CN113179029A - 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置 - Google Patents

一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置 Download PDF

Info

Publication number
CN113179029A
CN113179029A CN202110594896.0A CN202110594896A CN113179029A CN 113179029 A CN113179029 A CN 113179029A CN 202110594896 A CN202110594896 A CN 202110594896A CN 113179029 A CN113179029 A CN 113179029A
Authority
CN
China
Prior art keywords
circuit
voltage
capacitor
switch tube
crude oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110594896.0A
Other languages
English (en)
Other versions
CN113179029B (zh
Inventor
黄松涛
杜斌
李伟
焦向东
陈家庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiuyi Technology Co ltd
Beijing Institute of Petrochemical Technology
Original Assignee
Beijing Jiuyi Technology Co ltd
Beijing Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiuyi Technology Co ltd, Beijing Institute of Petrochemical Technology filed Critical Beijing Jiuyi Technology Co ltd
Priority to CN202110594896.0A priority Critical patent/CN113179029B/zh
Publication of CN113179029A publication Critical patent/CN113179029A/zh
Application granted granted Critical
Publication of CN113179029B publication Critical patent/CN113179029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其中:整流滤波缓上电电路采用下桥臂为晶闸管的三相桥式半控整流结构,实现主电路的缓冲上电;DC/DC调压电路采用降压电路拓扑结构;双π型LC电路与DC/DC调压电路连接,用于抑制逆变输出换相瞬间的电流和电压尖峰;全桥逆变电路与双π型LC电路连接,用于对缓冲后的直流电压进行逆变处理;升压变压器与全桥逆变电路连接,用于将原边侧所得到的交流电压进行升压,并连接在原油电脱水器的电极上,向原油乳化液提供电能。上述装置能够解决原油电脱水(盐)电源中存在的效率低、重量大、元器件易损耗以及前级直流输入电压调节步长大的问题。

Description

一种基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电 源装置
技术领域
本发明涉及原油脱水电源技术领域,尤其涉及一种基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置。
背景技术
大部分油井采出液中含有大量的水分,综合含水量可高达90%,主要表现为乳化程度高,导电性增强,给后续油气集输处理的电场破乳脱水达标环节带来诸多挑战,特别是电脱水器部分,甚至导致出现停运的情况,所以需要对原油进行脱水处理以使其运输前的含水质量分数低于0.5%,且在炼油厂进入蒸馏装置前需要进一步进行脱水、脱盐处理使其含水质量分数降低为0.1%~0.2%,并使盐类组分的质量浓度小于5mg/L。
目前为保证达到脱水(盐)要求,普遍使用原油电脱水的方法,其主要原理是依靠电场力的作用对包水型乳化液进行破乳脱水,而原油脱水的效果主要受电场波形、电场频率、电场强度等因素影响,为获得较好的脱水效果,在实际的原油脱水工艺中需要根据原油的含水率、表面张力、密度、压力和温度等参数按照一定的数学关系模型来调整原油脱水电源矩形波的频率、电压和占空比等参数,并控制电源在该参数下运行,但现有技术所采用的原油电脱水电源普遍存在效率低、重量大、元器件易损耗等问题,无法满足原油电脱水器的使用需求。
发明内容
本发明的目的是提供一种基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,该装置能够解决原油电脱水(盐)电源中存在的效率低、重量大、元器件易损耗以及前级直流输入电压调节步长大的问题,同时减小了系统的电磁干扰,提高了主电路的工作安全性和可靠性。
本发明的目的是通过以下技术方案实现的:
一种基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,所述装置包括整流滤波缓上电电路、DC/DC调压电路、双π型LC电路、全桥逆变电路、升压变压器和以微处理器为核心的数字控制电路,其中:
所述整流滤波缓上电电路采用下桥臂为晶闸管的三相桥式半控整流结构,用于将输入的单相或三相交流电进行整流滤波处理,获得稳定的直流电压,并通过控制下桥臂晶闸管VT1、VT2、VT3的延时开通,实现主电路的缓冲上电;
所述DC/DC调压电路与所述整流滤波缓上电电路连接,采用降压电路拓扑结构,通过调制占空比对所述整流滤波缓上电电路得到的直流电压进行降压处理,得到可控的直流电压;
所述双π型LC电路与所述DC/DC调压电路连接,利用电容两端电压按指数规律放电和电感两端电流无法突变的特性,抑制逆变输出换相瞬间的电流和电压尖峰,对所述DC/DC调压电路得到的直流电压进行缓冲;
所述全桥逆变电路与所述双π型LC电路连接,用于对所述双π型LC电路缓冲后的直流电压进行逆变处理,通过调制频率和占空比,向所述升压变压器的原边侧输出幅值、频率和占空比均能按需调节的交流电压;
所述升压变压器与所述全桥逆变电路连接,用于将原边侧所得到的交流电压进行升压,得到电压、频率、脉宽均可控的高压变频矩形交流电压,所述升压变压器的输出端连接在原油电脱水器的电极上,向原油乳化液提供电能;
所述以微处理器为核心的数字控制电路用于按照控制要求产生数字PWM控制信号,控制所述DC/DC调压电路和全桥逆变电路。
由上述本发明提供的技术方案可以看出,上述装置能够解决原油电脱水(盐)电源中存在的效率低、重量大、元器件易损耗以及前级直流输入电压调节步长大的问题,同时减小了系统的电磁干扰,提高了主电路的工作安全性和可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置的结构示意图;
图2为本发明实施例所述直接滞后法产生fmin~40kHz双端PWM的过程示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置的结构示意图,所述装置包括整流滤波缓上电电路、DC/DC调压电路、双π型LC电路、全桥逆变电路、升压变压器和以微处理器为核心的数字控制电路,其中:
所述整流滤波缓上电电路采用下桥臂为晶闸管的三相桥式半控整流结构,用于将输入的单相或三相交流电进行整流滤波处理,获得稳定的直流电压,并通过控制下桥臂晶闸管的延时开通,实现主电路的缓冲上电;
所述DC/DC调压电路与所述整流滤波缓上电电路连接,采用降压电路拓扑结构,通过调制占空比对所述整流滤波缓上电电路得到的直流电压进行降压处理,得到可控的直流电压;
所述双π型LC电路与所述DC/DC调压电路连接,利用电容两端电压按指数规律放电和电感两端电流无法突变的特性,抑制逆变输出换相瞬间的电流和电压尖峰,对所述DC/DC调压电路得到的直流电压进行缓冲;
所述全桥逆变电路与所述双π型LC电路连接,用于对所述双π型LC电路缓冲后的直流电压进行逆变处理,通过调制频率和占空比,向所述升压变压器的原边侧输出幅值、频率和占空比均能按需调节的交流电压;
所述升压变压器与所述全桥逆变电路连接,用于将原边侧所得到的交流电压进行升压,得到电压、频率、脉宽均可控的高压变频矩形交流电压,所述升压变压器的输出端连接在原油电脱水器的电极上,向原油乳化液提供电能;
所述以微处理器为核心的数字控制电路用于按照控制要求产生数字PWM控制信号,控制所述DC/DC调压电路和全桥逆变电路。
具体实现中,如图1所示,所述整流滤波缓上电电路具体包括二极管D1、D2、D3、D4、D5、D6、D7、D8、D9,晶闸管VT1、VT2、VT3,电阻R1、R2、R3、R4、R5、R6、R7、R8、R9,电容C0、C1、C2、C3,继电器K1、K2、K3,其中各部件的连接关系为:
单相或三相交流电的U端、V端、W端分别与所述整流滤波缓上电电路输入端的1处、2处、3处连接,整流滤波缓上电电路输出端的4处与5处之间并联有滤波电容C0
二极管D1、D2、D3的阴极共同连接在所述整流滤波缓上电电路输出端的4处,阳极分别对应连接在晶闸管VT1、VT2、VT3的阴极上,晶闸管VT1、VT2、VT3的阳极共同连接在整流滤波缓上电电路输出端的5处;
继电器K1触点的2端连接在整流滤波缓上电电路输出端的5处,继电器K1触点的1端经电阻R9、二极管D9与晶闸管VT3的门极G端相连,继电器K1的线圈与单片机或DSP的I/O口控制的驱动电路相连,电阻R8串联二极管D8连接在晶闸管VT3的阳极与阴极之间,电阻R3和电容C3并联在晶闸管VT3的阴极与门极G端之间;
继电器K2触点的2端连接在整流滤波缓上电电路输出端的5处,继电器K2触点的1端经电阻R7、二极管D7与晶闸管VT2的门极G端相连,继电器K2的线圈与单片机或DSP的I/O口控制的驱动电路相连,电阻R6串联二极管D6连接在晶闸管VT2的阳极与阴极之间,电阻R2和电容C2并联在晶闸管VT2的阴极与门极G端之间;
继电器触点K3的2端连接在整流滤波缓上电电路输出端的5处,继电器触点K3的1端经电阻R5、二极管D5与晶闸管VT1的门极G端相连,继电器K3的线圈与单片机或DSP的I/O口控制的驱动电路相连,电阻R4串联二极管D4连接在晶闸管VT1的阳极与阴极之间,电阻R1和电容C1并联在晶闸管VT1的阴极与门极G端之间;
其中,所述晶闸管VT1、VT2、VT3的延时开通采用三个单路控制继电器或单个多路控制继电器实现;或直接选用时间继电器来控制所述晶闸管VT1、VT2、VT3的延时开通。
如图1所示,所述DC/DC调压电路包括功率开关管T1,电容C4,二极管D10、D11、D12,电感L1、L2,电阻R10、R11,以及第一驱动电路和第一PWM闭环控制电路,其中各部件的连接关系为:
所述整流滤波缓上电电路输出端的4处分别与所述DC/DC调压电路功率开关管T1的集电极C端、电容C4的1端相连,整流滤波缓上电电路输出端的5处分别与所述DC/DC调压电路电感L1的2端、电感L2的2端相连;
所述功率开关管T1的发射极E端分别与二极管D10的阴极、二极管D12的阴极相连;
电容C4的2端连接在二极管D10的阳极与二极管D11的阴极之间;
二极管D11经电感L1连接在所述整流滤波缓上电电路输出端的5处,且电感L1的两端并联电阻R10
二极管D12经电感L2连接在所述整流滤波缓上电电路输出端的5处,且电感L2的两端并联有电阻R1
所述第一PWM闭环控制电路与第一驱动电路相连,第一驱动电路与DC/DC调压电路中功率开关管T1的栅极G端相连。
进一步的,所述双π型LC电路包括电容C5、C6、C7,电感L3、L4,以及第一电流传感器和第一电压传感器,其中各部件的连接关系为:
所述DC/DC调压电路输出的正极分别与所述双π型LC电路电感L3的1端、电容C5的1端相连;
所述DC/DC调压电路输出的负极分别与所述双π型LC电路电容C5的2端、电容C6的2端、电容C7的2端相连;所述电感L3的2端与电感L4的1端、电容C6的1端相连;
所述第一电流传感器连接在电容C7的2端与所述全桥逆变电路功率开关管T4的发射极E端之间;
所述电容C7的1端与电感L4的2端相连,且电容C7两端并联有第一电压传感器,所述第一电压传感器将采集到的电容C7两端的电压信号Vf反馈到所述DC/DC调压电路中的第一PWM闭环控制电路;
所述DC/DC调压电路中的第一PWM闭环控制电路对接收的反馈电压信号Vf与设定的电压信号Vg进行差值比较后闭环控制输出第一PWM脉冲,所述第一PWM脉冲经所述DC/DC调压电路中的第一驱动电路后作用在所述DC/DC调压电路的功率开关管T1的栅极G端上。
另外,如图1所示,所述全桥逆变电路包括功率开关管T2、T3、T4、T5,以及第二驱动电路和第二PWM控制电路,其中各部件连接关系为:
所述双π型LC电路输出的正极分别与所述全桥逆变电路功率开关管T2的集电极C端、功率开关管T3的集电极C端相连;
所述双π型LC电路输出的负极分别与所述全桥逆变电路功率开关管T4的发射极E端、功率开关管T5的发射极E端相连;
所述第二PWM控制电路与第二驱动电路相连,第二驱动电路与全桥逆变电路中功率开关管T2、T3、T4、T5的栅极G端相连;
且所述功率开关管T2的发射极E端与功率开关管T4的集电极C端相连,所述功率开关管T3的发射极E端与功率开关管T5的集电极C端相连;
进一步的,所述升压变压器B0原边侧的A端连接在所述全桥逆变电路功率开关管T3的发射极E端与功率开关管T5的集电极C端之间;
所述升压变压器B0原边侧的B端连接在所述全桥逆变电路功率开关管T2的发射极E端与功率开关管T4的集电极C端之间;
且所述升压变压器B0输出侧的C端和D端连接在原油电脱水器的电极上。
另外,所述以微处理器为核心的数字控制电路产生双端PWM信号的频率在fmin~40kHz之间时采用直接滞后法,具体是使用了微处理器的两个定时器资源,使两个定时器同时启动,且第二个定时器的初值比第一个定时器的初值大半个周期,其余参数设置完全相同,通过直接滞后法能生成相位相差180°的双端PWM。
举例来说,如图2所示为本发明实施例所述直接滞后法产生fmin~40kHz双端PWM的过程示意图,设图2所示的双端PWM信号的周期为T,每路PWM信号的正频宽为TON,微处理器定时器资源的计数输入频率为fcpu。则周期寄存器值TxPR的计算公式为TxPR=T×fcpu-1,比较寄存器值的计算公式为TxCMPR=TxPR-TON×fcpu,产生第一PWM信号的定时器初值为0,产生第二PWM信号的定时器初值为TxIni=T×fcpu/2-1。双端PWM的具体产生过程如图2所示,调制双端PWM信号的脉宽只需更改比较寄存器的值。
上述直接滞后法所能产生双端PWM信号的最低频率fmin=fcpu/TxPRMax,其中TxPRMax为该微处理器定时器寄存器的最大计数值。因此在本发明实施例中双端PWM信号的频率在fmin~40kHz之间时采用上述直接滞后法;若产生双端PWM信号的频率在0~fmin之间(低频双端PWM信号)时,则需对微处理器的寄存器计数周期和比较匹配次数都进行计数后,再采取相应操作。
另外,所述以微处理器为核心的数字控制电路能控制所述DC/DC调压电路按需迅速调整输出电压大小,并根据要求控制输出电压以特定形式的波形(如正弦形式、指数形式等)按设定的频率周期变化;其中,闭环反馈控制采用定频调制脉宽模式,控制算法采用数字增量式PID算法。
基于上述结构的电源装置,经所述升压变压器升压后所得到的高压变频矩形交流电压的电压调节范围在100V~40kV之间,频率调节范围在0Hz~40kHz之间,脉宽调节范围在0~49%之间
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
综上所述,本发明实施例所述装置的优点在于:
(1)整流滤波缓上电电路采用下桥臂为晶闸管的三相桥式半控整流结构,通过单片机或DSP控制继电器延时开通,从而实现主电路的缓冲上电;
(2)调压回路采用非隔离式DC/DC调压结构,大幅提高了电源的转化效率,甚至可达97%;
(3)DC/DC调压电路和全桥逆变电路均采用数字化PWM控制方式,弥补了模拟控制方式输出PWM波形的频率和占空比稳定性较差且难以调节的缺陷;
(4)通过采用双π型LC电路有效抑制了逆变输出换向瞬间的电流和电压尖峰,降低电流尖峰对开关管的冲击,在一定程度上延长了开关管的使用寿命,减少了开关损耗,提高了电路的安全可靠性,进一步提升了原油脱水的效率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

1.一种基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,所述装置包括整流滤波缓上电电路、DC/DC调压电路、双π型LC电路、全桥逆变电路、升压变压器和以微处理器为核心的数字控制电路,其中:
所述整流滤波缓上电电路采用下桥臂为晶闸管的三相桥式半控整流结构,用于将输入的单相或三相交流电进行整流滤波处理,获得稳定的直流电压,并通过控制下桥臂晶闸管VT1、VT2、VT3的延时开通,实现主电路的缓冲上电;
所述DC/DC调压电路与所述整流滤波缓上电电路连接,采用降压电路拓扑结构,通过调制占空比对所述整流滤波缓上电电路得到的直流电压进行降压处理,得到可控的直流电压;
所述双π型LC电路与所述DC/DC调压电路连接,利用电容两端电压按指数规律放电和电感两端电流无法突变的特性,抑制逆变输出换相瞬间的电流和电压尖峰,对所述DC/DC调压电路得到的直流电压进行缓冲;
所述全桥逆变电路与所述双π型LC电路连接,用于对所述双π型LC电路缓冲后的直流电压进行逆变处理,通过调制频率和占空比,向所述升压变压器的原边侧输出幅值、频率和占空比均能按需调节的交流电压;
所述升压变压器与所述全桥逆变电路连接,用于将原边侧所得到的交流电压进行升压,得到电压、频率、脉宽均可控的高压变频矩形交流电压,所述升压变压器的输出端连接在原油电脱水器的电极上,向原油乳化液提供电能;
所述以微处理器为核心的数字控制电路用于按照控制要求产生数字PWM控制信号,控制所述DC/DC调压电路和全桥逆变电路。
2.根据权利要求1所述基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,所述整流滤波缓上电电路具体包括二极管D1、D2、D3、D4、D5、D6、D7、D8、D9,晶闸管VT1、VT2、VT3,电阻R1、R2、R3、R4、R5、R6、R7、R8、R9,电容C0、C1、C2、C3,继电器K1、K2、K3,其中各部件的连接关系为:
单相或三相交流电的U端、V端、W端分别与整流滤波缓上电电路输入端的1处、2处、3处连接,整流滤波缓上电电路输出端的4处与5处之间并联有滤波电容C0
二极管D1、D2、D3的阴极共同连接在整流滤波缓上电电路输出端的4处,阳极分别对应连接在晶闸管VT1、VT2、VT3的阴极上,晶闸管VT1、VT2、VT3的阳极共同连接在整流滤波缓上电电路输出端的5处;
继电器K1触点的2端连接在整流滤波缓上电电路输出端的5处,继电器K1触点的1端经电阻R9、二极管D9与晶闸管VT3的门极G端相连,继电器K1的线圈与单片机或DSP的I/O口控制的驱动电路相连,电阻R8串联二极管D8连接在晶闸管VT3的阳极与阴极之间,电阻R3和电容C3并联在晶闸管VT3的阴极与门极G端之间;
继电器K2触点的2端连接在整流滤波缓上电电路输出端的5处,继电器K2触点的1端经电阻R7、二极管D7与晶闸管VT2的门极G端相连,继电器K2的线圈与单片机或DSP的I/O口控制的驱动电路相连,电阻R6串联二极管D6连接在晶闸管VT2的阳极与阴极之间,电阻R2和电容C2并联在晶闸管VT2的阴极与门极G端之间;
继电器触点K3的2端连接在整流滤波缓上电电路输出端的5处,继电器触点K3的1端经电阻R5、二极管D5与晶闸管VT1的门极G端相连,继电器K3的线圈与单片机或DSP的I/O口控制的驱动电路相连,电阻R4串联二极管D4连接在晶闸管VT1的阳极与阴极之间,电阻R1和电容C1并联在晶闸管VT1的阴极与门极G端之间;
其中,所述晶闸管VT1、VT2、VT3的延时开通采用三个单路控制继电器或单个多路控制继电器实现;或直接选用时间继电器来控制所述晶闸管VT1、VT2、VT3的延时开通。
3.根据权利要求1所述基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,所述DC/DC调压电路包括功率开关管T1,电容C4,二极管D10、D11、D12,电感L1、L2,电阻R10、R11,以及第一驱动电路和第一PWM闭环控制电路,其中各部件的连接关系为:
所述整流滤波缓上电电路输出端的4处分别与所述DC/DC调压电路功率开关管T1的集电极C端、电容C4的1端相连,整流滤波缓上电电路输出端的5处分别与所述DC/DC调压电路电感L1的2端、电感L2的2端相连;
所述功率开关管T1的发射极E端分别与二极管D10的阴极、二极管D12的阴极相连;
电容C4的2端连接在二极管D10的阳极与二极管D11的阴极之间;
二极管D11经电感L1连接在所述整流滤波缓上电电路输出端的5处,且电感L1的两端并联电阻R10
二极管D12经电感L2连接在所述整流滤波缓上电电路输出端的5处,且电感L2的两端并联有电阻R11
所述第一PWM闭环控制电路与第一驱动电路相连,第一驱动电路与DC/DC调压电路中功率开关管T1的栅极G端相连。
4.根据权利要求1所述基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,所述双π型LC电路包括电容C5、C6、C7,电感L3、L4,以及第一电流传感器和第一电压传感器,其中各部件的连接关系为:
所述DC/DC调压电路输出的正极分别与所述双π型LC电路电感L3的1端、电容C5的1端相连;
所述DC/DC调压电路输出的负极分别与所述双π型LC电路电容C5的2端、电容C6的2端、电容C7的2端相连;所述电感L3的2端与电感L4的1端、电容C6的1端相连;
所述第一电流传感器连接在电容C7的2端与所述全桥逆变电路功率开关管T4的发射极E端之间;
所述电容C7的1端与电感L4的2端相连,且电容C7两端并联有第一电压传感器,所述第一电压传感器将采集到的电容C7两端的电压信号Vf反馈到所述DC/DC调压电路中的第一PWM闭环控制电路;
所述DC/DC调压电路中的第一PWM闭环控制电路对接收的反馈电压信号Vf与设定的电压信号Vg进行差值比较后闭环控制输出第一PWM脉冲,所述第一PWM脉冲经所述DC/DC调压电路中的第一驱动电路后作用在所述DC/DC调压电路的功率开关管T1的栅极G端上。
5.根据权利要求1所述基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,所述全桥逆变电路包括功率开关管T2、T3、T4、T5,以及第二驱动电路和第二PWM控制电路,其中各部件连接关系为:
所述双π型LC电路输出的正极分别与所述全桥逆变电路功率开关管T2的集电极C端、功率开关管T3的集电极C端相连;
所述双π型LC电路输出的负极分别与所述全桥逆变电路功率开关管T4的发射极E端、功率开关管T5的发射极E端相连;
所述第二PWM控制电路与第二驱动电路相连,第二驱动电路与全桥逆变电路中功率开关管T2、T3、T4、T5的栅极G端相连;
且所述功率开关管T2的发射极E端与功率开关管T4的集电极C端相连,所述功率开关管T3的发射极E端与功率开关管T5的集电极C端相连;
进一步的,所述升压变压器原边侧的A端连接在所述全桥逆变电路功率开关管T3的发射极E端与功率开关管T5的集电极C端之间;
所述升压变压器原边侧的B端连接在所述全桥逆变电路功率开关管T2的发射极E端与功率开关管T4的集电极C端之间;
且所述升压变压器输出侧的C端和D端连接在原油电脱水器的电极上。
6.根据权利要求1所述基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,所述以微处理器为核心的数字控制电路产生双端PWM信号的频率在fmin~40kHz之间时采用直接滞后法,具体是使用了微处理器的两个定时器资源,使两个定时器同时启动,且第二个定时器的初值比第一个定时器的初值大半个周期,其余参数设置完全相同,通过直接滞后法能生成相位相差180°的双端PWM。
7.根据权利要求1所述基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,所述以微处理器为核心的数字控制电路能控制所述DC/DC调压电路按需迅速调整输出电压大小,并根据要求控制输出电压以特定形式的波形按设定的频率周期变化;其中,闭环反馈控制采用定频调制脉宽模式,控制算法采用数字增量式PID算法。
8.根据权利要求1所述基于DC/DC调压的高压变频矩形交流脉冲原油电脱水电源装置,其特征在于,
经所述升压变压器升压后所得到的高压变频矩形交流电压的电压调节范围在100V~40kV之间,频率调节范围在0Hz~40kHz之间,脉宽调节范围在0~49%之间。
CN202110594896.0A 2021-05-28 2021-05-28 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置 Active CN113179029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110594896.0A CN113179029B (zh) 2021-05-28 2021-05-28 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110594896.0A CN113179029B (zh) 2021-05-28 2021-05-28 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置

Publications (2)

Publication Number Publication Date
CN113179029A true CN113179029A (zh) 2021-07-27
CN113179029B CN113179029B (zh) 2024-06-21

Family

ID=76927165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110594896.0A Active CN113179029B (zh) 2021-05-28 2021-05-28 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置

Country Status (1)

Country Link
CN (1) CN113179029B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179028A (zh) * 2021-05-28 2021-07-27 北京石油化工学院 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201490898U (zh) * 2009-09-01 2010-05-26 北京石油化工学院 基于波形可调优化的双频高压脉冲式原油脱水电源
CN201648318U (zh) * 2009-12-11 2010-11-24 北京石油化工学院 用于原油脱水的全数字控制二次逆变式高压变频矩形波交流电源装置
CN102005937A (zh) * 2009-09-01 2011-04-06 北京石油化工学院 基于波形可调优化的双频高压脉冲式原油脱水电源及其控制方法
CN102097953A (zh) * 2009-12-11 2011-06-15 北京石油化工学院 适用于原油脱水的全数字控制二次逆变式高压变频矩形波交流电源装置
JP2017199628A (ja) * 2016-04-28 2017-11-02 国立大学法人神戸大学 誘導加熱用シングルステージ商用周波−高周波コンバータおよびその制御方法
WO2018107623A1 (zh) * 2016-12-14 2018-06-21 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2020019788A1 (zh) * 2018-07-24 2020-01-30 广东美的制冷设备有限公司 智能功率模块的驱动ic电路、智能功率模块及空调器
CN113179028A (zh) * 2021-05-28 2021-07-27 北京石油化工学院 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置
CN215344385U (zh) * 2021-05-28 2021-12-28 北京玖壹科技有限公司 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置
CN215344384U (zh) * 2021-05-28 2021-12-28 北京玖壹科技有限公司 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201490898U (zh) * 2009-09-01 2010-05-26 北京石油化工学院 基于波形可调优化的双频高压脉冲式原油脱水电源
CN102005937A (zh) * 2009-09-01 2011-04-06 北京石油化工学院 基于波形可调优化的双频高压脉冲式原油脱水电源及其控制方法
CN201648318U (zh) * 2009-12-11 2010-11-24 北京石油化工学院 用于原油脱水的全数字控制二次逆变式高压变频矩形波交流电源装置
CN102097953A (zh) * 2009-12-11 2011-06-15 北京石油化工学院 适用于原油脱水的全数字控制二次逆变式高压变频矩形波交流电源装置
JP2017199628A (ja) * 2016-04-28 2017-11-02 国立大学法人神戸大学 誘導加熱用シングルステージ商用周波−高周波コンバータおよびその制御方法
WO2018107623A1 (zh) * 2016-12-14 2018-06-21 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2020019788A1 (zh) * 2018-07-24 2020-01-30 广东美的制冷设备有限公司 智能功率模块的驱动ic电路、智能功率模块及空调器
CN113179028A (zh) * 2021-05-28 2021-07-27 北京石油化工学院 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置
CN215344385U (zh) * 2021-05-28 2021-12-28 北京玖壹科技有限公司 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置
CN215344384U (zh) * 2021-05-28 2021-12-28 北京玖壹科技有限公司 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄松涛;陈家庆;焦向东;俞建荣;刘洋;: "高压变频交流脉冲原油脱水电源及其静电聚结特性", 高电压技术, no. 10, 31 October 2011 (2011-10-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179028A (zh) * 2021-05-28 2021-07-27 北京石油化工学院 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置
CN113179028B (zh) * 2021-05-28 2024-06-21 北京石油化工学院 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置

Also Published As

Publication number Publication date
CN113179029B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
CN215344385U (zh) 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置
TWI511429B (zh) 變換電路以及變換電壓的方法
CN105932879B (zh) 电力转换装置
AU2012292275B2 (en) A method for controlling a resonant-mode power supply and a resonant-mode power supply with a controller
CN109818502B (zh) iLLC谐振变换器相间均流及延长掉电维持时间的方法
US20090146619A1 (en) Power factor correction method for ac/dc converters and corresponding converter
CN215344384U (zh) 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置
RU2335841C1 (ru) Высоковольтный преобразователь постоянного напряжения с фильтрокомпенсирующей цепью и способ управления его выходной мощностью
CN113206598A (zh) 一种串联谐振式恒流充电电源
CN211127589U (zh) 单级式高频隔离型双向直流变换器和并网储能系统
CN110445387B (zh) 一种化成分容用电源的拓扑结构和控制方法
CN113179028B (zh) 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置
CN113179029A (zh) 一种基于dc/dc调压的高压变频矩形交流脉冲原油电脱水电源装置
CN114448286A (zh) 单级隔离双向ac-dc变换器拓扑结构及其控制方法
CN113328638B (zh) 一种宽电压宽频率输出的等离子体电源及其控制方法
CN113189424B (zh) 一种串联谐振的柔性直流换流阀运行试验拓扑及控制方法
CN101795004A (zh) 交流有源功率因数校正补偿电路
CN116885961A (zh) 一种改进的三相桥式全控型整流电源
CN210578299U (zh) 一种基于氮化镓器件的光伏逆变器
CN112019077A (zh) 一种基于buck电路的新型单相逆变器及其控制方法
CN209823660U (zh) 一种基于buck电路的新型单相逆变器
CN113783438B (zh) 一种纹波小的特高压直流发生器
CN201789296U (zh) 交流有源功率因数校正补偿电路
Omar et al. Analysis and simulation of phase-shift control for three-phase AC/DC full-bridge current injection series resonant converter
Theron et al. The partial series resonant converter: A new zero voltage switching converter with good light load efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant