CN113130325B - 平面超晶格纳米线场效应晶体管及其制备方法 - Google Patents

平面超晶格纳米线场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN113130325B
CN113130325B CN202110404186.7A CN202110404186A CN113130325B CN 113130325 B CN113130325 B CN 113130325B CN 202110404186 A CN202110404186 A CN 202110404186A CN 113130325 B CN113130325 B CN 113130325B
Authority
CN
China
Prior art keywords
layer
silicon
nanowire
superlattice
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110404186.7A
Other languages
English (en)
Other versions
CN113130325A (zh
Inventor
余林蔚
刘帅帅
王军转
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202110404186.7A priority Critical patent/CN113130325B/zh
Publication of CN113130325A publication Critical patent/CN113130325A/zh
Application granted granted Critical
Publication of CN113130325B publication Critical patent/CN113130325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于半导体技术领域,公开了一种平面超晶格纳米线场效应晶体管及其制备方法,本发明是通过分区淀积叠层非晶锗硅前驱体生长出可精确定位的分区超晶格纳米线,通过光刻或者EBL的方法在超晶格区域的纳米线两侧做源漏电极,接着根据需要选择性刻蚀纳米线超晶格结构区域的晶体锗或者晶硅,在源漏电极之间留下纳米片状的晶体硅或者晶体锗作为导电沟道;然后淀积一层栅介质,最后通过光刻或EBL的方法在源漏电极之间做栅电极即完成制备Fin‑FET。

Description

平面超晶格纳米线场效应晶体管及其制备方法
技术领域
本发明涉及一种平面超晶格纳米线场效应晶体管及其制备方法,属于半导体技术领域。
背景技术
随着不断扩展到5纳米节点以上,新型高迁移率通道材料已被考虑用于Fin-FET(鳍式场效应晶体管)或纳米线器件,如pMOSFETs中的Ge或SiGe和nMOSFETs中的Si或III/V族材料。目前的高迁移率的fin多采用异质外延生长超晶格结构,结合刻蚀技术制备,但是成本较高,工艺复杂。
为了更好地与平面硅工艺相兼容,并实现定位集成,本申请发明人在平面固液固生长机理(IP-SLS)上曾申请过专利号201710653561.5,名称为一种基于异质叠层非晶薄膜供给的平面锗硅及相关纳米线生长形貌和组分调控的方法:其中采用异质叠层非晶硅和非晶锗层作为前驱体供给层,由低熔点金属铟、锡纳米颗粒吸收非晶层在平面衬底上直接生长硅锗超晶格纳米线,纳米线的生长方向受到衬底上沟道的引导。另外,本申请发明人还曾申请公开号为CN 112366521 A,公开了一种在平面超晶格纳米线上组装量子点激光器的方法,通过分区淀积叠层非晶锗硅前驱体生长出可精确定位的分区超晶格纳米线,并选择性刻蚀纳米线超晶格结构区域的晶体锗。
经发明人研究发现,将生长好的硅锗超晶格纳米线经过湿法、干法刻蚀工艺发现,可以选择性的刻蚀掉纳米线上的晶体硅、锗,这样原来连续的超晶格纳米线变成了分立的尺寸规则的纳米薄片分布在衬底上。纳米线的直径可以通过催化剂的尺寸以及前驱体的厚度调控,即纳米线薄片的长度可以得到调控。这样有可能通过结合光刻和干法刻蚀的简单工艺制备出小尺寸、高性能的Fin-FET器件。
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明通过分区淀积叠层非晶锗硅前驱体生长出可精确定位的分区超晶格纳米线,通过光刻或者EBL的方法在超晶格区域的纳米线两侧做源漏电极,接着根据需要选择性刻蚀纳米线超晶格结构区域的晶体锗或者晶硅,在源漏电极之间留下纳米片状的晶体硅或者晶体锗作为导电沟道;然后淀积一层栅介质,最后通过光刻或EBL的方法在源漏电极之间做栅电极即完成制备Fin-FET。
技术方案:平面超晶格纳米线场效应晶体管的制备方法,其特征在于,包括以下步骤:
1)利用PECVD或者PVD工艺在衬底材料上淀积一层200~1000 nm厚的绝缘介质层;
2)利用光刻、电子束直写或者掩膜板技术定义引导台阶图案,利用电感耦合等离子体刻蚀ICP或者反应离子体刻蚀工艺RIE ,通入SF6、C4F8、CF4或者Ar对所述光刻胶掩膜层暴露的绝缘介质层进行刻蚀形成垂直台阶侧壁;
3)在刻蚀的引导台阶一端,通过光刻、热蒸发工艺或者溅射工艺,垂直于引导台阶长度方向局部淀积一层厚度为10~100 nm的带状催化金属层;在PECVD中升温至催化金属层熔点以上,通入还原性气体等离子体进行处理,使覆盖在所述引导台阶一端的带状催化金属层转变为分离的金属纳米颗粒;
4)将温度降低到金属纳米颗粒熔点以下,在整个样品结构表面先淀积一层非晶锗,利用光刻和ICP或RIE刻蚀工艺在引导台阶的特定区域留下非晶锗区域,然后在整个衬底表面淀积一层非晶硅作为前驱体薄膜层;
5)在真空或者惰性气体保护的环境中,将温度升高至催化金属熔点以上,使得金属纳米颗粒重新熔化,在其前端开始吸收非晶层,后端析出晶态的纳米线;所述晶态的纳米线借助引导台阶作为引导沟道平行生长,获得平行生长于引导台阶的可精确定位的局部有锗硅超晶格结构的纳米线阵列;
6)使用氨水清除纳米线周围剩余的非晶层前驱体薄膜层;
7)通过光刻或者电子束曝光EBL在有硅锗超晶格结构的纳米线两侧做源漏电极图案,通过电子束蒸发EBE蒸镀金属作为源漏电极;
8)通过选择性刻蚀硅锗材料技术刻蚀掉超晶格纳米线上的硅或锗的部分得到源漏电极间只有锗或硅的纳米片连接;
9)在样品上淀积栅介质层,然后再通过光刻或者电子束曝光EBL在源漏电极之间的区域做栅电极图案,蒸镀金属做栅电极,制备完成场效应晶体管。
作为优选,所述步骤1)中,所述的衬底材料为晶硅、玻璃、铝箔、氮化硅、氧化硅、碳化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸类塑料。
作为优选,所述步骤1)中,所述绝缘介质层的厚度为100~600 nm。
作为优选,所述步骤4)衬底上的所述特定区域处的前驱体薄膜层为非晶硅a-Si和非晶锗a-Ge的异质叠层结构,其他区域为单层的非晶硅薄膜。
作为优选,在所述步骤4)引导台阶和衬底上,每层前驱体薄膜层的覆盖厚度在2~500 nm。
作为优选,所述步骤7)中根据纳米线的直径选择光刻或电子束蒸发EBL制备电极图案;所述源漏电极为双层金属,第一层金属作为粘附层,为Pt、Ti或Cr金属,厚度1~10 nm,第二层金属为Au,厚度20~100 nm。
作为优选,所述步骤8)中选择性刻蚀硅锗材料技术包括湿法刻蚀和干法刻蚀;其中,刻蚀超晶格纳米线上的晶体锗选择干法刻蚀,在RIE或ICP中使用SF6、CF或C4F8氟基气体刻蚀超晶格区域的晶体锗;刻蚀纳米线上的晶体硅选择湿法刻蚀,选用氨水、NaOH溶液或KOH碱性溶液刻蚀纳米线上的晶体硅。
作为优选,所述步骤9)栅介质层材料可以选择氮化硅、氧化硅、氧化铝或氧化铪高K介质,厚度1~50 nm;栅电极为单层金属Au或Al,或者跟源漏电极一致选择双层金属。
本发明还保护了一种平面超晶格纳米线场效应晶体管,是基于上述场效应晶体管的方法制备,其特征在于:包括绝缘衬底,所述衬底上有凹槽结构;所述衬底的凹槽结构中具有至少两个平行排列的纳米片,所述纳米片之间具有间距;所述纳米片的两端分别与源极、漏极接触;所述衬底、纳米片和源漏电极的上面具有栅介质层;所述栅介质层的上方具有栅电极,且栅电极位于凹槽处的纳米片的上方,宽度与源漏电极之间的纳米片的长度相同,栅电极覆盖源漏电极之间所有的纳米片。
有益效果:与现有技术相比,本发明具有以下优点:
1)在利用IP-SLS生长技术制备的纳米线的超晶格的区域两侧搭上电极后,为了得到晶体硅纳米薄片,将样品放入在RIE或ICP中使用氟基的气体,如SF6、CF4、C4F8刻蚀超晶格区域的晶体锗;为了得到晶体锗纳米薄片,可使用碱性溶液刻蚀纳米线上的晶体硅。
2)结合光刻的方法,通过选择性刻蚀工艺处理超晶格纳米线即可得到硅锗两种不同材料的纳米尺寸的导电通道。
3)本发明在平面超晶格纳米线上制备Fin-FET的方法,提供了一种制备FET的纳米导电通道的新颖方法,其中纳米导电通道的尺寸可调范围:宽度在1~20 nm,长度在1~300nm。该方法可准确定位纳米线、操作简单、成本低且可以大批量制备,有望发展成为制备小尺寸Fin-FET的先进技术。
附图说明
图1是实施例1在制备平面超晶格纳米线上的流程示意图;
图2是实施例1在平面超晶格纳米线上制备Fin-FET的示意图;
图3是实施例1Fin-FET器件的完整示意图及局部剖视图。
其中,图1(a)衬底预处理示意图;图1(b)在衬底上淀积一层介质层示意图;图1(c)为刻蚀绝缘介质层形成垂直引导台阶示意图;图1(d)为引导台阶一端淀积条带状催化金属层示意图;图1(e)为氢等离子体处理形成催化金属液滴示意图;图1(f)为覆盖非晶锗薄膜示意图;图1(g)为光刻和RIE处理非晶锗层示意图;图1(h)为覆盖非晶硅薄膜示意图;图1(i)为生长出有超晶格结构的纳米线阵列示意图;图2(a)是在纳米线的超晶格区域做上电极后示意图;图2(b)是干法或湿法刻蚀后在源漏电极之间形成纳米片的示意图;图2(c)是淀积栅介质后的示意图;图2(d)是做好栅电极后完整Fin-FET器件的示意图;图3(a)是完整Fin-FET器件的示意图;图3(b)是图3(a)中虚线处结构剖视图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
如图3所示,本实施例提供一种平面超晶格纳米线场效应晶体管,包括绝缘衬底,衬底上有凹槽结构;衬底的凹槽结构中具有至少两个平行排列的纳米片,纳米片之间具有间距;纳米片的两端分别与源极、漏极接触;衬底、纳米片和源漏电极的上表面具有栅介质层;栅介质层的上方具有栅电极,且栅电极位于凹槽处的纳米片的上方,宽度与源漏电极之间的纳米片的长度相同,栅电极覆盖源漏电极之间所有的纳米片。
本实施例上述平面超晶格纳米线场效应晶体管的制备方法具体包括以下几个步骤:
1)对衬底材料进行预处理后沉积一层绝缘介质
如图1(a)、图1(b)所示:本实施例中的衬底可以为晶硅、玻璃、铝箔、氮化硅、氧化硅、碳化硅、蓝宝石、PI(聚酰亚胺)或者PET(聚对苯二甲酸类塑料),利用PECVD或者PVD工艺淀积一层200~1000 nm厚的绝缘介质层。
作为优选,本实施例淀积一层100~600 nm厚的绝缘介质层,绝缘介质层的材料为氧化硅或者氮化硅。
2)刻蚀绝缘介质层形成垂直引导台阶
如图1(c)所示,利用光刻、电子束直写或者掩膜板技术定义引导台阶,利用电感耦合等离子体(ICP)刻蚀或者反应离子体刻蚀(RIE)工艺刻蚀介质层形成垂直台阶侧壁;刻蚀厚度不能超过绝缘介质层的厚度。
3)淀积一条带状催化金属层
如图1(d)所示,在引导台阶的一端通过光刻、热蒸发工艺或者溅射工艺,垂直于引导台阶的长度方向局部淀积一层厚度为20~100 nm的带状催化金属层;然后把样品放到PECVD中,升高温度至催化金属层熔点以上,通入氢气、氨气等还原性气体等离子体进行处理,使覆盖在引导台阶一端的带状催化金属层转变为分离的金属纳米颗粒,如图1(e)所示。
作为优选,本实施例中的催化金属为铟。
4)异质叠层结构的制备
如图1(f)、图1(g)及图1(h)所示:将温度降低到金属纳米颗粒熔点以下,在整个样品结构表面淀积非晶锗,然后从PECVD中取出做光刻,光刻胶保护与引导沟道垂直的特定区域的非晶锗,接着在ICP或RIE中通入CF4刻蚀暴露出的非晶锗,经过liftoff去除光刻胶后,在引导沟道上特定区域留下了非晶锗(α-Ge),然后再放入PECVD中在整个表面淀积一层非晶硅(α-Si)。这样在引导沟道上特定区域处形成的前驱体薄膜层为异质叠层(a-Ge/a-Si)结构,其他部分是单层非晶硅薄膜层。
作为优选,在引导台阶上,异质叠层结构或者单层非晶硅薄膜的覆盖厚度分别在2~500 nm之间。
5)制备锗硅超晶格纳米线
如图1(i)所示:在真空或者惰性气体保护的环境中,将温度升高至催化金属熔点以上,使得金属纳米颗粒重新熔化,在其前端开始吸收非晶层,而在后端淀积出晶态的纳米线;借助引导台阶,获得平行生长于引导台阶上的锗硅超晶格纳米线。
6)超晶格结构的纳米线两侧做源漏电极
如图2(a)所示:根据生长的纳米线的直径选择借助光刻或者EBL的方法,在具有超晶格结构的纳米线的两侧做源漏电极图案,然后在EBE中蒸镀双层金属,第一层金属作为粘附层,一般为Pt、Ti、Cr等金属,厚度在1~10 nm之间;第二层金属为Au,厚度在1~100 nm之间。
作为优选,本实施例中使用EBL在超晶格结构的纳米线上两侧做电极图案,粘附层选择Pt,第二层金属选择Au。
7)刻蚀源漏电极之间的超晶格纳米线
如图2(b)所示:根据需要选择刻蚀工艺,其中刻蚀超晶格纳米线上的晶体锗选择干法刻蚀,在RIE或ICP中使用氟基的气体,如SF6、CF4、C4F8等;刻蚀纳米线上的晶体硅选择湿法刻蚀,选用碱性溶液,如氨水、NaOH溶液、KOH溶液等。
作为优选,本实施例中选择干法刻蚀,在RIE中使用CF4刻蚀,去掉超晶格纳米线上的晶体锗,留下硅纳米薄片作为源漏电极之间的导电通道。
8)淀积栅介质层
如图2(c)所示:刻蚀后的样品上淀积栅介质层,可以通过PECVD或者ALD淀积。栅介质材料可以选择氮化硅、氧化硅、氧化铝,氧化铪等高K介质,厚度在1~50 nm之间。
作为优选,本实施例中选择通过ALD淀积氧化铪作为栅介质。
9)制备栅电极
使用光刻或者EBL在源漏电极之间制作栅电极图案,然后通过磁控,EBE或ALD淀积金属。栅电极可用单层金属Au、Al等,或者跟源漏电极一致选择双层金属。制备好的Fin-FET器件如图2(d)、图3(a)、图3(b)所示。
10)电学性能
使用超晶格纳米薄片制备的高性能场效应晶体管的开关电流比Ion/Ioff在108以上,亚阈值摆幅(SS)接近60 mV/dec。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (9)

1.平面超晶格纳米线场效应晶体管的制备方法,其特征在于,包括以下步骤:
1)利用PECVD或者PVD工艺在衬底材料上淀积一层200~1000 nm厚的绝缘介质层;
2)利用光刻、电子束直写或者掩膜板技术定义引导台阶图案,利用电感耦合等离子体刻蚀ICP或者反应离子体刻蚀工艺RIE ,通入SF6、C4F8、CF4或者Ar对所述光刻胶掩膜层暴露的绝缘介质层进行刻蚀形成垂直台阶侧壁;
3)在刻蚀的引导台阶一端,通过光刻、热蒸发工艺或者溅射工艺,垂直于引导台阶长度方向局部淀积一层厚度为10~100 nm的带状催化金属层;在PECVD中升温至催化金属层熔点以上,通入还原性气体等离子体进行处理,使覆盖在所述引导台阶一端的带状催化金属层转变为分离的金属纳米颗粒;
4)将温度降低到金属纳米颗粒熔点以下,在整个样品结构表面先淀积一层非晶锗,利用光刻和ICP或RIE刻蚀工艺在引导台阶的特定区域留下非晶锗区域,然后在整个衬底表面淀积一层非晶硅作为前驱体薄膜层;
5)在真空或者惰性气体保护的环境中,将温度升高至催化金属熔点以上,使得金属纳米颗粒重新熔化,在其前端开始吸收非晶层,后端析出晶态的纳米线;所述晶态的纳米线借助引导台阶作为引导沟道平行生长,获得平行生长于引导台阶的可精确定位的局部有锗硅超晶格结构的纳米线阵列;
6)使用氨水清除纳米线周围剩余的非晶层前驱体薄膜层;
7)通过光刻或者电子束曝光EBL在有硅锗超晶格结构的纳米线两侧做源漏电极图案,通过电子束蒸发EBE蒸镀金属作为源漏电极;
8)通过选择性刻蚀硅锗材料技术刻蚀掉超晶格纳米线上的硅或锗的部分得到源漏电极间只有锗或硅的纳米片连接;
9)在样品上淀积栅介质层,然后再通过光刻或者电子束曝光EBL在源漏电极之间的区域做栅电极图案,蒸镀金属做栅电极,制备完成场效应晶体管。
2.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于,所述步骤1)中,所述的衬底材料为晶硅、玻璃、铝箔、氮化硅、氧化硅、碳化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸类塑料。
3.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于:所述步骤1)中,所述绝缘介质层的厚度为100~600 nm。
4.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于:所述步骤4)衬底上的所述特定区域处的前驱体薄膜层为非晶硅a-Si和非晶锗a-Ge的异质叠层结构,其他区域为单层的非晶硅薄膜。
5.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于:在所述步骤4)引导台阶和衬底上,每层前驱体薄膜层的覆盖厚度在2~500 nm。
6.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于:所述步骤7)中根据纳米线的直径选择光刻或电子束蒸发EBL制备电极图案;所述源漏电极为双层金属,第一层金属作为粘附层,为Pt、Ti或Cr金属,厚度1~10 nm,第二层金属为Au,厚度20~100 nm。
7.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于:所述步骤8)中选择性刻蚀硅锗材料技术包括湿法刻蚀和干法刻蚀;其中,刻蚀超晶格纳米线上的晶体锗选择干法刻蚀,在RIE或ICP中使用SF6、CF或C4F8氟基气体刻蚀超晶格区域的晶体锗;刻蚀纳米线上的晶体硅选择湿法刻蚀,选用氨水、NaOH溶液或KOH碱性溶液刻蚀纳米线上的晶体硅。
8.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于:所述步骤9)栅介质层材料选择氮化硅、氧化硅、氧化铝或氧化铪高K介质,厚度1~50 nm;栅电极为单层金属Au或Al,或者跟源漏电极一致选择双层金属。
9.根据权利要求1所述的平面超晶格纳米线场效应晶体管的制备方法,其特征在于:所述的平面超晶格纳米线场效应晶体管包括绝缘衬底,所述衬底上有凹槽结构;所述衬底的凹槽结构中具有至少两个平行排列的纳米片,所述纳米片之间具有间距;所述纳米片的两端分别与源极、漏极接触;所述衬底、纳米片和源漏电极的上表面具有栅介质层;所述栅介质层的上方具有栅电极,且栅电极位于凹槽处的纳米片的上方,宽度与源漏电极之间的纳米片的长度相同,栅电极覆盖源漏电极之间所有的纳米片。
CN202110404186.7A 2021-04-15 2021-04-15 平面超晶格纳米线场效应晶体管及其制备方法 Active CN113130325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110404186.7A CN113130325B (zh) 2021-04-15 2021-04-15 平面超晶格纳米线场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110404186.7A CN113130325B (zh) 2021-04-15 2021-04-15 平面超晶格纳米线场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN113130325A CN113130325A (zh) 2021-07-16
CN113130325B true CN113130325B (zh) 2023-05-05

Family

ID=76776503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110404186.7A Active CN113130325B (zh) 2021-04-15 2021-04-15 平面超晶格纳米线场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN113130325B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968571B (zh) * 2021-10-21 2023-06-06 南京大学 一种防串扰自限制的超细密排晶硅纳米线制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258738A (zh) * 2012-02-20 2013-08-21 中芯国际集成电路制造(上海)有限公司 超晶格纳米线场效应晶体管及其形成方法
US10032867B1 (en) * 2017-03-07 2018-07-24 International Business Machines Corporation Forming bottom isolation layer for nanosheet technology
CN110034015A (zh) * 2019-04-19 2019-07-19 中国科学院微电子研究所 一种纳米线围栅器件的形成方法
CN112366521A (zh) * 2020-10-27 2021-02-12 南京大学 一种在平面超晶格纳米线上组装量子点激光器的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11756996B2 (en) * 2018-04-20 2023-09-12 International Business Machines Corporation Formation of wrap-around-contact for gate-all-around nanosheet FET
US10957798B2 (en) * 2019-02-06 2021-03-23 International Business Machines Corporation Nanosheet transistors with transverse strained channel regions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258738A (zh) * 2012-02-20 2013-08-21 中芯国际集成电路制造(上海)有限公司 超晶格纳米线场效应晶体管及其形成方法
US10032867B1 (en) * 2017-03-07 2018-07-24 International Business Machines Corporation Forming bottom isolation layer for nanosheet technology
CN110034015A (zh) * 2019-04-19 2019-07-19 中国科学院微电子研究所 一种纳米线围栅器件的形成方法
CN112366521A (zh) * 2020-10-27 2021-02-12 南京大学 一种在平面超晶格纳米线上组装量子点激光器的方法

Also Published As

Publication number Publication date
CN113130325A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
US8344358B2 (en) Graphene transistor with a self-aligned gate
US8354296B2 (en) Semiconductor structure and circuit including ordered arrangement of graphene nanoribbons, and methods of forming same
US8105928B2 (en) Graphene based switching device having a tunable bandgap
US9064748B2 (en) Graphene and nanotube/nanowire transistor with a self-aligned gate structure on transparent substrates and method of making same
US8471249B2 (en) Carbon field effect transistors having charged monolayers to reduce parasitic resistance
KR20060117692A (ko) 실리콘 나노와이어 기판 및 그 제조방법, 그리고 이를이용한 박막 트랜지스터의 제조방법
JP2006508523A (ja) 自己整合型ナノチューブ電界効果トランジスタおよびこれを製造する方法
US20180323387A1 (en) Unipolar N- or P-Type Carbon Nanotube Transistors and Methods of Manufacture Thereof
KR101919426B1 (ko) 그래핀 전자 소자 및 그 제조 방법
CN113130325B (zh) 平面超晶格纳米线场效应晶体管及其制备方法
US10541135B2 (en) Source and drain formation using self-aligned processes
CN111446288A (zh) 基于二维材料的ns叠层晶体管及其制备方法
CN112259608B (zh) 使用SiC基材料作为衬底的碳纳米管晶体管及其制备方法
TWI744188B (zh) 鰭式場效電晶體裝置和其形成方法
US20230154939A1 (en) Array substrate, preparation method thereof, and display panel
US20240105821A1 (en) Structure of two-dimensional material-based device having air-gap and method for preparing same
CN114203822A (zh) 一种基于过渡金属硫化物的栅极环绕型晶体管及制备方法
CN116666207A (zh) 基于聚焦离子束刻蚀石墨烯纳米带阵列的场效应晶体管及其制备方法
CN110783461A (zh) 晶体管及其制造方法
CN113764586A (zh) 一种窄带隙半导体晶体管及其制备方法
WO2012094353A1 (en) Transistor including multi-layer reentrant profile
JP2007165918A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant