CN113178478B - 一种铁电薄膜及其沉积方法、应用 - Google Patents

一种铁电薄膜及其沉积方法、应用 Download PDF

Info

Publication number
CN113178478B
CN113178478B CN202110275040.7A CN202110275040A CN113178478B CN 113178478 B CN113178478 B CN 113178478B CN 202110275040 A CN202110275040 A CN 202110275040A CN 113178478 B CN113178478 B CN 113178478B
Authority
CN
China
Prior art keywords
film
hfo
ions
ferroelectric
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110275040.7A
Other languages
English (en)
Other versions
CN113178478A (zh
Inventor
田国良
许高博
殷华湘
刘金彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202110275040.7A priority Critical patent/CN113178478B/zh
Publication of CN113178478A publication Critical patent/CN113178478A/zh
Application granted granted Critical
Publication of CN113178478B publication Critical patent/CN113178478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及一种铁电薄膜及其沉积方法。一种铁电薄膜的沉积方法,包括:在半导体载体沉积HfO2基薄膜;在所述HfO2基薄膜上沉积顶电极;向所述顶电极注入离子;退火。或者,一种铁电薄膜的沉积方法,包括:向半导体载体注入离子;沉积HfO2基薄膜;在所述HfO2基薄膜上沉积顶电极;退火。本发明能够有效地减少氧化铪基铁电薄膜中的氧空位缺陷,从而提升其可靠性。

Description

一种铁电薄膜及其沉积方法、应用
技术领域
本发明涉及半导体生产工艺领域,特别涉及一种铁电薄膜及其沉积方法、应用。
背景技术
HfO2基铁电材料是一种新型的铁电材料,具有优异的铁电性,与传统的PZT、BST等铁电材料相比,其与CMOS工艺兼容,且其较高的介电常数可以将薄膜厚度控制到很薄;其在低于10nm的超薄厚度下仍具有稳定的铁电性,而PZT、SBT等铁电材料在较厚是才能保持其铁电性,可以有效减小FeFET等器件的尺寸,从而提升芯片的集成度;不含有Pb元素,可以减少对环境的污染。氧化铪基铁电薄膜的生长方法有很多,其中原子层沉积(ALD)方法可以精确的控制薄膜厚度和组分,而且三维台阶覆盖较为均匀,适合未来三维器件的开发。
尽管HfO2基铁电材料具有优异的铁电性,但因氧空位等缺陷的存在,在初始的有限循环次数内因氧空位的重新分布而导致的wake-up效应(随着铁电材料极化反转次数的增加,剩余极化逐渐增加)、随着循环次数增加因氧空位等缺陷跃迁钉扎畴壁导致的疲劳效应(随着铁电材料极化反转次数的增加,剩余极化逐渐降低)和因铁电层中发生电荷俘获抵消了铁电层中的极化效应而导致保持特性较差等问题,这阻碍了其商业化的应用。现有改善HfO2基铁电材料可靠性的方案有多种,如界面优化、电极置换、特殊退火工艺处理等。但界面优化不能对铁电材料内部的缺陷进行有效钝化、一些特殊退火工艺处理与CMOS工艺不兼容而且成本较高、一些电极与CMOS工艺不兼容导致应用不灵活。因此,在制造大规模集成电路时,这些方案都具有局限性。
为此,提出本发明。
发明内容
本发明的主要目的在于提供一种铁电薄膜的沉积方法,该方法能够有效地减少氧化铪基铁电薄膜中的氧空位缺陷,从而提升其可靠性。
为了实现以上目的,本发明提供以下技术方案。
一种铁电薄膜的沉积方法,包括:
在半导体载体沉积HfO2基薄膜;
在所述HfO2基薄膜上沉积顶电极;
向所述顶电极注入离子;
退火。
或者,
一种铁电薄膜的沉积方法,包括:
向半导体载体注入离子;
沉积HfO2基薄膜;
在所述HfO2基薄膜上沉积顶电极;
退火。
与现有技术相比,本发明达到了以下技术效果。
(1)本发明注入离子与HfO2基铁电薄膜中氧空位耦合,消除了其对电子的捕获,有效地减少氧化铪基铁电薄膜中的氧空位缺陷,从而提升其可靠性。
(2)同时本发明的工艺与传统CMOS工艺兼容,且工艺简单成本较低,可在大规模生产中应用。
(3)该种方法克服了一些其他方法工艺复杂、成本较高和应用不灵活等缺点,可直接在薄膜的生长过程中改善其可靠性,无需在成膜后增加步骤。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
图1为本发明实施例1提供的铁电薄膜沉积方法的流程图;
图2为本发明实施例的氮离子与界面及材料内部的氧空位耦合从而消除其对电子的俘获的示意图;
图3为本发明实施例2提供的铁电薄膜沉积方法的流程图;
图4为本发明实施例的氟离子与界面及材料内部的氧空位耦合从而消除其对电子的俘获的示意图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
HfO2基铁电薄膜与体材料一样具有介电性、铁电开关效应、压电效应、热释电效应、电光效应、声光效应、光折射效应和非线性光学效应等一系列特性。既可单独利用上述诸效应制作出不同的功能器件,也可综合利用两个或两个以上的效应制作多功能器件、集成器件或机敏器件。然而由于其氧空位等缺陷的存在导致其可靠性低。为此,本发明在沉积薄膜之前或之后注入离子,利用该掺杂离子耦合氧空位耦合,消除了其对电子的捕获,有效地减少氧化铪(HfO2)基铁电薄膜中的氧空位缺陷,从而提升其可靠性,基本流程如下。
方法一如下。
提供半导体载体;该载体可以是是本领域技术人员熟知的任何用以承载半导体集成电路组成元件的底材,例如绝缘体上硅(silicon-on-insulator,SOI)、体硅(bulksilicon)、锗、锗硅、砷化镓或者绝缘体上锗等,相应的顶层半导体材料为硅、锗、锗硅或砷化镓等,也可以是已经在上述列举的衬底上加工了其他结构的载体,例如已制作栅极、晶体管等结构的载体。只要该载体的某一区域需要沉积HfO2基铁电薄膜都适用于本发明。该载体可预先清洁。
然后在半导体载体沉积HfO2基薄膜;该薄膜可采用单一的HfO2薄膜,也可以采用其与其他介电膜的复合膜,后者目前较为常用。例如依次沉积HfO2薄膜、其他介电薄膜(通常为其他元素的氧化物薄膜),或者调换两个薄膜的沉积顺序。其中,所述HfO2薄膜通常由铪前驱体与氧化剂反应生成。所述其他元素的氮氧化物薄膜由其他元素的前驱体与氧化剂反应生成,并且其他元素优选选自Al、Zr、La、Gd和Si中至少一种。二者所采用的沉积法包括但不限于LPCVD、ALD、RTCVD或者PECVD等手段,优选ALD(原子层沉积法),ALD是脉冲式供应反应气体和前驱体进行沉积的方法,即脉冲供应前驱体、氧化剂。
以ALD沉积所述HfO2薄膜为例,每个沉积循环内,依次供应铪前驱体、氧化剂。其中,铪前驱体包括但不限于四(乙基甲基酰胺基)铪(TEMAHf)、四(二甲基酰胺基)铪(IV)(TDMAHf)、四(二乙基酰胺基)铪(IV)(TDEAHf)、四氯化铪(HfCl4)、异丙氧化铪异丙醇加成物、叔丁氧化铪、二甲基双(环戊二烯基)铪、双(三甲基硅基)酰胺基氯化铪(IV)、双(甲基-环戊二烯基)甲氧基甲基铪、或双(甲基-环戊二烯基)二甲基铪中的一种或更多种。氧化剂可选用氧气、臭氧、水等。
在氧化反应完成后可以进行吹扫,以去除过量原料或副反应产物等杂质,即每个沉积循环内,依次供应铪前驱体、吹扫气体、氧化剂、吹扫气体。整个沉积循环的反应温度与前驱体直接相关,根据类型相应调整。
以ALD沉积所述其他元素的氧化物薄膜为例,每个沉积循环内,依次供应其他元素的前驱体、氧化剂。同样地,氧化剂可选用氧气、臭氧、水等。
同样在每次反应结束后增加吹扫,即每个沉积循环内,依次供应其他元素的前驱体、吹扫气体、氧化剂、吹扫气体。
在沉积以上两个薄膜时,采用的吹扫气体以不与反应物反应为优,例如惰性气体,两个薄膜沉积循环的次数不限。
接下来沉积顶电极,以便于在退火后使薄膜具有铁电性,顶电极的类型不限定,例如常见的各类金属。
然后注入离子,离子类型可以是VA族的离子或VII族的离子等带负电性的离子,例如氟F和氮N离子。
最后退火,可采用常规条件退火,例如400~1000℃。
本发明的以上方法无需改变电极,也无需在成膜后进行等离子体等处理,也无需特殊的退火工艺,只要采用HfO2基铁电薄膜的常见退火条件即可,因此与传统CMOS工艺可兼容。
方式二如下。
提供半导体载体;该载体可以是是本领域技术人员熟知的任何用以承载半导体集成电路组成元件的底材,例如绝缘体上硅(silicon-on-insulator,SOI)、体硅(bulksilicon)、锗、锗硅、砷化镓或者绝缘体上锗等,相应的顶层半导体材料为硅、锗、锗硅或砷化镓等,也可以是已经在上述列举的衬底上加工了其他结构的载体,例如已制作栅极、晶体管等结构的载体。只要该载体的某一区域需要沉积HfO2基铁电薄膜都适用于本发明。该载体可预先清洁。
向载体注入离子,离子类型可以是VA族的离子或VII族的离子等,例如氟F和氮N。
接下来沉积HfO2基薄膜,薄膜的沉积方法及材料类型如方式一所述。
然后沉积顶电极,以便于在退火后使薄膜具有铁电性,顶电极的类型不限定,例如常见的各类金属。
最后退火,可采用常规条件退火,例如400~1000℃。
本发明所述的以上两种方法都可以应用于铁电隧穿结FTJ、铁电场效应晶体管FeFET和铁电随机存取存储器FeRAM等的制作中。
本发明优选的实施例如下。
实施例1
如图1所示:
第一步,准备半导体载体;
第二步,向半导体载体注入F离子;
第三步,沉积HfO2基薄膜;
第四步,沉积顶电极;
第五步,退火,此时F离子与HfO2基铁电薄膜中氧空位耦合,消除了其对电子的捕获,如图2所示的原理示意图。
实施例2
如图3所示:
第一步,准备半导体载体;
第二步,沉积HfO2基薄膜;
第三步,沉积顶电极;
第四步,注入N离子;
第五步,退火,此时N离子与HfO2基铁电薄膜中氧空位耦合,消除了其对电子的捕获,如图4所示的原理示意图。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (6)

1.一种铁电薄膜的沉积方法,其特征在于,包括:
在半导体载体上沉积HfO2基薄膜;
在所述HfO2基薄膜上沉积顶电极;
向所述顶电极注入离子,所述注入的离子为负电性离子,为VA族的离子或VII族的离子;所述注入的离子与HfO2 基铁电薄膜中氧空位耦合,减少氧化铪基铁电薄膜中的氧空位缺陷;
退火,退火的温度为400~1000℃。
2.一种铁电薄膜的沉积方法,其特征在于,包括:
向半导体载体注入离子,所述注入的离子为负电性离子,为VA族的离子或VII族的离子;所述注入的离子与HfO2 基铁电薄膜中氧空位耦合,减少氧化铪基铁电薄膜中的氧空位缺陷;
沉积HfO2基薄膜;
在所述HfO2基薄膜上沉积顶电极;
退火,退火的温度为400~1000℃。
3.根据权利要求1或2所述的沉积方法,其特征在于,所述注入离子的条件为:能量范围3~30KeV ,剂量1e13~1e15。
4.根据权利要求1或2所述的沉积方法,其特征在于,所述HfO2基薄膜采用原子层沉积法形成。
5.根据权利要求1或2所述的沉积方法,其特征在于,所述HfO2基薄膜为复合薄膜。
6.根据权利要求5所述的沉积方法,其特征在于,所述HfO2基薄膜包括层叠的HfO2薄膜和其他介电薄膜;所述其他介电薄膜选自Al、Zr、La、Gd和Si中的一种的氧化物。
CN202110275040.7A 2021-03-15 2021-03-15 一种铁电薄膜及其沉积方法、应用 Active CN113178478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110275040.7A CN113178478B (zh) 2021-03-15 2021-03-15 一种铁电薄膜及其沉积方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110275040.7A CN113178478B (zh) 2021-03-15 2021-03-15 一种铁电薄膜及其沉积方法、应用

Publications (2)

Publication Number Publication Date
CN113178478A CN113178478A (zh) 2021-07-27
CN113178478B true CN113178478B (zh) 2023-04-07

Family

ID=76921999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110275040.7A Active CN113178478B (zh) 2021-03-15 2021-03-15 一种铁电薄膜及其沉积方法、应用

Country Status (1)

Country Link
CN (1) CN113178478B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111303A (ko) * 2017-03-31 2018-10-11 에스케이하이닉스 주식회사 강유전성 메모리 장치 및 그 제조 방법
CN107146759B (zh) * 2017-05-04 2020-06-05 湘潭大学 一种基于离子注入掺杂的氧化铪铁电栅制备方法
CN111945133A (zh) * 2020-07-31 2020-11-17 肇庆市华师大光电产业研究院 一种提升铪基铁电薄膜性能的方法和应用

Also Published As

Publication number Publication date
CN113178478A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN100355085C (zh) 半导体元件及其制造方法
KR100415538B1 (ko) 이중 유전막을 구비한 캐패시터 및 그 제조 방법
US8772050B2 (en) Zr-substituted BaTiO3 films
US7588988B2 (en) Method of forming apparatus having oxide films formed using atomic layer deposition
US7749879B2 (en) ALD of silicon films on germanium
US7510983B2 (en) Iridium/zirconium oxide structure
KR100351450B1 (ko) 비휘발성 메모리 소자 및 그 제조방법
EP1124262A2 (en) Multilayer dielectric stack and method
US20110298028A1 (en) Hafnium tantalum titanium oxide films
US20060264064A1 (en) Zirconium-doped tantalum oxide films
US7741170B2 (en) Dielectric structure in nonvolatile memory device and method for fabricating the same
TWI279891B (en) Method of manufacturing a flash memory cell
KR100373159B1 (ko) 반도체 소자의 캐패시터 제조방법
KR20030051224A (ko) 고유전율 게이트 산화막상의 강유전체 박막의mocvd용 시드층 프로세스
JP2001036031A (ja) 半導体メモリ素子のキャパシタ及びその製造方法
CN113178477B (zh) 一种HfO2基铁电薄膜及其沉积方法
CN113178478B (zh) 一种铁电薄膜及其沉积方法、应用
KR100431740B1 (ko) 고유전막을 구비한 반도체소자 및 그 제조 방법
CN114927525A (zh) 一种铁电存储器及其制备方法、应用
US7300852B2 (en) Method for manufacturing capacitor of semiconductor element
US20040023416A1 (en) Method for forming a paraelectric semiconductor device
KR100744026B1 (ko) 플래시 메모리 소자의 제조방법
KR100910220B1 (ko) 반도체소자의 유전체박막 제조방법
JPH10321739A (ja) 電界効果トランジスターおよびその製造方法
Ahn et al. Lanthanide doped TiO x dielectric films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant