CN113170265A - Mems麦克风组件和制造mems麦克风组件的方法 - Google Patents

Mems麦克风组件和制造mems麦克风组件的方法 Download PDF

Info

Publication number
CN113170265A
CN113170265A CN201980061623.0A CN201980061623A CN113170265A CN 113170265 A CN113170265 A CN 113170265A CN 201980061623 A CN201980061623 A CN 201980061623A CN 113170265 A CN113170265 A CN 113170265A
Authority
CN
China
Prior art keywords
wafer
cavity
mems
mems microphone
microphone assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980061623.0A
Other languages
English (en)
Other versions
CN113170265B (zh
Inventor
戈兰·斯托扬诺维奇
科林·斯蒂尔
西蒙·穆勒
托马斯·弗勒利希
艾瑞克·扬·劳斯
安德森·辛格拉尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMS CO LTD
Original Assignee
AMS CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMS CO LTD filed Critical AMS CO LTD
Publication of CN113170265A publication Critical patent/CN113170265A/zh
Application granted granted Critical
Publication of CN113170265B publication Critical patent/CN113170265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

一种微机电系统MEMS麦克风组件,包括限定第一腔(11)的壳体(10)和布置在第一腔(11)内的MEMS麦克风(20)。麦克风(20)包括具有接合结构(23)和MEMS膜片(24)的第一晶片(21),以及具有专用集成电路ASIC的第二晶片(22)。第二晶片(22)被接合至接合结构(23),使得在膜片(24)的第一侧(25)与第二膜片(22)之间形成间隙(28),该间隙(28)限定第二腔(31)。膜片(24)的第一侧(25)与第二腔(31)相接,并且膜片(24)的第二侧(26)经由壳体(10)的声学进入端口(12)与环境(2)相接。接合结构(23)被布置成使得形成连接第一腔(11)和第二腔(31)的压力通风开口(30)。

Description

MEMS麦克风组件和制造MEMS麦克风组件的方法
本公开内容涉及MEMS麦克风组件,尤其是基于光学MEMS麦克风的MEMS麦克风组件,以及制造MEMS麦克风组件的方法。
微机电系统(MEMS)麦克风被广泛用于现代消费电子产品中的音频应用。集成MEMS麦克风扮演重要角色的常见示例是便携式计算设备例如膝上型计算机、笔记本计算机和平板计算机,以及便携式通信设备例如智能电话或智能手表。由于这些设备的空间限制越来越大,因此部件变得越来越紧凑并且尺寸越来越小。由于以上也适用于这些设备中所使用的MEMS麦克风,因此其已成为具有复杂封装设计的高度集成的部件,并且具有容积小、音质高、可靠且价格可承受的特点。
要实现的目的是提供一种针对具有减小的尺寸和高灵敏度的紧凑型MEMS麦克风组件的改进概念。
该目的通过独立权利要求的主题来实现。在从属权利要求中限定了改进的概念的实施例和改进方案。
改进概念基于提供具有增加的有效后部容积的MEMS麦克风组件的思想。较大的后部容积相当于麦克风组件内部的MEMS膜片后面的空气具有较大的声学电容,导致声学阻抗降低,这是由于后部容积内的空气的有限的可压缩性而引起的。改进概念的补充方面的目的是由于膜片与专用集成电路ASIC之间的气流改善从而进一步降低声学阻抗,该ASIC通常布置在膜片附近并用于读出运动,即MEMS膜片的偏转。MEMS膜片例如是薄膜。
特别地,改进概念的MEMS麦克风组件包括壳体,该壳体限定第一腔并且具有将第一腔连接到组件的环境的声学进入端口。组件还包括布置在第一腔内的MEMS麦克风,该MEMS麦克风具有带有接合结构和MEMS膜片的第一晶片以及具有专用集成电路(ASIC)的第二晶片,其中该膜片具有第一侧和第二侧。
根据改进的概念,第二晶片被接合至第一晶片的接合结构,使得在膜片的第一侧与第二晶片之间形成间隙,其中,该间隙限定第二腔并且具有间隙高度。例如,根据标准晶片接合工艺,接合可以是例如黏性或共熔性的接合。在这样的组件中,膜片的第一侧与第二腔相接,并且膜片的第二侧经由声学进入端口与环境相接。此外,接合结构被布置成使得形成连接第一腔和第二腔的压力通风开口。
在这样的MEMS麦克风组件中,通常由MEMS膜片与ASIC之间的间隙限定的后部容积经由压力通风开口连接到由壳体限定的第一腔的容积,该容积通常用于封装目的。这样做的效果是,例如由于移动的膜片而导致的间隙内的空气的压缩会分布在明显更大量的空气上,从而增加其声学顺应性。
随着现代MEMS麦克风尺寸的不断减小,它们的后部容积也随之减小,这可能会导致更大的声学阻抗。这继而又会导致麦克风在灵敏度、频率响应和信噪比(SNR)等方面的音频性能下降。因此,增加后部容积的目的是降低声学阻抗,从而克服现有MEMS麦克风设备的局限性。
有了由MEMS晶片的接合结构限定的压力通风开口,其他的解决方案则不再需要,例如,诸如穿过ASIC晶片的通风开口,这意味着对用于ASIC的电子部件的空间的限制。
除了限定第一腔以外,根据改进概念的壳体还具有附加目的,即,使MEMS麦克风对于通过声学进入端口进入组件的声波是全向的。为此,第一晶片相对于声学进入端口被布置成使得第一腔和第二腔在声学进入端口的边界处与环境气密密封。例如,膜片相对于声学进入端口齐平安装。
该组件还可以包括从ASIC到外部电路的连接,例如通过穿过壳体的接线和/或馈通件。
在一些实施例中,间隙高度大于10μm,特别是等于或大于50μm。
常规MEMS麦克风的间隙高度通常为10μm或更小。对于电容式麦克风,为了通过获得所需的电容而仍具有足够的信噪比,间隙高度需要小至2μm。例如,依赖于对集成在MEMS膜片中的光栅的衍射现象进行光学检测的光学麦克风,同样具有间隙高度小于10μm的特点。因此,当位于间隙中的少量空气由于膜片的偏转降低了间隙高度而被压缩时,空气会对膜片的运动施加很大的阻抗。挤压后的阻抗可能是MEMS麦克风信噪比的限制因素。
如改进的概念所建议的那样,将间隙高度增加到明显高于10μm的值,意味着间隙内的空气量更大,从而导致了压缩的分布,因此导致整体上的更小的挤压阻抗,该挤压阻抗对MEMS膜片的偏转是具有破坏性作用的。
在这些实施例中,优选通过光学偏转测量方案例如从原子力显微镜中已知的光束偏转测量,或者通过光学干涉测量法来实现膜片偏转的读出。特别是对于这些测量方案,MEMS膜片以及其表面不需要为了读出的目的而被穿孔、图案化、结构化等,而是膜片在其整个表面区域上均具有平坦的顶部和底部表面。
在一些实施例中,压力通风开口由膜片的主延伸平面中膜片的夹持结构与接合结构之间的空隙限定。
在这样的实施例中,夹持结构被连接至接合结构,从而限定了间隙,该夹持结构将MEMS膜片悬挂并且可以另外用作将MEMS麦克风安装至壳体的声学进入端口的结构。例如,可以通过环形夹持结构在膜片的边界处将圆形膜片悬挂,并且在膜片的平面中,夹持结构可以借助于多个桥连接至同心但更大的环形接合结构。桥之间的空隙限定用作压力通风开口的间隙。
在一些替代实施例中,压力通风开口由接合结构的空隙限定。
作为上述实施例的替代,接合结构中的空隙可以替代地用作压力通风开口。对于具有环形夹持结构的圆形膜片的示例来说,可以在夹持结构底侧上的某些位置布置接合结构。这样,压力通风开口在接合后位于膜片的平面与ASIC芯片的顶表面之间。
在一些实施例中,第二晶片包括连接第一腔和第二腔的通风孔。
如果ASIC的电气部件的布置允许,则可以将一个或更多个通风孔集成到ASIC晶片中,以在第一腔与第二腔之间提供附加连接。这可以进一步改善气流,从而降低声学阻抗,尤其是对于气隙较小的设备。对于具有足够大的气隙即大于50μm的设备,ASIC晶片中的这些额外的通风孔只会导致声学阻抗(如果有的话)的微小的降低,因此这可能是没有必要的。
在一些实施例中,压力通风开口的至少一个尺寸对应于间隙高度。
设计压力通风开口以使得它们的高度等于间隙高度,使得能够最大程度地改善气流以及第一腔和第二腔的连接。
在一些实施例中,MEMS麦克风由第一晶片和第二晶片组成。
仅由两个晶片即用于MEMS膜片的第一晶片和用于ASIC的第二晶片组成的MEMS麦克风使得能够根据用于第一晶片的MEMS兼容工艺以及用于第二晶片的MEMS兼容工艺进行低成本和高收益的单独制造。与之不同的是,常规的麦克风通常采用更复杂的三晶片结构,其中第三晶片用作第一晶片与第二晶片之间的连接链路。此外,两晶片结构优于单晶片结构,这是因为单晶片结构需要同时考虑兼容MEMS和ASIC的制造工艺。
在制造的最后步骤中,两个晶片通过MEMS膜片与ASIC晶片的顶表面之间的间隙接合在一起。可以根据标准晶圆级接合技术来执行接合。特别地,例如,第一晶片的接合结构被接合至第二晶片上的接合垫,使得晶片仅在用于限定压力通风开口的特定点处被接合。
特别是不需要额外的晶片,例如包括背板诸如穿孔的背板,确保即使是大的间隙高度也能实现紧凑的装配。
在一些实施例中,组件还包括至少具有光源和探测器的光学读出组件,其中,光学读出组件被配置成检测膜片的点或表面的位移,特别是膜片的第一侧的点或表面的位移。
如上所述,采用电容读出方案或基于衍射现象的光学读出方案的常规MEMS麦克风具有非常小的间隙高度的限制,以便能够首先检测到膜片的任何偏转。与之不同,采用光学偏转测量方案,例如原子力显微镜中常用的光束偏转测量或干涉测量,这两者都旨在以高灵敏度光学测量膜片的点或表面的偏转,允许使用更大的间隙高度,使得降低影响膜片的运动的声学阻抗。在这些实施例中,ASIC可以包括诸如激光器的并且照射膜片的面向ASIC的第一侧上的特定点或特定表面的相干光源。因此,膜片的偏转可以由ASIC的光学检测器读出,所述光学检测器例如分段的光电二极管或检测器,该检测器被配置成在干涉测量方案的情况下将反射光与从组件的静止点或表面反射的参考光束进行比较。
在一些实施例中,壳体包括压力均衡开口。
替代地,在一些实施例中,膜片还包括压力均衡开口。
静态气压水平通常围绕海平面1013hPa的标准大气压水平进行几十hPa的波动。由于声压级大约为1Pa,并且可能小至20μPa,这被认为是人类听力的阈值,因此,环境和传声器组件内部的同等压力水平对于检测由声波引起的微小压力波动是绝对必要的。为了确保由第一腔和第二腔限定的后部容积中的静态压力与环境的静态压力相等,在这些实施例中,麦克风组件包括压力均衡孔。该孔能够例如由位于壳体中或MEMS膜片中的压力均衡开口限定。
在一些其他的实施方式中,压力均衡开口被配置成用作纵波的高通滤波器,尤其是截止频率为20Hz至100Hz的高通滤波器。
由于麦克风通常用于感测覆盖20Hz至20KHz的频率的音频频带中的纵波,因此需要在该频带中的带通滤波器。虽然上截止频率通常由MEMS膜片的机械共振确定,但壳体的特性、尤其是封闭后容积的大小和声学电容以及压力均衡开口的声学电容确定了麦克风的下截止频率。为了实现期望的具有Hz量级截止频率的高通滤波器,在具有给定壳体的麦克风组件的这些实施例中的压力通风开口的大小通常为1μm至10μm的量级。
该目的还通过一种包括根据所述实施例之一的MEMS麦克风组件的电子设备来解决,该电子设备例如压力感测设备或通信设备,其中,MEMS麦克风被配置为全方位地检测环境中的动态压力变化,尤其是与音频频率相对应的速率下的动态压力变化。
根据上述实施例之一的MEMS麦克风组件可以方便地用于需要紧凑的高灵敏度传感器来检测较小的动态压力变化的各种应用中,尤其是在音频带中检测声波。因此,本发明旨在用于诸如膝上型计算机、笔记本计算机和平板计算机的便携式计算设备中以及诸如智能电话、智能手表和耳机的便携式通信设备中,在这些设备中,用于附加部件的空间是非常有限的。
非专注于音频带的应用是被配置为检测由各种频率的振动引起的压力波的传感器设备。这种应用的示例是地震传感器和用于通过近场感测来监视各种表面的振动的传感器设备。例如,MEMS麦克风被附接到电动马达的表面以用于监测其振动,并且向电动马达的控制器提供测量信号以用于其操作的调整。
该目的通过制造微机电系统MEMS麦克风组件的方法进一步解决。该方法包括提供限定第一腔的壳体,其中该壳体包括将第一腔连接至组件的环境的声学进入端口。该方法还包括将MEMS麦克风的第一晶片和第二晶片布置在第一腔内,其中,第一晶片包括MEMS膜片和接合结构,第二晶片包括专用集成电路ASIC。根据该方法,第二晶片被接合至第一晶片的接合结构,使得在膜片与第二晶片之间形成间隙,其中,间隙限定第二腔并且具有间隙高度。此外,第一晶片被布置为使得膜片的第一侧与第二腔相接,并且膜片的第二侧经由声学进入端口与环境相接。接合结构被布置成使得形成连接第一腔和第二腔的压力通风开口。
通过麦克风组件的实施例,该方法的其他实施例对于本领域技术人员是明显的。
以下对示例性实施例的附图的描述可以进一步说明和解释改进概念的各方面。麦克风组件的具有相同结构和相同效果的部件和零件分别以相同的附图标记表示。在不同附图中,麦克风组件的部件和零件的功能只要是相对应的,则对于以下附图中的每一个将不再重复其描述。
图1示出了根据改进概念的MEMS麦克风组件的MEMS麦克风的示例性实施例;
图2示出了根据改进概念的MEMS麦克风组件的MEMS麦克风的另一示例性实施例;
图3示出了根据改进概念的MEMS麦克风组件的示例性实施例;
图4示出了根据改进概念的MEMS麦克风组件的另一示例性实施例;
图5示出了根据改进概念的MEMS麦克风组件的另一示例性实施例;
图6示出了根据改进概念的MEMS麦克风组件的另一示例性实施例;
图7示出了图5所示的MEMS麦克风组件的实施例的声学噪声特性。
图1示出了根据改进概念的MEMS麦克风组件1的MEMS麦克风20的示例性实施例。特别地,图1在中心处以俯视图并且分别在顶部和底部以在虚拟切口x和y处的两个截面视图示出了麦克风20。
MEMS麦克风20包括第一晶片21,其经由第一晶片21上的环形接合结构23接合至第二晶片22。除了接合结构23之外,第一晶片21还包括MEMS膜片24,该MEMS膜片在该示例中为圆形,该MEMS膜片被悬挂并夹持至环形夹持结构27。被配置为对声波敏感的膜片的典型直径为0.5mm至1.5mm。夹持结构27在某些点处经由桥29连接至接合结构23,在该示例中是经由围绕夹持结构27的周长均匀布置的四个桥29连接至接合结构,以使得压力通风开口30由桥29、夹持结构27和接合结构23形成的空隙限定。因此,在该实施例中,压力通风开口30位于膜片24的主延伸平面中,并且将第二腔31连接至由壳体10限定的第一腔11,该壳体在该图中未示出。MEMS膜片24可以由氮化硅制成,并且夹持结构27、接合结构23和桥29可以由相同的材料例如硅或不同的材料制成。
第一晶片21通过标准的晶圆接合技术接合至第二晶片22,该技术可以是例如粘黏性或共熔性的接合。第二晶片22除了包括专用集成电路ASIC之外还包括例如接合垫,其在尺寸、形状和位置方面优选地对应于第一晶片21的接合结构23。执行接合使得在膜片24的第一侧25与第二晶片22的顶表面33之间形成间隙28,其中,该间隙限定第二31。间隙高度大于10μm,特别是等于或大于50μm。压力通风开口30的宽度通常具有相似的尺寸。
第二晶片22上的ASIC被配置为测量膜片24的运动,例如由于膜片24的振动而引起的周期性偏转。如果麦克风是光学麦克风,则ASIC可以例如包括相干光源例如激光器,其被配置为照射膜片24的第一侧25上的点或表面。ASIC还可以包括检测器,该检测器被配置为检测从膜片24的第一侧25上的点或表面反射的来自光源的光,并基于检测到的光生成电信号。例如,检测器可以是分段的光电二极管。ASIC还可以包括处理单元,该处理单元被配置为将电信号映射为偏转信号并将该信号输出到输出端口。替代地,ASIC可以被配置为经由输出端口将电信号输出至外部处理单元。
图2示出了根据改进概念的MEMS麦克风组件1的MEMS麦克风20的另一示例性实施例。本实施例基于图1所示的实施例。类似地,图2在中心处以俯视图并且分别在顶部和底部以在虚拟切口x和y处的两个截面视图示出了麦克风20。
与图1所示的实施例不同,这里,接合结构23被布置在膜片24的夹持结构27与第二晶片22的顶表面33之间。在该示例中,接合结构23仅由围绕膜片24的周长均匀布置的桥限定。这样,在第一晶片21和第二晶片22接合之后,限定了压力通风开口30。特别地,围绕膜片24的周长的接合结构23的空隙限定了压力通风开口,该压力通风开口待布置在夹持结构27与第二晶片22的顶表面之间,并且其高度对应于间隙高度,该高度同样大于10μm,特别是等于或大于50μm。
另外,在该实施例中,第二晶片22还包括可选的通风孔32,该通风孔与压力通风开口30类似地将第二腔31连接至由未示出的壳体10限定的第一腔11。
图3示出了根据改进概念的示例性MEMS麦克风组件1。该组件包括限定第一腔11作为其封闭容积的壳体10。壳体10包括侧壁15和PCB板14,该PCB板具有开口,用作诸如声波等的进入压力波的声学进入端口12,从而使该麦克风组件1成为底部端口麦克风组件。在该实施例中的壳体还包括压力均衡开口13,该压力均衡开口将第一腔11连接至环境2,例如气体(诸如空气)的环境2,以确保环境2和第一腔11的压力相等。利用该压力均衡开口13,环境2的静态压力的变化传播到麦克风组件中,从而使其对诸如声波的动态压力变化具有不变的灵敏性。
压力均衡开口13的尺寸为1μm至10μm,因此用作对于声学麦克风配置截止频率通常为20-100Hz的麦克风组件1的高通滤波器。麦克风组件的上截止频率通常由MEMS膜片24的机械共振决定,通常约为20kHz。
壳体10可以由包括PCB板14和侧壁15的第三晶片形成,但是可以替代地由例如金属或聚合物的通用壳体形成。PCB板14可以包括电触点,其将麦克风信号输出到诸如电子设备的微处理器之类的外部处理单元。
在壳体10内,即在第一腔11内,例如根据上述实施例之一的MEMS麦克风20相对于声学进入端口12被布置成使得第一腔室11在声学进入端口12的边界处与环境2气密密封。例如,夹持结构27被安装至PCB板14,使得麦克风20的MEMS膜片24与声学进入端口12齐平安装。这样,麦克风组件1变成了全方位的,即对以不同入射角进入声学进入端口12的声波敏感,这是因为入射压力波只能撞击在膜片24的第二侧26上而不能进入第一腔11或第二腔31,并经由膜片的第一侧25破坏性地影响膜片24的偏转或运动。
膜片24、夹持结构27、接合结构23和带有用于检测膜片24的偏转的ASIC的第二晶片22通过间隙28限定第二腔31。压力通风开口30连接第一腔11和第二腔22,从而显著增加MEMS麦克风20的后部容积。这种增加的后部容积降低了对膜片24的运动产生破坏性影响的声学阻抗,从而降低了所检测到的声波的信噪比。该增加归因于以下事实:由于压缩而导致的气压增加通过压力通风开口30分布在麦克风组件1的由第一腔11和第二腔31限定的整个容积中。麦克风组件1内部的箭头表示在膜片24朝向第二晶片22运动的情况下的气压流动。
为了读出,第二晶片22上的ASIC的输出端口可以例如经由馈通件电连接至PCB板14的面向环境2的一侧上的触点。
大间隙28、由于压力通风开口30所致使的大后部容积以及压力均衡开口13的组合使得能够实现由于声学阻抗而产生的低噪声,也就是说,麦克风组件对200μPa量级的声压具有很高的灵敏度,这是仅高于人类听力阈值一个数量级,并且相当于19dB的声压级(SPL)。
图4示出了根据改进概念的另一示例性MEMS麦克风组件1。与图3相比,该实施例的特征在于,压力均衡开口13在膜片24中间的可选位置。尽管膜片24的基本振动模式即蹦床模式在该点处具有最大偏转,并因此测量将产生最高的信噪比,但通常来说,膜片的高阶模式具有较高的相关性,这是因为这些模式的频率位于感兴趣的频带中。最佳测量点,即这些高阶模式的波腹不一定在膜片24的中心。
另外,所示的实施例除了包括压力通风开口30之外还包括第二晶片22中的可选的通风孔32,该可选的通风孔用作第一腔11与第二腔31之间的附加连接,这潜在地进一步降低了声学阻抗。同样,麦克风组件1内部的箭头表示在膜片24朝向第二晶片22运动的情况下的气压流动。
图5示出了根据改进概念的另一示例性MEMS麦克风组件1。该实施例包括根据图2所示的实施例的麦克风20。特别地,压力通风开口在此被布置在夹持结构27与第二晶片22之间并且在高度上与间隙28的间隙高度相对应。与图3和图4所示的实施例相比,该实施例的特征在于甚至更低的噪声水平,即更高的灵敏度,能够在在18.5dB处以降低了约0.5dB的声压水平操作。
类似于图4中所示的实施例,图6中的实施例的特征在于可选的通风孔32和位于膜片24中的压力均衡开口13。
图7示出了图5所示的麦克风组件1的模拟声学噪声与间隙28的间隙高度之间的关系。不同的迹线t1-t3示出了不同的噪声贡献,而迹线t4和t5示出了有效的总噪声。
特别地,t3示出了由于膜片的偏转而导致的第二腔31中的空气的压缩或挤压而产生的声学噪声。迹线t1和t2分别表示在具有和不具有压力通风开口30的情况下,由于第二晶片22中所存在的开口32所引起的声学噪声。轨迹t4和t5分别构成麦克风组件1的在第二晶片22中具有和不具有开口32的实施例的总声学噪声。特别是对于间隙高度为50μm或更大的情况,开口32对总噪声水平的影响很微小,因此例如为ASIC的附件部件留出空间的做法是过时的。该特定实施例的噪声水平为174μPa,这表明对于该特定示例性实施例,对于50μm的间隙高度,最小可检测声压水平为18.8dB。
如所陈述的在图1至图6中示出的实施例表示麦克风20和麦克风组件1的示例性实施例,因此它们并不构成根据改进概念的所有实施例的完整列表。实际的麦克风和麦克风组件的构造可以在例如形状、尺寸和材料方面与所示的实施例不同。例如,麦克风组件1可以被配置为前部端口麦克风组件,这对于某些应用可能是有益的。
根据所示实施例之一的MEMS麦克风组件可以方便地用于需要紧凑的高灵敏度传感器来检测较小的动态压力变化的各种应用中,尤其是在音频带中检测声波。可能的应用包括在诸如膝上型计算机、笔记本计算机和平板计算机的计算设备中以及在诸如智能电话和智能手表的便携式通信设备中用作声学麦克风,在这些设备中,用于附加部件的空间是非常有限的。
附图标记说明
1 麦克风组件
2 环境
10 壳体
11 第一腔
12 声学进入端口
13 压力均衡开口
14 PCB板
15 侧壁
20 MEMS麦克风
21 第一晶片
22 第二晶片
23 接合结构
24 MEMS膜片
25 第一侧
26 第二侧
27 夹持结构
28 间隙
29 桥
30 压力通风开口
31 第二腔
32 开口
33 顶表面
t1-t5 声学噪声迹线。

Claims (15)

1.一种微机电系统MEMS麦克风组件(1),包括
-壳体(10),其限定第一腔(11),所述壳体(10)包括将所述第一腔(11)连接至所述组件(1)的环境(2)的声学进入端口(12);
-MEMS麦克风(20),其布置在所述第一腔(11)内,所述麦克风(20)包括具有接合结构(23)和MEMS膜片(24)的第一晶片(21)以及具有专用集成电路ASIC的第二晶片(22),所述膜片(24)具有第一侧(25)和第二侧(26);
其中,
-所述第二晶片(22)被接合至所述第一晶片(21)的接合结构(23),使得在所述膜片(24)的第一侧(25)与所述第二晶片(22)之间形成间隙(28),其中,所述间隙(28)限定第二腔(31)并具有间隙高度;
-所述膜片(24)的第一侧(25)与所述第二腔(31)相接,并且所述膜片(24)的第二侧(26)经由所述声学进入端口(12)与所述环境(2)相接;并且
-所述接合结构(23)被布置成使得形成连接所述第一腔(11)和所述第二腔(31)的压力通风开口(30)。
2.根据权利要求1所述的MEMS麦克风组件(1),其中,所述间隙高度大于10μm,尤其是等于或大于50μm。
3.根据权利要求1或2所述的MEMS麦克风组件(1),其中,所述压力通风开口(30)由以下限定:
-在所述膜片(24)的主延伸平面中所述膜片(24)的夹持结构(27)与所述接合结构(23)之间的空隙;或者
-所述接合结构(23)的空隙。
4.根据权利要求1至3之一所述的MEMS麦克风组件(1),其中,所述第二晶片(22)包括连接所述第一腔(11)和所述第二腔(31)的开口(32)。
5.根据权利要求1至4之一所述的MEMS麦克风组件(1),其中,所述压力通风开口(30)的至少一个尺寸对应于所述间隙高度。
6.根据权利要求1至5之一所述的MEMS麦克风组件(1),其中,所述MEMS麦克风(20)包括所述第一晶片(21)和所述第二晶片(22)。
7.根据权利要求1至6之一所述的MEMS麦克风组件(1),还包括至少具有光源和探测器的光学读出组件,其中,所述光学读出组件被配置成检测所述膜片(24)的点或表面的位移,尤其是所述膜片(24)的第一侧(25)的点或表面的位移。
8.根据权利要求1至7之一所述的MEMS麦克风组件(1),其中,所述壳体(10)包括压力均衡开口(13)。
9.根据权利要求1至7之一所述的MEMS麦克风组件(1),其中,所述膜片(24)还包括压力均衡开口(13)。
10.根据权利要求8或9所述的MEMS麦克风组件(1),其中,所述压力均衡开口(13)被配置成用作针对纵波的高通滤波器,尤其是用作截止频率为20Hz至100Hz的高通滤波器。
11.一种包括根据权利要求1至10之一所述的MEMS麦克风组件(1)的电子设备,所述电子设备例如是压力感测设备或通信设备,其中,所述MEMS麦克风组件(1)被配置成全方位地检测环境中的动态压力变化,尤其是与音频频率相对应的速率下的动态压力变化。
12.一种制造微机电系统MEMS麦克风组件(1)的方法,所述方法包括
-提供限定第一腔(11)的壳体(10),所述壳体(10)包括将所述第一腔(11)连接至所述组件(1)的环境(2)的声学进入端口(12);
-将MEMS麦克风(20)的第一晶片(21)布置在所述第一腔(11)内,所述第一晶片(21)包括MEMS膜片(24)和接合结构(23);以及
-将所述MEMS麦克风(20)的第二晶片(22)布置在所述第一腔(11)内,所述第二晶片(22)包括专用集成电路ASIC;
其中,
-所述第二晶片(22)被接合至所述接合结构(23),使得在所述膜片(24)与所述第二晶片(22)之间形成间隙(28),其中,所述间隙(28)限定第二腔(31)并具有间隙高度;
-所述膜片(24)的第一侧与所述第二腔(31)相接,并且所述膜片(24)的第二侧(26)经由所述声学进入端口(12)与所述环境(2)相接;以及
-所述接合结构(23)被布置成使得形成连接所述第一腔(11)和所述第二腔(31)的压力通风开口(30)。
13.根据权利要求12所述的方法,其中,所述第一晶片(21)相对于所述声学进入端口(12)被布置成使得所述第一腔(11)在所述声学进入端口(12)的边界处与所述环境(2)气密密封。
14.根据权利要求12或13所述的方法,其中,所述间隙高度大于10μm,尤其是等于或大于50μm。
15.根据权利要求12至14之一所述的方法,其中,所述压力通风开口(30)由以下限定:
-在所述膜片的主延伸平面中所述第一晶片(21)的夹持结构(27)与所述接合结构(23)之间的空隙;或者
-所述接合结构(23)的空隙。
CN201980061623.0A 2018-09-26 2019-09-17 Mems麦克风组件和制造mems麦克风组件的方法 Active CN113170265B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18196920.5 2018-09-26
EP18196920.5A EP3629597B1 (en) 2018-09-26 2018-09-26 Mems microphone assembly and method for fabricating a mems microphone assembly
PCT/EP2019/074844 WO2020064428A1 (en) 2018-09-26 2019-09-17 Mems microphone assembly and method for fabricating a mems microphone assembly

Publications (2)

Publication Number Publication Date
CN113170265A true CN113170265A (zh) 2021-07-23
CN113170265B CN113170265B (zh) 2022-09-20

Family

ID=63708097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980061623.0A Active CN113170265B (zh) 2018-09-26 2019-09-17 Mems麦克风组件和制造mems麦克风组件的方法

Country Status (4)

Country Link
US (1) US11477581B2 (zh)
EP (1) EP3629597B1 (zh)
CN (1) CN113170265B (zh)
WO (1) WO2020064428A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11259104B2 (en) * 2020-06-23 2022-02-22 Knowles Electronics, Llc Adapters for microphones and combinations thereof
CN112804629B (zh) * 2021-01-19 2022-08-19 潍坊歌尔微电子有限公司 麦克风结构和电子设备

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157301A1 (en) * 2007-01-03 2008-07-03 Stats Chippac, Inc. Leadframe package for mems microphone assembly
US20090169035A1 (en) * 2006-03-30 2009-07-02 Pulse Mems Aps Single Die MEMS Acoustic Transducer and Manufacturing Method
CN101631739A (zh) * 2006-03-20 2010-01-20 沃福森微电子股份有限公司 用于制造mems麦克风的方法
EP2252077A1 (en) * 2009-05-11 2010-11-17 STMicroelectronics Srl Assembly of a capacitive acoustic transducer of the microelectromechanical type and package thereof
US20130051598A1 (en) * 2010-04-21 2013-02-28 Knowles Electronics Asia Pte. Ltd. Microphone
US20130119492A1 (en) * 2010-01-29 2013-05-16 Epcos Ag Miniaturized Electrical Component Comprising an MEMS and an ASIC and Production Method
US9193581B1 (en) * 2014-07-31 2015-11-24 Merry Electronics (Shenzhen) Co., Ltd. MEMS microphone package structure having an improved carrier and a method of manufacturing same
US20150350793A1 (en) * 2014-06-03 2015-12-03 Invensense, Inc. Top port microelectromechanical systems microphone
WO2016091592A1 (de) * 2014-12-10 2016-06-16 Epcos Ag Geschirmtes wafer-level-package für ein mems-mikrofon und verfahren zur herstellung
CN105830465A (zh) * 2013-10-30 2016-08-03 美商楼氏电子有限公司 声学组件及其制造方法
CN106101975A (zh) * 2015-04-16 2016-11-09 罗伯特·博世有限公司 用于在mems组件的层结构中制造麦克风结构和压力传感器结构的方法
US20170230758A1 (en) * 2016-02-04 2017-08-10 Knowles Electronics, Llc Microphone and pressure sensor
US9860623B1 (en) * 2016-07-13 2018-01-02 Knowles Electronics, Llc Stacked chip microphone
US20180160218A1 (en) * 2016-12-07 2018-06-07 Apple Inc. Mems microphone with increased back volume
CN112470492A (zh) * 2018-07-23 2021-03-09 美商楼氏电子有限公司 具有电感滤波的麦克风装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI303094B (en) * 2005-03-16 2008-11-11 Yamaha Corp Semiconductor device, method for manufacturing semiconductor device, and cover frame
US7903835B2 (en) * 2006-10-18 2011-03-08 The Research Foundation Of State University Of New York Miniature non-directional microphone
DE102011075260B4 (de) * 2011-05-04 2012-12-06 Robert Bosch Gmbh MEMS-Mikrofon
DE102012107457B4 (de) * 2012-08-14 2017-05-24 Tdk Corporation MEMS-Bauelement mit Membran und Verfahren zur Herstellung
US9510074B2 (en) * 2014-07-07 2016-11-29 Apple Inc. Grating only optical microphone
US10679640B2 (en) * 2018-08-16 2020-06-09 Harman International Industries, Incorporated Cardioid microphone adaptive filter
US11012790B2 (en) * 2018-08-17 2021-05-18 Invensense, Inc. Flipchip package

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631739A (zh) * 2006-03-20 2010-01-20 沃福森微电子股份有限公司 用于制造mems麦克风的方法
US20090169035A1 (en) * 2006-03-30 2009-07-02 Pulse Mems Aps Single Die MEMS Acoustic Transducer and Manufacturing Method
US20080157301A1 (en) * 2007-01-03 2008-07-03 Stats Chippac, Inc. Leadframe package for mems microphone assembly
EP2252077A1 (en) * 2009-05-11 2010-11-17 STMicroelectronics Srl Assembly of a capacitive acoustic transducer of the microelectromechanical type and package thereof
US20130119492A1 (en) * 2010-01-29 2013-05-16 Epcos Ag Miniaturized Electrical Component Comprising an MEMS and an ASIC and Production Method
US20130051598A1 (en) * 2010-04-21 2013-02-28 Knowles Electronics Asia Pte. Ltd. Microphone
CN105830465A (zh) * 2013-10-30 2016-08-03 美商楼氏电子有限公司 声学组件及其制造方法
US20150350793A1 (en) * 2014-06-03 2015-12-03 Invensense, Inc. Top port microelectromechanical systems microphone
US9193581B1 (en) * 2014-07-31 2015-11-24 Merry Electronics (Shenzhen) Co., Ltd. MEMS microphone package structure having an improved carrier and a method of manufacturing same
WO2016091592A1 (de) * 2014-12-10 2016-06-16 Epcos Ag Geschirmtes wafer-level-package für ein mems-mikrofon und verfahren zur herstellung
CN106101975A (zh) * 2015-04-16 2016-11-09 罗伯特·博世有限公司 用于在mems组件的层结构中制造麦克风结构和压力传感器结构的方法
US20170230758A1 (en) * 2016-02-04 2017-08-10 Knowles Electronics, Llc Microphone and pressure sensor
US9860623B1 (en) * 2016-07-13 2018-01-02 Knowles Electronics, Llc Stacked chip microphone
US20180160218A1 (en) * 2016-12-07 2018-06-07 Apple Inc. Mems microphone with increased back volume
CN112470492A (zh) * 2018-07-23 2021-03-09 美商楼氏电子有限公司 具有电感滤波的麦克风装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周建民: "提升MEMS麦克风灵敏度的设计方法", 《集成电路应用》 *
赵正平: "移动互联网络时代MEMS技术的创新发展", 《微纳电子技术》 *

Also Published As

Publication number Publication date
US20220038825A1 (en) 2022-02-03
US11477581B2 (en) 2022-10-18
CN113170265B (zh) 2022-09-20
EP3629597B1 (en) 2021-07-07
EP3629597A1 (en) 2020-04-01
WO2020064428A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US9628919B2 (en) Wafer level assembly of a MEMS sensor device and related MEMS sensor device
CN111479179B (zh) 微机电系统
KR101512583B1 (ko) 음향 트랜스듀서 및 그 음향 트랜스듀서를 이용한 마이크로폰
US8520878B2 (en) Microphone unit
KR101320573B1 (ko) 멤스 마이크로폰
US20130028459A1 (en) Monolithic Silicon Microphone
CN113170265B (zh) Mems麦克风组件和制造mems麦克风组件的方法
KR101452396B1 (ko) 복수의 음향통과홀을 구비한 멤스 마이크로폰
KR20210020910A (ko) 광학 마이크 조립체
JP4468280B2 (ja) マイクロホン装置
KR20210148211A (ko) 마이크로폰 하우징
US11895452B2 (en) Bone conduction microphone
KR20220076347A (ko) 감소된 크기를 갖는 마이크로-전기기계 트랜스듀서
US5802198A (en) Hermetically sealed condenser microphone
CN218679380U (zh) 振动传感器
US11510012B2 (en) Integrated optical transducer and method for fabricating an integrated optical transducer
JP2006332799A (ja) 音響センサ
US20200404430A1 (en) Device for Sensing a Motion of a Deflective Surface
TWI833802B (zh) 集成式光學傳感器及其製造方法
CN219145557U (zh) 一种麦克风结构及电子设备
KR101496200B1 (ko) 복수의 진동판을 구비한 멤스 마이크로폰
JP2019161456A (ja) 音響センサ素子及び音響センサパッケージ
JP2006325034A (ja) 音響センサ
KR20240008497A (ko) 멤스 마이크로폰 패키지
CN116529556A (zh) 声学传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant