;Mo:0.5至0.7;P:高至0.006;S:高至0.002;V:高至0.1;Nb:高至0.05;Al:高至0.06重量%;和N:高至0.008重量%。
低温钢合金可以经历热处理,所述热处理包括:在750℃至1000℃的温度下进行奥氏体化10分钟至3小时;淬火至室温;在600℃至725℃的温度下进行层化(lamellarizing)10分钟至3小时;在空气中冷却至室温;在500℃至620℃的温度下回火10分钟至3小时;以及在空气中冷却至室温。
更优选地,奥氏体化在800℃至950℃的温度下持续30分钟60分钟;层化在625℃至700℃的温度下持续30分钟至60分钟;以及回火在550℃至610℃的温度下持续30分钟至60分钟。
最优选地,奥氏体化在820℃至900℃的温度下持续30分钟60分钟;层化在650℃至675℃的温度下持续30分钟至60分钟;以及回火在575℃至600℃的温度下持续30分钟至60分钟。
低温钢合金显微组织可以优选地包含8面积%至15面积%的逆转变奥氏体,并且最优选地包含13面积%至15面积%的逆转变奥氏体,以及剩余部分的回火马氏体。
低温钢合金在-196℃下的横向膨胀可以优选地为至少1.0mm,更优选至少为至少1.5mm并且最优选为至少2.0mm。低温钢合金在-196℃下的横向夏比冲击能还可以为至少50J,更优选为至少100J,并且最优选为至少150J。
附图说明
图1是本发明的用于形成本发明的低温压力容器的合金的SEM显微照片。
具体实施方式
通常称为“9%Ni钢”的ASTM A553型I钢要求在-196℃下至少27J的横向夏比吸收能量,在-196℃下的至少0.381mm的横向膨胀,以及至少20%的总延伸率。A553合金还必须具有至少690MPa的极限抗拉强度。本发明的低温压力id由满足A553合金的所有机械要求并具有至少900MPa的极限抗拉强度的合金形成。
钢通过奥氏体化/淬火、层化和回火而进行热处理。所得显微组织主要由马氏体和显著体积分数的逆转变奥氏体以及碳化物组成。尽管新型钢表现出比设计强度更高的大于30百分比,但是用于形成本发明的低温压力容器的钢合金板的夏比冲击能量吸收与ASTMA553型I的历史生产值相当。用于生产本发明的低温压力容器的低温钢合金的宽组成范围在表1中给出。
表1
C Mn P S Si Ni Cr Mo V Nb Al N
最小 0.01 0 0 0 0 7 0 0 0 0 0 0
最大 0.06 2 0.02 0.15 1 11 1 0.75 0.2 0.1 0.1 0.01
最优选的组成范围在表2中给出。
表2
C Mn P S Si Ni Cr Mo V Nb Al N
最小 0.04 0.5 0 0 0.2 7.5 0.25 0.5 0 0 0 0
最大 0.06 0.7 0.006 0.002 0.4 9.5 0.5 0.7 0.1 0.05 0.06 0.008
由表3中的合金组成形成13mm厚的板。
表3
C Mn P S Si Ni Cr Mo V Nb Al N
0.044 0.59 <0.005 <0.002 0.26 8.9 0.45 0.65 0.08 0.013 0.028 <0.005
将板在843℃下进行奥氏体化15分钟,并立即进行水淬火。用于本发明的合金的宽奥氏体化温度范围为750℃至1000℃,更优选为800℃至950℃,并且最优选为820℃至900℃。宽奥氏体化时间范围为10分钟至3小时,最优选地,奥氏体化时间为30分钟至60分钟。
奥氏体化和淬火之后,对所述板进行“层化和回火”。这是两步回火过程,其中使板层化固定的时间和温度,空气冷却至室温,随后回火固定的时间和温度,并且再次空气冷却至室温。使板在660℃下层化50分钟。本发明的合金的宽层化温度范围为600℃至725℃,更优选为625℃至700℃,并且最优选为650℃至675℃。宽的层化时间范围为10分钟至3小时,最优选地,层化时间范围为30分钟至60分钟。
使板在590℃下回火25分钟。本发明的合金的宽回火温度范围为500℃至620℃,更优选为550℃至610℃,并且最优选为575℃至600℃。宽的回火时间范围为10分钟至3小时,最优选地,回火时间范围为30分钟至60分钟。
图1是用于形成本发明的低温压力容器的合金的SEM显微照片。显微照片示出了其在奥氏体化/淬火、层化和回火之后的显微组织。合金的显微组织是回火马氏体以及包含片晶(lamellae)的条间奥氏体(interlath austenite)。通过X射线衍射确定残留奥氏体的存在。表4中示出了本发明合金的样品的残留奥氏体的百分比以及以MPa计的极限抗拉强度(UTS)、以MPa计的屈服强度(YS)和总延伸率%。用于形成本发明的低温压力容器的合金中的残留奥氏体的最宽范围为5%至20%,更优选为8%至15%,最优选为13%至15%。
表4
样品# YS(MPa) UTS(MPa) 总延伸率(%) %残留奥氏体
1 729 964 23.4 14.6
2 757 973 25.3 12.9
3 871 989 25.0 14.7
表4中的抗拉结果表明,对于所有测试试样都达到了期望的900MPa的最小抗拉强度要求。表4还表明,对于所有试样都达到了ASTM A553要求规定的20%的最小拉伸延伸率。
表5呈现了用于形成本发明的低温压力容器的合金样品在-196℃下的横向夏比冲击能(以焦耳计)和在-196℃下的横向膨胀(以mm计)的结果。显然,所述合金容易地满足/超过ATM A553要求。因此,用于形成本发明的低温压力容器的合金在-196℃下的横向膨胀为至少0.381mm、优选至少1.0mm、更优选至少1.5mm并且最优选至少2.0mm。此外,用于形成本发明的低温压力容器的合金在-196℃下的横向夏比冲击能量为至少27J、优选至少50J、更优选至少100J并且最优选至少150J。
表5
测试# TCVN@-196C(J) 横向膨胀@-196C(mm)
1 151 1.73
2 170 2.39
3 159 1.45
4 181 2.01
5 166 2.08

Claims (19)

1.一种由低温钢合金形成的低温压力容器,所述合金以重量%计包含:
C:0.01至0.06;Mn:高至2.0;P:高至0.02;S:高至0.15;Si:高至1.0;Ni:7至11;Cr:高至1.0;Mo:高至0.75;V:高至0.2;Nb:高至0.1;Al:高至0.1;和N:高至0.01;
所述合金具有至少900MPa的极限抗拉强度、至少20%的总延伸率;包含5面积%至20面积%的逆转变奥氏体和剩余部分的回火马氏体的显微组织;-196℃下的至少27J的横向夏比冲击能量;以及-196℃下的至少0.381mm的横向膨胀。
2.根据权利要求1所述的低温压力容器,其中所述合金包含0.04重量%至0.06重量%的C。
3.根据权利要求2所述的低温压力容器,其中所述合金包含0.5重量%至0.7重量%的Mn。
4.根据权利要求3所述的低温压力容器,其中所述合金包含0.2重量%至0.4重量%的Si。
5.根据权利要求4所述的低温压力容器,其中所述合金包含7.5重量%至9.5重量%的Ni。
6.根据权利要求5所述的低温压力容器,其中所述合金包含0.25重量%至0.5重量%的Cr。
7.根据权利要求6所述的低温压力容器,其中所述合金包含0.5重量%至0.7重量%的Mo。
8.根据权利要求7所述的低温压力容器,其中所述合金包含P:高至0.006重量%;S:高至0.002重量%;V:高至0.1重量%;Nb:高至0.05重量%;Al:高至0.06重量%;和N:高至0.008重量%。
9.根据权利要求1所述的低温压力容器,其中所述合金经历热处理,所述热处理包括:
在750℃至1000℃的温度下进行奥氏体化10分钟至3小时;
淬火至室温;
在600℃至725℃的温度下进行层化10分钟至3小时;
在空气中冷却至室温;
在500℃至620℃的温度下回火10分钟至3小时;以及
在空气中冷却至室温。
10.根据权利要求9所述的低温压力容器,其中所述奥氏体化在800℃至950℃的温度下持续30分钟60分钟;所述层化在625℃至700℃的温度下持续30至60分钟;以及所述回火在550℃和610℃的温度下持续30至60分钟。
11.根据权利要求10所述的低温压力容器,其中所述奥氏体化在820℃至900℃的温度下持续30分钟60分钟;所述层化在650℃至675℃的温度下持续30至60分钟;以及所述回火在575℃至600℃的温度下持续30至60分钟。
12.根据权利要求1所述的低温压力容器,其中所述合金具有包含8面积%至15面积%的逆转变奥氏体和所述剩余部分的回火马氏体的显微组织。
13.根据权利要求12所述的低温压力容器,其中所述合金具有包含13面积%至15面积%的逆转变奥氏体和所述剩余部分的回火马氏体的显微组织。
14.根据权利要求1所述的低温压力容器,其中所述合金在-196℃下的横向膨胀为至少1.0mm。
15.根据权利要求14所述的低温压力容器,其中所述合金在-196℃下的横向膨胀为至少1.5mm。
16.根据权利要求14所述的低温压力容器,其中所述合金在-196℃下的横向膨胀为至少2.0mm。
17.根据权利要求1所述的低温压力容器,其中所述合金在-196℃下的横向夏比冲击能量为至少50J。
18.根据权利要求17所述的低温压力容器,其中所述合金在-196℃下的横向夏比冲击能量为至少100J。
19.根据权利要求18所述的低温压力容器,其中所述合金在-196℃下的横向夏比冲击能量为至少150J。
CN201980082720.8A 2018-12-19 2019-11-21 由低碳、高强度9%镍钢形成的低温压力容器 Active CN113195748B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2018/060323 WO2020128579A1 (en) 2018-12-19 2018-12-19 Low-carbon, high-strength 9% nickel steels for cryogenic applications
IBPCT/IB2018/060323 2018-12-19
PCT/IB2019/060019 WO2020128681A1 (en) 2018-12-19 2019-11-21 Cryogenic pressure vessels formed from low-carbon, high-strength 9% nickel steels

Publications (2)

Publication Number Publication Date
CN113195748A true CN113195748A (zh) 2021-07-30
CN113195748B CN113195748B (zh) 2023-02-17

Family

ID=65269003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980082720.8A Active CN113195748B (zh) 2018-12-19 2019-11-21 由低碳、高强度9%镍钢形成的低温压力容器

Country Status (8)

Country Link
US (1) US20220064767A1 (zh)
EP (1) EP3899061A1 (zh)
CN (1) CN113195748B (zh)
CA (1) CA3123350C (zh)
MA (1) MA54497A (zh)
MX (1) MX2021007397A (zh)
RU (1) RU2765929C1 (zh)
WO (2) WO2020128579A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112647021B (zh) * 2020-12-09 2021-10-15 上海电气上重铸锻有限公司 超低温工程紧固件用高强度9%Ni钢及其制备方法
CN112662954A (zh) * 2020-12-18 2021-04-16 上海交通大学 一种析出强化的低温用钢及其热处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619302A (en) * 1968-11-18 1971-11-09 Yawata Iron & Steel Co Method of heat-treating low temperature tough steel
CN101864537A (zh) * 2010-05-24 2010-10-20 江苏省沙钢钢铁研究院有限公司 应用于深冷环境的超高强度9Ni钢及其制备工艺
CN102586683A (zh) * 2012-02-13 2012-07-18 钢铁研究总院 Ni系低温钢及制造方法、液化天然气储罐和运输船用船体
CN104278210A (zh) * 2013-07-08 2015-01-14 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
CN104745770A (zh) * 2015-03-23 2015-07-01 南京钢铁股份有限公司 一种提高9Ni钢低温冲击韧性的热处理工艺
CN104928592A (zh) * 2015-07-17 2015-09-23 上海交通大学 一种高强耐低温钢及其热处理工艺
US9499890B1 (en) * 2012-04-10 2016-11-22 The United States Of America As Represented By The Secretary Of The Navy High-strength, high-toughness steel articles for ballistic and cryogenic applications, and method of making thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113308A (ja) * 1974-07-24 1976-02-02 Nippon Steel Corp Teionyokyojinkooyobisono netsushorihoho
FR2307879A1 (fr) * 1975-04-18 1976-11-12 Siderurgie Fse Inst Rech Toles en acier au nickel pour utilisation a basse temperature
JPS61127815A (ja) * 1984-11-26 1986-06-16 Nippon Steel Corp 高アレスト性含Ni鋼の製造法
US5827379A (en) * 1993-10-27 1998-10-27 Nippon Steel Corporation Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
US6254698B1 (en) * 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
JP5655351B2 (ja) * 2010-03-31 2015-01-21 Jfeスチール株式会社 強度および低温靭性に優れた9%Ni鋼の製造方法
KR101359109B1 (ko) * 2011-12-28 2014-02-06 주식회사 포스코 황화물 응력균열 저항성 및 저온인성이 우수한 압력용기용 강재 및 그 제조방법
JP5556948B1 (ja) * 2013-10-28 2014-07-23 Jfeスチール株式会社 低温用鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619302A (en) * 1968-11-18 1971-11-09 Yawata Iron & Steel Co Method of heat-treating low temperature tough steel
CN101864537A (zh) * 2010-05-24 2010-10-20 江苏省沙钢钢铁研究院有限公司 应用于深冷环境的超高强度9Ni钢及其制备工艺
CN102586683A (zh) * 2012-02-13 2012-07-18 钢铁研究总院 Ni系低温钢及制造方法、液化天然气储罐和运输船用船体
US9499890B1 (en) * 2012-04-10 2016-11-22 The United States Of America As Represented By The Secretary Of The Navy High-strength, high-toughness steel articles for ballistic and cryogenic applications, and method of making thereof
CN104278210A (zh) * 2013-07-08 2015-01-14 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
CN104745770A (zh) * 2015-03-23 2015-07-01 南京钢铁股份有限公司 一种提高9Ni钢低温冲击韧性的热处理工艺
CN104928592A (zh) * 2015-07-17 2015-09-23 上海交通大学 一种高强耐低温钢及其热处理工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈健等: "两相区热处理工艺对9NiCrMo钢回火稳定性的影响", 《金属热处理》 *

Also Published As

Publication number Publication date
WO2020128681A1 (en) 2020-06-25
MA54497A (fr) 2022-03-30
EP3899061A1 (en) 2021-10-27
RU2765929C1 (ru) 2022-02-04
CN113195748B (zh) 2023-02-17
US20220064767A1 (en) 2022-03-03
CA3123350C (en) 2023-08-01
MX2021007397A (es) 2021-07-15
WO2020128579A1 (en) 2020-06-25
CA3123350A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
CN104131235B (zh) Lpg船储罐用钢板及其生产方法
EP2192204A1 (en) Low alloy steel for high-pressure hydrogen gas environment, and container for high-pressure hydrogen
KR100833071B1 (ko) 내hic특성이 우수한 인장강도 600㎫급 압력용기용 강판및 그 제조 방법
CA2817408C (en) Abrasion resistant steel, method of manufacturing an abrasion resistant steel and articles made therefrom
CN113195748B (zh) 由低碳、高强度9%镍钢形成的低温压力容器
JP6179977B2 (ja) 耐高圧水素環境脆化特性に優れた高強度鋼およびその製造方法
KR101568523B1 (ko) 소려 취화 저항성이 우수한 압력용기용 강판 및 그 제조 방법
CN112342458B (zh) 一种低屈强比抗应力腐蚀开裂高强钢及制备方法
CN112080684A (zh) 一种具有优良心部韧性的高强度容器用厚板及制造方法
WO2014030392A1 (ja) 高強度高靭性高耐食マルテンサイト系ステンレス鋼
KR20170073015A (ko) 용접 후 열처리 저항성이 우수한 압력용기 강판 및 그 제조방법
CN102808133A (zh) 耐磨耗低合金铸钢
CN1840725A (zh) 一种低温高韧性结构用钢及其制造方法
CN104120366A (zh) 一种压力容器用调质高强度钢板及其生产方法
KR102031450B1 (ko) 고강도 강판 및 그 제조방법
KR20120067149A (ko) 용접 후 열처리 저항성이 우수한 중고온용 강판 및 그 제조방법
KR102359303B1 (ko) 이차경화형 마르텐사이트 합금 및 이의 제조방법
KR102498158B1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR102498147B1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR102498150B1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR102498156B1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR102498155B1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR102498149B1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
US11767572B1 (en) Alloy steel having excellent hydrogen embrittlement resistance and strength and method of manufacturing same
KR101444750B1 (ko) 템퍼취화 저항성이 향상된 니켈-크롬-몰리브덴계 저합금강 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant