CN116885961A - 一种改进的三相桥式全控型整流电源 - Google Patents

一种改进的三相桥式全控型整流电源 Download PDF

Info

Publication number
CN116885961A
CN116885961A CN202310834984.2A CN202310834984A CN116885961A CN 116885961 A CN116885961 A CN 116885961A CN 202310834984 A CN202310834984 A CN 202310834984A CN 116885961 A CN116885961 A CN 116885961A
Authority
CN
China
Prior art keywords
phase
power supply
switching device
current
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310834984.2A
Other languages
English (en)
Inventor
盛建科
盛亮科
罗万里
刘湘
申滔
詹柏青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Fullde Electric Co Ltd
Guangdong Fullde Electronics Co Ltd
Zhuzhou Fullde Rail Transit Research Institute Co Ltd
Original Assignee
Hunan Fullde Electric Co Ltd
Guangdong Fullde Electronics Co Ltd
Zhuzhou Fullde Rail Transit Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Fullde Electric Co Ltd, Guangdong Fullde Electronics Co Ltd, Zhuzhou Fullde Rail Transit Research Institute Co Ltd filed Critical Hunan Fullde Electric Co Ltd
Priority to CN202310834984.2A priority Critical patent/CN116885961A/zh
Publication of CN116885961A publication Critical patent/CN116885961A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1552Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a biphase or polyphase arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • H02M7/1557Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种改进的三相桥式全控型整流电源,包括三相交流变压器T、基于晶闸管或二极管的三相全桥相控整流电路、以及设于直流母线的直流滤波电感Ld和滤波电容Cd,还包括与直流滤波电感Ld并联的辅助电路,辅助电路设有电阻Rh、二极管Dh及开关器件Gh,二极管Dh与电阻Rh并联然后与开关器件Gh串联;当开关器件Gh开通时,相控整流电路的输出电流可经电阻Rh和开关器件Gh流向滤波电容Cd;而开关器件Gh关断时,电阻Rh可通过二极管Dh进行续流。本发明使电源即能满足交流侧较高功率因数和低电流谐波,较低输出直流纹波电压的要求,还能同时满足大功率冲击或波动负载情况下较低的输出直流电压波动幅度。

Description

一种改进的三相桥式全控型整流电源
技术领域
本发明涉及电气传动或电源,尤其涉及种改进的三相桥式全控型整流电源及其控制方法。
背景技术
工业用的逆变器,一般都采用二极管或晶闸管组成的整流器作为直流电源。当电网电压出现正常范围内的电压波动时,采用二极管整流组成的直流电源将随输入电压的波动而波动,对直流输出电压要求基本恒定的大功率应用场合,兼顾成本经济性,一般采取晶闸管组成的相控整流电路实现直流稳压电源。为了减小输出电压或输出电流的脉动,使其限制在某一给定的允许范围内,整流电源的输出需要用到滤波器,对电压型逆变器,需要用电容滤波,而为了提高整流器交流输入端的功率因数,通常在整流器与直流滤波电容间还串入电感。
基于晶闸管的单相整流电路比较简单,对触发电路的要求较低,相位同步问题很简单,调整也比较容易。但它的输出直流电压的纹波系数较大。由于它接在电网的一相上,易造成电网负载不平衡,所以一般只用于4kW以下的中小容量的设备上。如果负载较大,一般都用三相电路。当整流容量较大,要求直流电压脉动较小,对快速性有特殊要求的场合,应考虑采用三相桥式全控整流电路。这是因为这种电路三相是平衡的,输出的直流电压和电流脉动小,对电网影响小,且控制滞后时间短。图1是一个典型的采用晶闸管控制的三相桥式全控型整流稳压电源电路基本结构,由变压、相控整流及滤波三功能部分组成。其中,变压部分采用三相交流变压器T,用于变压匹配合适的交流输入电压;相控整流部分实现交流电压转换成直流电压,其由三个桥臂、每个桥臂两个可控硅晶闸管的结构构成,用了六个晶闸管开关(即如图示的T1到T6),三桥臂形成六脉波整流,通过协调控制各晶闸管的触发时刻以控制输入交流电压的导通角来实现整流输出直流电源的调节和稳定。滤波部分由直流滤波电感Ld和滤波电容Cd组成,用于降低输出直流电源纹波。其中,直流滤波电感Ld还起到降低整流器三相交流侧输入电流谐波和提高输入功率因数的作用。整流输出电压经滤波后为外部负载RL提供直流电源Ud
通常希望整流电源除了具有较高的稳压控制精度外,还希望其具有较高的交流侧功率因数,较低的直流电源纹波系数以及较小的输出电压动态波动范围。通过在整流输出与滤波电容间增加直流滤波电感Ld,除了可以降低交流输入端电流谐波,减小电源直流输出电压纹波外,还一个好处是能提高交流输入端的功率因数。滤波电感Ld越大,功率因数越高。但是,滤波电感的引入将影响直流输出电压的动态调节响应,在负载突变时将加大输出直流电压的波动幅度。这里拿一个额定功率2000kW额定输出电压1800V的直流稳压电源设计案例来分析,设计要求功率因数大于0.86,而突加50%额定负载的情况下,输出电压波动幅度范围小于额定输出电压的3%。直流电压纹波系数小于0.5%。采用图1的常规电路设计,功率因数实现了满载时约87%,输出电压纹波系数也符合要求,但是,突加50%额定负载时的输出电压波动始终偏大不符要求,4图2是仿真情况,自上至下依次为电源输出直流电压波形V_out(单位:V)、输出电流波形I(R_Load)(单位:A)。整流电源在空载时稳定输出电压为1800V,在0.3秒时刻,突加1000kW的功率负载,整流电源输出电压出现瞬态波动,最小低到约1650V,最大升到约2000V。电压波动幅度最大200V,波动幅度超过了10%。具体分析原因后发现,大的电压波动的形成主要原因是在突加负载时,激起了滤波电路中的电感Ld与电容Cd的低频振荡,谐振引起它们的初始谐振电压过大,并且滤波电感Ld参数越大,引起的这种电压波动幅度越大。而晶闸管采取相控方式的动态响应能力本来就不强,因此,采用图1的电路结构,无法保证大的冲击负载情况下实现较小的电压波动范围。
为了实现即满足较高输入功率因数,较低三相交流输入谐波,较低输出直流纹波电压的要求,还能同时满足大功率冲击或波动负载情况下较小的输出电压波动。需要对图1所示的传统的三相桥式全控型整流电源主电路进行改进。
发明内容
本发明的目的在于对基于晶闸管的传统的三相交流全控型整流稳压电源提出改进,并提出相应的控制方法,使电源即能满足交流侧较高功率因数和电流谐波,较低输出直流纹波电压的要求,还能同时满足大功率冲击或波动负载情况下较低的输出直流电压波动幅度。
为达到上述目的,提供一种改进的三相桥式全控型整流电源,包括
三相交流变压器T,用于变压匹配合适的交流输入电压;
相控整流电路,设有三个桥臂,每个桥臂通过两个可控硅晶闸管或二极管组成,三桥臂形成六脉波整流;
滤波电路,设有直流滤波电感Ld和滤波电容Cd,其中直流滤波电感Ld串联在相控整流电路输出端的直流母线的正母线上,直流滤波电感Ld的远离相控整流电路的一端用于经外部负载电连接至直流母线的负母线从而为负载供电,滤波电容Cd一端连接于直流滤波电感Ld和负载之间的接点,另一端与负母线相接;
还包括与直流滤波电感Ld并联的辅助电路,所述辅助电路设有电阻Rh、二极管Dh及开关器件Gh,所述二极管Dh与电阻Rh并联,然后与开关器件Gh串联;
当开关器件Gh开通时,相控整流电路的输出电流可经电阻Rh和开关器件Gh流向滤波电容Cd;而开关器件Gh关断时,电阻Rh可通过二极管Dh进行续流。
进一步的,所述开关器件Gh被配置为自关断开关器件。所述自关断开关器件包括但不限于IGBT、GTO或IEGT。
所述辅助电路的控制方法进一步包括:
将整流电源的目标控制电压Ud*与实际采样检测得到的直流母线的输出直流电压Ud的差值,减去设定常数MUdmin后,经PI环节调节,再进限幅器对输出范围进行限幅后得到调制波;
将所述调制波与三角载波Tri进行比较,得到的PWM脉冲用于对辅助电路中的开关器件Gh进行控制。
辅助电路与滤波电感并联后串联在三相全桥整流电源的正母线,或者辅助电路与滤波电感并联后串联在三相全桥整流电源的负母线上。
所述PWM脉冲对开关器件Gh的控制进一步被配置为:PWM脉冲值为正值时开关器件Gh导通,负值时开关器件Gh关断。
所述三相桥式全控型整流电源的额定功率被配置为4kW以上。所述三相桥式全控型整流电源的额定功率被配置为2000kW,且额定输出电压为1800V,所述电阻Rh为0.1欧,MUdmin常数为10,三角载波的开关频率取为1000Hz,峰峰值为10,最小值为0。
与现有技术相比,本发明具有如下的有益效果:
1)采用本文提出的技术方法,使晶闸管整流电源在能满足交流侧高功率因数和低电流谐波,低输出直流电压纹波的同时,还能同时满足大功率冲击或波动负载情况下极小的输出直流电压波动范围。使基于晶闸管的这种低成本大功率整流稳压电源能适用于对直流电源性能指标要求非常严格的负载供电场合。
2)改进的主电路架构简单,改进成本小,增加的控制方法实现比较简单,不会影响正常运行效率。
3)本专利提出的改进方案和控制方法的本质好处是避免了滤波电感和滤波电容在突加大负荷情况下的低频大幅震荡,从而抑制直流输出电压的大幅波动,该方法虽然是针对三相晶闸管整流电路而提出,实际上所提到的辅助电路和控制方法也可以应用到三相全桥二极管整流电源中。
附图说明
图1示出了三相桥式全控型整流电源主电路示意图。
图2示出了突加50%额定负载的输出电压电流波形。
图3示出了改进后的三相桥式全控型整流电源主电路示意图。
图4示出了辅助电路的控制原理框图。
图5示出了突加50%额定负载情况下的仿真波形。
图6示出了改进的三相全桥二极管整流电源示意图。
图7示出了辅助电路与滤波电感并联后串联在三相全桥整流电源的负母线上的情况。
具体实施方式
下文结合附图和具体实施例对本发明的技术方案做进一步说明。
图3为所提出的改进后的三相桥式全控型整流电源主电路示意图,与图1所示的结构比较可知,在原滤波部分仅增加了一个与原滤波电感Ld并联的辅助电路,其它部分及参数都不变。该辅助电路由电阻Rh、二极管Dh及Gh这一快速开关器件IGBT(也可以是其它自关断开关器件GTO、IEGT等)组成。其中二极管Dh与电阻Rh并联,然后与IGBT串联。当IGBT开通时,三相桥整流输出电流可经电阻Rh和IGBT流向滤波电容侧。而IGBT关断时,电阻Rh因实际难以做到无电感,其可通过二极管Dh续流,防止关断造成的瞬间过电压。
(1)控制方法
图3所示所提出的改进后的三相桥式全控型整流电源,只需在图1所示的传统控制方法上增加对辅助电路部分的控制,因图1电路的传统控制方法技术已非常成熟,在相关文献上都有描述,这里不做阐述。图4是对辅助电路进行控制的控制原理框图。
辅助电路的控制实际就是对开关器件IGBT的开通与关断的适时控制,如图4所示,将电源的目标控制电压Ud*与实际采样检测得到的输出直流电压Ud的差值,减去设定常数MUdmin后,经PI(比例积分)环节调节,再进限幅器对输出范围进行限幅后得到调制波,其与三角载波Tri进行比较,得到的PWM脉冲用于对辅助电路中IGBT的控制,当PWM脉冲值为正时,控制IGBT导通,其为负时,控制IGBT关断。
(2)所提方法的仿真验证
对前面提到的2000kW/1800V整流电源案例按图3的电路进行改进,并按图4的方法进行控制改进,其中辅助电阻Rh设计为0.1欧。参考设计性能指标要求,将MUdmin常数取为10,三角载波的开关频率取为1000Hz,峰峰值设计为10,最小值为0。
图5为突加50%额定负载情况下的仿真波形,自上至下依次为电源输出直流电压波形V_out(单位:V)、输出电流波形I(R_Load)(单位:A)、辅助电路中电阻Rh的电流波形I(Rh)。
从仿真结果可知,在突加50%额定负载时,输出电压出现瞬态波动,但最低电压大于1765V,最大值小于1810V,可见,最大波动幅度为35V,相对于额定1800V,直流电压波动幅度小于2%,相比于电路改进前的图1,同样冲击负荷情况下,输出直流电压波动幅度由原来的大于10%减小到小于2%,满足了不超过3%的技术指标设计要求。比较图5与图2可知,在大负荷冲击扰动下,改进后的电路还有益于缩短直流输出电压波动恢复时间。另外还可知,虽然辅助电路协助系统输出抑制了较大负荷冲击或波动引起的直流输出电压的大幅波动,但是,因前面提到MUdmin取为10,故一旦波动幅度小于10V后,IGBT是关断的,辅助电阻Rh上不再流过电流,因此电源带正常平稳负荷或小幅波动负荷情况下,电阻Rh不会产生发热损耗,即不会影响正常运行效率。图5显示50%满载冲击负荷时,Rh的实际导通时间在两个工频周期时间内。
本专利提出的改进方案和控制方法的本质好处是避免了滤波电感和滤波电容在突加大负荷情况下的低频大幅震荡,从而抑制直流输出电压的大幅波动,该方法虽然是针对三相晶闸管整流电路而提出,实际上所提到的辅助电路和控制方法也可以应用到如图6所示的三相全桥二极管整流电源中,其就是将图3所示主电路中的从T1到T6的晶闸管更换为图6所示主电路中的从D1到D6的晶闸管,三相全桥二极管整流电源就相当于基于晶闸管的三相全桥整流电源中的晶闸管工作于全导通的情况,这样使三相全桥二极管整电源在大功率冲击负荷下也同样实现极低的输出直流电压波动幅度和波动时间,从而提高整流电源性能。
图6中三相全桥二极管整流电源的辅助电路的控制原理完全与图4所示的辅助电路的控制原理框图相同,这里不再赘述。
图7中辅助电路与滤波电感并联后串联在三相全桥整流电源的负母线,其本质效果与图6中它们串联在直流正母线的情况一样,且控制原理完全与图4所示的辅助电路的控制原理框图相同,这里不再赘述。
(3)改进效果
1)采用本文提出的技术方法,使晶闸管整流电源在能满足交流侧高功率因数和低电流谐波,低输出直流电压纹波的同时,还能同时满足大功率冲击或波动负载情况下极小的输出直流电压波动范围。使基于晶闸管的这种低成本大功率整流稳压电源能适用于对直流电源性能指标要求非常严格的负载供电场合。
2)改进的主电路架构简单,改进成本小,增加的控制方法实现比较简单,不会影响正常运行效率。
3)本专利提出的改进方案和控制方法的本质好处是避免了滤波电感和滤波电容在突加大负荷情况下的低频大幅震荡,从而抑制直流输出电压的大幅波动,该方法虽然是针对三相晶闸管整流电路而提出,实际上所提到的辅助电路和控制方法也可以应用到三相全桥二极管整流电源中。
上述具体实施例仅仅是本发明的优选的实施例,基于本发明的技术方案和上述实施例的相关启示,本领域技术人员可以对上述具体实施例做出多种替代性的改进和组合。

Claims (7)

1.一种改进的三相桥式全控型整流电源,包括
三相交流变压器T,用于变压匹配合适的交流输入电压;
相控整流电路,设有三个桥臂,每个桥臂通过两个可控硅晶闸管或二极管组成,三桥臂形成六脉波整流;
滤波电路,设有直流滤波电感Ld和滤波电容Cd,其中直流滤波电感Ld串联在相控整流电路输出端的直流母线的正母线上,直流滤波电感Ld的远离相控整流电路的一端用于经外部负载电连接至直流母线的负母线从而为负载供电,滤波电容Cd一端连接于直流滤波电感Ld和负载之间的接点,另一端与负母线相接;
其特征在于:
还包括与直流滤波电感Ld并联的辅助电路,所述辅助电路设有电阻Rh、二极管Dh及开关器件Gh,所述二极管Dh与电阻Rh并联,然后与开关器件Gh串联;
当开关器件Gh开通时,相控整流电路的输出电流可经电阻Rh和开关器件Gh流向滤波电容Cd;而开关器件Gh关断时,电阻Rh可通过二极管Dh进行续流。
2.根据权利要求1所述的三相桥式全控型整流电源,其特征在于:所述开关器件Gh被配置为自关断开关器件。
3.根据权利要求2所述的三相桥式全控型整流电源,其特征在于:所述自关断开关器件包括但不限于IGBT、GTO或IEGT。
4.根据权利要求1所述的三相桥式全控型整流电源,其特征在于,所述辅助电路的控制方法进一步包括:
将整流电源的目标控制电压Ud*与实际采样检测得到的直流母线的输出直流电压Ud的差值,减去设定常数MUdmin后,经PI环节调节,再进限幅器对输出范围进行限幅后得到调制波;
将所述调制波与三角载波Tri进行比较,得到的PWM脉冲用于对辅助电路中的开关器件Gh进行控制。
5.根据权利要求4所述的三相桥式全控型整流电源,其特征在于,所述PWM脉冲对开关器件Gh的控制进一步被配置为:PWM脉冲值为正值时开关器件Gh导通,负值时开关器件Gh关断。
6.根据权利要求4所述的三相桥式全控型整流电源,其特征在于:辅助电路与滤波电感并联后串联在三相全桥整流电源的正母线,或者辅助电路与滤波电感并联后串联在三相全桥整流电源的负母线上。
7.根据权利要求5所述的三相桥式全控型整流电源,其特征在于:所述三相桥式全控型整流电源的额定功率被配置为4kW以上。
CN202310834984.2A 2023-07-07 2023-07-07 一种改进的三相桥式全控型整流电源 Pending CN116885961A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310834984.2A CN116885961A (zh) 2023-07-07 2023-07-07 一种改进的三相桥式全控型整流电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310834984.2A CN116885961A (zh) 2023-07-07 2023-07-07 一种改进的三相桥式全控型整流电源

Publications (1)

Publication Number Publication Date
CN116885961A true CN116885961A (zh) 2023-10-13

Family

ID=88263689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310834984.2A Pending CN116885961A (zh) 2023-07-07 2023-07-07 一种改进的三相桥式全控型整流电源

Country Status (1)

Country Link
CN (1) CN116885961A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595623A (zh) * 2023-11-22 2024-02-23 湖南科技大学 低纹波可调直流稳压电源控制参数自整定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595623A (zh) * 2023-11-22 2024-02-23 湖南科技大学 低纹波可调直流稳压电源控制参数自整定方法

Similar Documents

Publication Publication Date Title
EP3068023B1 (en) Inrush limiter for motor drive ac/ac power converters
CN109923779B (zh) 混合整流器
WO2020147239A1 (zh) 驱动控制电路、空调器和控制器
CN116885961A (zh) 一种改进的三相桥式全控型整流电源
CN110920422A (zh) 一种基于电流源的大功率电动汽车充电装置及控制方法
Komeda et al. A power decoupling control method for an isolated single-phase AC-to-DC converter based on direct AC-to-AC converter topology
Chao et al. Power decoupling methods for single-phase three-poles AC/DC converters
CN114337314B (zh) 一种低压mw级大功率直流稳压电源
Piepenbreier et al. Regenerative drive converter with line-frequency switched rectifier and without DC link components
US8836296B2 (en) Power conversion apparatus
CN106411149A (zh) 一种基于串联补偿的全固态的斩波调压电路及调压方法
CN209767396U (zh) 一种固态高频感应加热电源的调功装置
Shin et al. Active DC-link circuit for single-phase diode rectifier system with small capacitance
Inaba et al. A new speed control system for DC motors using GTO converter and its application to elevators
CN110011529B (zh) 运行控制方法、装置、电路、家电设备和计算机存储介质
Ohnuma et al. Novel control strategy for single-phase to three-phase power converter using an active buffer
RU2399145C1 (ru) Преобразователь частоты с явно выраженным звеном постоянного тока
EP2911287A1 (en) Apparatus and method for reducing harmonics
CN104852609A (zh) 一种工业电阻炉温控功率调节装置
CN113783438B (zh) 一种纹波小的特高压直流发生器
Chakraborty et al. Design of T-NPC Inverter Based Power Supply for High Voltage Transformer-Rectifier Unit of DC Particle Accelerators
CN109088556B (zh) 一种谐振式整流电路及其控制方法、发电机、变压器
Swathi et al. Reduction of Harmonics using DC-link Shunt Compensator in Single Phase Grid Connected Motor Drive System
Sajeesh et al. Power factor improvement in rectifier circuit—A simulation study
Salmon et al. Low distortion 3-phase rectifiers utilizing harmonic correction circuit topologies with both IGBT and thyristor switches

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination