CN113178517A - 一种耐高温的声表面波传感器叉指电极及其制备方法 - Google Patents

一种耐高温的声表面波传感器叉指电极及其制备方法 Download PDF

Info

Publication number
CN113178517A
CN113178517A CN202110321508.1A CN202110321508A CN113178517A CN 113178517 A CN113178517 A CN 113178517A CN 202110321508 A CN202110321508 A CN 202110321508A CN 113178517 A CN113178517 A CN 113178517A
Authority
CN
China
Prior art keywords
oxide
layer
composite electrode
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110321508.1A
Other languages
English (en)
Other versions
CN113178517B (zh
Inventor
轩伟鹏
章弥灵
陈金凯
董树荣
金浩
骆季奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202110321508.1A priority Critical patent/CN113178517B/zh
Publication of CN113178517A publication Critical patent/CN113178517A/zh
Application granted granted Critical
Publication of CN113178517B publication Critical patent/CN113178517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本发明公开了一种耐高温的声表面波传感器叉指电极及其制备方法。现有金属材料叉指电极在高温下容易发生团聚、结块。本发明叉指电极包括衬底、氧化物界面层、复合电极层和氧化物保护层;氧化物界面层置于衬底上,氧化物保护层和多个复合电极层均置于氧化物界面层上,相邻复合电极层之间设有间隙;氧化物保护层包裹各复合电极层;复合电极层的材料为掺杂氧化物的金属。本发明通过在衬底和电极之间加入一层氧化物界面层,有效阻止了高温下衬底中原子扩散至电极中;本发明采用金属和氧化物渐变变化的复合电极,能有效阻碍高温下电极的团聚与凸起,增加了器件的高温耐热性,可用于1200℃以上的高温环境,延长了器件在高温环境下的工作时间。

Description

一种耐高温的声表面波传感器叉指电极及其制备方法
技术领域
本发明属于声表面波器件技术领域,具体涉及一种耐高温的声表面波传感器叉指电极及其制备方法。
背景技术
随着时代的发展与科技的进步,人们对声表面波传感器在各种各样恶劣环境中的使用提出了越来越高的需求。其中,高温这个恶劣条件最常见并且也最需要去克服,比如在航空航天、汽车以及能源化工领域中声表面波传感器往往需要被应用在极端高温条件下,再如涡轮发动机、发电厂燃气燃烧器、市政固体废物发电厂水冷壁以及其他工作环境高于500℃需要传感器稳定运行的工业场所。因此对高温条件下声表面波传感器的制备与研究就显得尤为重要。
声表面波传感器的主要结构由压电材料基片与叉指电极两部分组成。传统的声表面波传感器往往会在高温环境中出现性能衰退乃至完全失效的情况,因此,高温环境下的声表面波传感器性能衰减乃至失效也需要从压电材料与叉指电极这两个方面来讨论。对压电材料而言,最核心的性质就是它的压电性能。一般的压电材料都存在一个特有的相转变温度,当环境温度高于这个相转变温度时,其压电性能被破坏,导致所制备的声表面波器件失效。常见的石英、钽酸锂等压电材料在超过600℃时,将失去压电性能。四硼酸锂压电材料所制备的声表面波传感器在917℃以下都不会因衬底压电性能而失效,但其熔点限制了它在高于1000℃环境中的应用。在对可耐高温的压电材料的需求下,硅酸镓镧(La3Ga5SiO14,LGS)新型压电材料自从被第一次报道后,就一直受到人们的广泛关注。现如今,硅酸镓镧压电材料已经发展成了声表面波高温应用领域的主导材料。LGS的熔点为1470℃,在室温至熔点温度区间内都不会发生相变,表明LGS压电单晶材料能够在极高的温度下保持稳定的压电性能。因此,可耐高温的叉指电极成为了制备高温声表波传感器主要攻克的难题。
通过前人的研究发现,较高的叉指电极电阻会对声表面波器件的性能有一定的影响,比如引起热能损耗、非均匀电压以及产生激励信号的不均匀分布等现象。所以研究者们都选用金属材料来制备叉指电极。但金属材料长时间工作在高温环境下,容易发生团聚、结块等现象,从而导致金属电极断裂,导电性丧失,器件失效。为了使金属电极在高温下能稳定工作,必须探索出有效的方法使得金属在高温下的团聚、结块现象得到抑制。
发明内容
本发明的目的是提供一种耐高温的声表面波传感器叉指电极及其制备方法,解决目前技术存在的难题,使叉指电极在较高的温度下依旧保持导电稳定性。
本发明的技术方案为:
本发明一种耐高温的声表面波传感器叉指电极,包括衬底、氧化物界面层、复合电极层和氧化物保护层;所述的氧化物界面层置于衬底上,氧化物保护层和多个复合电极层均置于氧化物界面层上,相邻复合电极层之间设有间隙;所述的氧化物保护层包裹各复合电极层;所述复合电极层的材料为掺杂氧化物的金属。
优选地,所述衬底的材料为硅酸镓镧、钇铁氧体、LiNbO3或AlN。
优选地,所述衬底的厚度为50μm~1000μm,表面粗糙度RMS在1nm以下。
优选地,所述氧化物界面层的材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2
优选地,所述复合电极层中的金属材料为Pt、Rh、Ir或其任意配比的合金。
优选地,所述复合电极层中的氧化物材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2,所述氧化物保护层的材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2
优选地,所述复合电极层中的氧化物掺杂浓度为非线性渐变,最低为0.01%,最高为10%。
更优选地,所述复合电极层中的氧化物掺杂浓度由下至上呈正弦曲线变化,形成高氧化物浓度层和低氧化物浓度层依次交替的排布规律,且高氧化物浓度层的氧化物浓度最大位置出现在高氧化物浓度层的中间位置;其中,正弦曲线取0.5N个周期,N取值为1~20。
该耐高温的声表面波传感器叉指电极的制备方法,包括如下步骤:
步骤一、衬底的清洗与烘干处理。
步骤二、采用原子层沉积技术在经步骤一处理后的衬底上沉积一层厚度为5~100nm的氧化物界面层。
步骤三、将步骤二处理得到的沉积氧化物界面层后的衬底通过光刻工艺处理,在氧化物界面层上得到复合电极层图案。
步骤四、将经步骤三光刻处理后的样片采用磁控溅射技术进行金属靶材与氧化物靶材的共溅射,在氧化物界面层上得到复合电极全覆盖层;其中,金属靶材的功率固定不变,氧化物靶材的功率随时间周期变化。
步骤五、将经步骤四处理后的样片泡在丙酮溶液中,超声清洗,使得复合电极全覆盖层上除复合电极层图案以外的多余电极脱离。
步骤六、采用射频磁控溅射技术在经步骤五处理后的样片上制备一层厚度为50~150nm的氧化物保护层。
优选地,步骤四中,金属靶材为Pt靶材,氧化物靶材为Al2O3靶材。Pt靶材的直径为75mm,纯度为99.999%;Al203靶材的直径为75mm,纯度为99.999%。Pt靶材的功率为300W;AL203靶材的功率变化规律为从500W逐渐下降至300W,再逐渐上升至500W,经过三个周期。
本发明具有如下有益效果:
本发明通过在衬底和电极之间加入一层氧化物界面层,有效阻止了高温下衬底中Si、Ga、La等原子扩散至电极中。且本发明采用金属和氧化物渐变变化的复合电极,在金属电极中掺杂氧化物有利于阻碍金属电极在高温下的自扩散,能有效阻碍高温下电极的团聚与凸起,有效改善电极在高温下的退化现象,增加了器件的高温耐热性,可用于1200℃以上的高温环境,延长了器件在高温环境下的工作时间,使声表面波器件可以应用在一些军工、航空航天等高温复杂环境中。另外,本发明制备工艺简单、可靠。
附图说明
图1是本发明耐高温的声表面波传感器叉指电极的结构剖面图。
图2是本发明中复合电极层的结构示意图。
图3是本发明制备的叉指电极在1200℃保持1h后的扫描电子显微镜(SEM)照片。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
如图1所示,一种耐高温的声表面波传感器叉指电极,包括衬底1、氧化物界面层2、复合电极层3和氧化物保护层4;氧化物界面层2置于衬底1上,氧化物保护层4和多个复合电极层3均置于氧化物界面层2上,相邻复合电极层3之间设有间隙;氧化物保护层4包裹各复合电极层3;复合电极层3的材料为掺杂氧化物的金属。
作为一个优选实施例,衬底的材料包括但不限于硅酸镓镧、钇铁氧体、LiNbO3、AlN。
作为一个优选实施例,硅酸镓镧包括但不限于Ca3TaGa3Si2O14(CTGS)、La3Ga5.5Ta0.5O14(LGT)、La3Ga5.5Nb5.5O14(LGN)。
作为一个优选实施例,衬底的厚度为50μm~1000μm,表面粗糙度RMS在1nm以下。
作为一个优选实施例,氧化物界面层的材料包括但不限于Al2O3、ZrO2、SiO2、Y2O3、HfO2
作为一个优选实施例,氧化物界面层的厚度为5~100nm。
作为一个优选实施例,复合电极层3中的金属材料包括但不限于Pt、Rh、Ir。
作为一个优选实施例,复合电极层3中的氧化物材料包括但不限于Al2O3、ZrO2、SiO2、Y2O3、HfO2
作为一个优选实施例,复合电极层3的厚度为100~300nm。
作为一个优选实施例,复合电极层3中的氧化物掺杂浓度为非线性渐变,最低为0.01%,最高为10%。
作为一个更优选实施例,复合电极层3中的氧化物掺杂浓度由下至上呈正弦曲线变化,形成高氧化物浓度层5和低氧化物浓度层6依次交替的排布规律,且高氧化物浓度层5的氧化物浓度最大位置出现在高氧化物浓度层5的中间位置,如图2所示;其中,正弦曲线取0.5N个周期,N取值为1~20。
作为一个优选实施例,氧化物保护层4的材料包括但不限于Al2O3、ZrO2、SiO2、Y2O3、HfO2
作为一个优选实施例,氧化物保护层4的厚度为50~150nm。
该耐高温的声表面波传感器叉指电极的制备方法,包括如下步骤:
步骤一、选取切向为(0,138.5,117)的衬底,依次用丙酮、酒精和去离子水超声清洗5min,再用氮气吹干。
步骤二、将经步骤一处理后的衬底放入原子层沉积系统(型号为美国KurtJ.Lesker公司的ALD150LX)中,抽真空,沉积20nm的氧化物界面层。
步骤三、将步骤二处理得到的沉积氧化物界面层后的衬底依次经过涂胶、烘烤、对准、曝光、显影的光刻工艺处理,在氧化物界面层上得到复合电极层图案。
步骤四、将经步骤三光刻处理后的样片固定在磁控溅射系统(型号为美国DENTON公司的DISCOVERY635)的基片台上,然后将基片台放入真空室中,进行金属靶材与氧化物靶材的共溅射,在氧化物界面层上得到复合电极全覆盖层;其中,金属靶材的功率固定不变,氧化物靶材的功率随时间周期变化。
步骤五、将经步骤四处理后的样片泡在丙酮溶液中,超声10分钟,因为丙酮与光刻胶互溶,复合电极全覆盖层上除复合电极层图案以外的多余电极会脱离,从而得到复合电极层。
步骤六、将经步骤五处理后的样片放入磁控溅射系统的基片台上,然后将基片台放入真空室中,溅射50nm的氧化物保护层。
作为一个优选实施例,步骤四中,金属靶材为Pt靶材,氧化物靶材为Al2O3靶材。Pt靶材的直径为75mm,纯度为99.999%;AL203靶材的直径为75mm,纯度为99.999%。Pt靶材的功率为300W;AL203靶材的功率变化规律为从500W逐渐下降至300W,再逐渐上升至500W,经过三个周期。步骤四得到的复合电极全覆盖层为Pt与Al2O3复合的波浪式渐变电极层。
作为一个更优选实施例,步骤四中,复合电极全覆盖层的厚度为200nm。
如图3所示,本发明制备方法制备的叉指电极在1200℃保持1h后的扫描电子显微镜照片中,灰白色的为复合电极层3,可以看出复合电极层3有轻微的起泡现象,但复合电极层3整体依旧保持连续性。因此,本发明制备方法制备的叉指电极在高温下能有效阻碍电极的团聚与凸起,有效改善电极在高温下的退化现象,增加了器件的高温耐热性,延长了器件在高温环境下的工作时间,使声表面波器件可以应用在一些军工、航空航天等高温复杂环境中。

Claims (10)

1.一种耐高温的声表面波传感器叉指电极,包括衬底和氧化物保护层,其特征在于:还包括氧化物界面层和复合电极层;所述的氧化物界面层置于衬底上,氧化物保护层和多个复合电极层均置于氧化物界面层上,相邻复合电极层之间设有间隙;所述的氧化物保护层包裹各复合电极层;所述复合电极层的材料为掺杂氧化物的金属。
2.根据权利要求1所述一种耐高温的声表面波传感器叉指电极,其特征在于:所述衬底的材料为硅酸镓镧、钇铁氧体、LiNbO3或AlN。
3.根据权利要求1所述一种耐高温的声表面波传感器叉指电极,其特征在于:所述衬底的厚度为50μm~1000μm,表面粗糙度RMS在1nm以下。
4.根据权利要求1所述一种耐高温的声表面波传感器叉指电极,其特征在于:所述氧化物界面层的材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2
5.根据权利要求1所述一种耐高温的声表面波传感器叉指电极,其特征在于:所述复合电极层中的金属材料为Pt、Rh、Ir或其任意配比的合金。
6.根据权利要求1所述一种耐高温的声表面波传感器叉指电极,其特征在于:所述复合电极层中的氧化物材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2,所述氧化物保护层的材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2
7.根据权利要求1所述一种耐高温的声表面波传感器叉指电极,其特征在于:所述复合电极层中的氧化物掺杂浓度为非线性渐变,最低为0.01%,最高为10%。
8.根据权利要求7所述一种耐高温的声表面波传感器叉指电极,其特征在于:所述复合电极层中的氧化物掺杂浓度由下至上呈正弦曲线变化,形成高氧化物浓度层和低氧化物浓度层依次交替的排布规律,且高氧化物浓度层的氧化物浓度最大位置出现在高氧化物浓度层的中间位置;其中,正弦曲线取0.5N个周期,N取值为1~20。
9.根据权利要求1至8中任一项所述一种耐高温的声表面波传感器叉指电极的制备方法,其特征在于:该方法包括如下步骤:
步骤一、衬底的清洗与烘干处理;
步骤二、采用原子层沉积技术在经步骤一处理后的衬底上沉积一层厚度为5~100nm的氧化物界面层;
步骤三、将步骤二处理得到的沉积氧化物界面层后的衬底通过光刻工艺处理,在氧化物界面层上得到复合电极层图案;
步骤四、将经步骤三光刻处理后的样片采用磁控溅射技术进行金属靶材与氧化物靶材的共溅射,在氧化物界面层上得到复合电极全覆盖层;其中,金属靶材的功率固定不变,氧化物靶材的功率随时间周期变化;
步骤五、将经步骤四处理后的样片泡在丙酮溶液中,超声清洗,使得复合电极全覆盖层上除复合电极层图案以外的多余电极脱离;
步骤六、采用射频磁控溅射技术在经步骤五处理后的样片上制备一层厚度为50~150nm的氧化物保护层。
10.根据权利要求9所述一种耐高温的声表面波传感器叉指电极的制备方法,其特征在于:步骤四中,金属靶材为Pt靶材,氧化物靶材为Al2O3靶材;Pt靶材的直径为75mm,纯度为99.999%;AL203靶材的直径为75mm,纯度为99.999%;Pt靶材的功率为300W;AL203靶材的功率变化规律为从500W逐渐下降至300W,再逐渐上升至500W,经过三个周期。
CN202110321508.1A 2021-03-25 2021-03-25 一种耐高温的声表面波传感器叉指电极及其制备方法 Active CN113178517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110321508.1A CN113178517B (zh) 2021-03-25 2021-03-25 一种耐高温的声表面波传感器叉指电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110321508.1A CN113178517B (zh) 2021-03-25 2021-03-25 一种耐高温的声表面波传感器叉指电极及其制备方法

Publications (2)

Publication Number Publication Date
CN113178517A true CN113178517A (zh) 2021-07-27
CN113178517B CN113178517B (zh) 2022-11-04

Family

ID=76922319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110321508.1A Active CN113178517B (zh) 2021-03-25 2021-03-25 一种耐高温的声表面波传感器叉指电极及其制备方法

Country Status (1)

Country Link
CN (1) CN113178517B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980117A (zh) * 2015-06-15 2015-10-14 电子科技大学 一种耐高温的柔性声表面波器件及其制造方法
CN106338347A (zh) * 2016-11-02 2017-01-18 清华大学 一种高温声表面波传感器的叉指电极材料及其制备方法
CN109599551A (zh) * 2018-12-28 2019-04-09 安普瑞斯(南京)有限公司 一种用于锂离子电池的掺杂型多层核壳硅基复合材料及其制备方法
CN111188086A (zh) * 2020-02-27 2020-05-22 北京大学 一种超高导电多层单晶压合铜材料的制备方法及铜材料
CN111524803A (zh) * 2020-03-19 2020-08-11 浙江大学 一种用于高温传感的多层复合薄膜电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980117A (zh) * 2015-06-15 2015-10-14 电子科技大学 一种耐高温的柔性声表面波器件及其制造方法
CN106338347A (zh) * 2016-11-02 2017-01-18 清华大学 一种高温声表面波传感器的叉指电极材料及其制备方法
CN109599551A (zh) * 2018-12-28 2019-04-09 安普瑞斯(南京)有限公司 一种用于锂离子电池的掺杂型多层核壳硅基复合材料及其制备方法
CN111188086A (zh) * 2020-02-27 2020-05-22 北京大学 一种超高导电多层单晶压合铜材料的制备方法及铜材料
CN111524803A (zh) * 2020-03-19 2020-08-11 浙江大学 一种用于高温传感的多层复合薄膜电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINGPENG LIU: "Improvement of High-Temperature Stability of Al2O3/Pt/ZnO/Al2O3 Film Electrode for SAW Devices by Using Al2O3 Barrier Layer", 《MATERIALS》 *

Also Published As

Publication number Publication date
CN113178517B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
Hirai et al. Recent and prospective development of functionally graded materials in Japan
KR910005504A (ko) 고상선 전해질을 이용하는 연료 전지 및 이의 형성 방법
CN108493325A (zh) 一种高频高性能声表面波器件及其制备方法
CN111693601B (zh) 声表面波湿度传感器及其制作方法
CN113178517B (zh) 一种耐高温的声表面波传感器叉指电极及其制备方法
JP2019193242A (ja) 表面弾性波素子用複合基板とその製造方法
Bahadoran et al. The Ag layer thickness effect on the figure of merit of the AZO/Ag bilayer prepared by DC sputtering of AZO and thermal evaporation method of Ag
CN114657509A (zh) 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法
CN113186528B (zh) 一种铂金薄膜及其制备方法和用途
JP3941502B2 (ja) 表面弾性波素子
KR940002511B1 (ko) 산화주석 박막 가스 센서 소자
CN116855898A (zh) 一种C/SiC复合材料基底薄膜传感器用过渡层及其制备方法
CN109638070B (zh) 氧化物半导体材料、薄膜晶体管及制备方法和显示面板
JPH09257565A (ja) 酸化バナジウム薄膜及びそれを用いたボロメータ型赤外線センサ
CN110428923A (zh) 采用氧化锌层改善性能的金刚石肖特基同位素电池及其制备方法
CN106024586B (zh) 一种碳化硅表面清洁方法
CN108511535A (zh) 一种太阳能电池片及其制备方法
Sakharov et al. Technological process and resonator design optimization of Ir/LGS high temperature SAW devices
Kim et al. Strong (110) Texturing and Heteroepitaxial Growth of Thin Mo Films on MoS2 Monolayer
CN113178516B (zh) 具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
Sanjeeva et al. A strong dependence of sputtering power on c‐axis oriented aluminium nitride on Si (111): A structural and electrical study
CN116388722A (zh) 一种柔性云母衬底的耐高温声表面波器件及制造方法
JP2019161634A (ja) 表面弾性波素子用複合基板とその製造方法
CN113555418B (zh) 基于P区和I区渐变掺杂的4H-SiC PIN微波二极管及制作方法
Davies et al. Hot corrosion behavior of coated covalent ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant