CN113122802A - 基于等离激元颗粒的防蓝光保护膜制备方法 - Google Patents

基于等离激元颗粒的防蓝光保护膜制备方法 Download PDF

Info

Publication number
CN113122802A
CN113122802A CN202110410956.9A CN202110410956A CN113122802A CN 113122802 A CN113122802 A CN 113122802A CN 202110410956 A CN202110410956 A CN 202110410956A CN 113122802 A CN113122802 A CN 113122802A
Authority
CN
China
Prior art keywords
film
silver
transparent
layer
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110410956.9A
Other languages
English (en)
Other versions
CN113122802B (zh
Inventor
李艳
褚博
钟发成
谭茜文
麻华丽
原圣
王妍妍
曾凡光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202110410956.9A priority Critical patent/CN113122802B/zh
Publication of CN113122802A publication Critical patent/CN113122802A/zh
Application granted granted Critical
Publication of CN113122802B publication Critical patent/CN113122802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

基于等离激元颗粒的防蓝光保护膜制备方法,包括以下步骤:在透明基体上镀一层银膜;退火处理,在透明基体表面得到银纳米颗粒;使用原子层沉积方法在银纳米颗粒外部包裹一层氧化铝透明介质层,形成银‑氧化铝核壳结构;在氧化铝透明介质层上方镀一层二氧化硅透明薄膜;在二氧化硅透明薄膜表面镀一层金膜;退火处理,得到金纳米颗粒;使用原子层沉积方法在金纳米颗粒外部包裹一层二氧化钛透明介质层,形成金‑二氧化钛核壳结构;在二氧化钛透明介质层上方镀一层二氧化硅透明薄膜。本发明通过简单的镀膜和退火工艺,能够形成形状规则且大小、共振波段可控的纳米颗粒,从而有效吸收蓝光并减小薄膜发黄,具有重要的应用价值。

Description

基于等离激元颗粒的防蓝光保护膜制备方法
技术领域
本发明属于透明显示技术领域,具体涉及一种基于等离激元颗粒的防蓝光保护膜制备方法。
背景技术
电子产品现已成为人们生活和学习不可缺少的重要工具,手机、电脑、电视等电子产品会通过显示屏向人眼辐射蓝光(波长400nm-500nm),其中波长在425-450nm的短波蓝光对人眼有害。在有大量蓝光辐射的环境中工作,经常会感到眼痛、眼胀、近视加重等眼科问题,长时间受到蓝光照射,人眼的视觉细胞会受到损伤,能量较高的蓝光能够使眼睛内的黄斑区毒素量增多,诱发盲眼病,严重影响青少年及老年群体的健康。
随着人们对健康问题越来越重视,蓝光危害问题势必会成为人们健康之路上一道显眼的阻碍。因此减少蓝光辐射量逐渐成为当前研究的热点,并将成为未来电子产品性能优良的一项重要指标,市场前景广阔。
为减少蓝光危害,常用的办法是在电子产品屏幕上方贴一层保护膜,来减少蓝光的辐射量。这种具有减小蓝光辐射量的薄膜制备方式大致有两大类:
其一在于在基体之上涂覆或喷涂具有蓝光吸收功能的吸收剂(如:CN105353436A等)、使用强化液交联吸收剂的方式(如:CN103992672A等)以及使用防蓝光膜成膜液(如:CN109320969A),来实现防蓝光功能。这种薄膜制备工艺存在着流程复杂、使用物品繁多以及制备周期长等诸多不便。
另一类减小蓝光辐射的方法在于使用纳米颗粒吸收层。CN106154384A 、CN108047981A使用镀膜的方法在基体上方镀上具有一定厚度的二氧化钛,或三氧化二铟,或氧化铁或硫化镉,或硒化镉纳米颗粒层来增强对蓝光的吸收,但不足之处在于纳米颗粒形状、大小难以控制、且需要纳米颗粒层厚度较大、成本高; CN111522080A使用由核壳结构微球形成的光子晶体材料制备防蓝光保护膜,但所用的核壳结构制备工艺繁琐,且颗粒分布难以保证均匀。这种薄膜放置一段时间后会出现泛黄的现象,影响其透光效果。
因此,需要发展一种技术简单、能有效吸收有害蓝光且可以减少薄膜泛黄的技术。
金属微纳结构的表面等离激元共振逐渐成为当前物理、化学、材料、信息科学等学科及其交叉领域的研究热点。具有波长选择性的等离激元颗粒能够增强可见光在某一波段的吸收率,将其调控在蓝光波段即可减小蓝光危害。另一方面使用不同种金属纳米颗粒可以吸收蓝光的同时,有效吸收黄光。颗粒材料相比上述材料,更加简单易制,有望解决当前问题。
发明内容
为了解决现有技术中的不足之处,提供一种工艺简单、造价低、金属颗粒分布均匀、防蓝光效果好的基于等离激元颗粒的防蓝光保护膜制备方法。
为解决上述技术问题,本发明采用如下技术方案:基于等离激元颗粒的防蓝光保护膜制备方法,包括以下步骤:
(1)使用溅射镀膜或蒸发镀膜在透明基体上镀一层银膜,透明基体的材料采用玻璃、塑料、树脂或聚合物;
(2)对所镀银膜的透明基体放入退火装置内进行退火处理;
(3)退火处理后在透明基体表面得到银纳米颗粒,银纳米颗粒尺寸与膜厚度有关;根据Mie散射理论计算得出颗粒尺寸;
(4)使用原子层沉积方法在银纳米颗粒外部包裹一层氧化铝透明介质层,形成银-氧化铝核壳结构;
(5)采用溅射或蒸发镀膜法在氧化铝透明介质层上方镀一层二氧化硅透明薄膜;
(6)采用如步骤(1)的方式在二氧化硅透明薄膜表面镀一层金膜;
(7)采用如步骤(2)的方式对所镀金膜的透明基体放入退火装置内进行退火处理;
(8)退火处理后得到金纳米颗粒,金纳米颗粒尺寸与膜厚度有关;根据Mie散射理论计算得出颗粒尺寸;
(9)采用如步骤(4)的方式使用原子层沉积方法在金纳米颗粒外部包裹一层二氧化钛透明介质层,形成金-二氧化钛核壳结构;
(10)采用如步骤(5)的方式在二氧化钛透明介质层上方镀一层二氧化硅透明薄膜。
步骤(1)使用电子束热蒸发镀膜仪在玻璃表面镀银膜,具体步骤如下:将清洗洁净的8cm×8cm的光学玻璃放入电子束热蒸发镀膜仪的基片架上,将纯度99.99%的银颗粒放入蒸发用的钨坩埚内,真空度抽到5×10-4Pa以下,开始镀膜;在镀膜过程中可通过控制电子束电流大小控制镀膜速率,通过调节镀膜速率和时间控制膜厚。
步骤(1)使用氩离子溅射镀膜仪在玻璃表面镀银,具体步骤如下:把清洗洁净的8cm×8cm的光学玻璃放入氩离子溅射镀膜仪的样品杆载物台内,将样品杆载物台推入氩离子溅射镀膜仪中,抽真空,待真空度抽到5×10-4Pa以下,开始溅射镀膜;调节电子枪工作电压和电流,推荐参数7kv/300uA,银的镀膜速率为8nm/min;最终得到的银颗粒尺寸与镀膜时间有关,时间分别控制为15S、30S、45S、60S、75S得到膜状结构,其中30S-75S的银颗粒为岛状。
步骤(2)中的退火装置包括底座,底座上设有圆筒箱,圆筒箱的中心线沿左右方向水平设置,圆筒箱的内圆沿圆周方向均匀设有若干根加热管,圆筒箱的左侧面板中心和右侧面板中心之间转动设有一根空心轴,空心轴外部相对两侧分别固定设有一个空心吸盘,空心轴左端穿出圆筒箱的左侧面板并通过一个旋转接头连接有抽真空管,抽真空管连接有真空泵,圆筒箱的右侧面板右侧设有电机,电机的主轴与空心轴的右端同轴线传动连接,圆筒箱的左侧面板上设有箱门,圆筒箱的右侧面板上部设有进气管。
每根加热管均平行于圆筒箱的中心线,每根加热管右端均伸出圆筒箱的右侧面板并固定连接有一个接线柱,所有的接线柱通过导线串联,导线连接有电源线;圆筒箱内设有温度传感器;圆筒箱内在所有加热管的内侧固定设有圆筒状的隔离网;圆筒箱的外部和箱门的外部均设有隔热材料层;空心吸盘为矩形板体结构,空心吸盘的中心具有矩形空腔,空心吸盘与空心轴固定连接的一侧面沿空心轴长度方向间隔设有若干个第一抽吸口,空心吸盘的另一侧面均匀设有若干个第二抽吸口;箱门在圆筒箱的左侧面板处设有两个,两个箱门关于圆筒箱的中心线左右对称。
步骤(2)中退火处理的具体过程为:打开两个箱门,先将两个空心吸盘转动到竖向状态,然后将两块镀银膜后的玻璃放入到圆筒箱内,玻璃未镀膜的一侧面与空心吸盘表面接触,开启真空泵,真空泵通过抽真空管、空心轴、第一抽吸口和第二抽吸口将两块玻璃牢牢地吸附在空心吸盘上,然后关闭两个箱门,启动电机和加热管的电源,加热管对封闭的圆筒箱内部空间进行加热,电机驱动空心轴转动,空心轴带动两个空心吸盘转动,吸附在空心吸盘上的两块镀膜玻璃也随着转动,同时通过进气管向圆筒箱内充入0.01MPa的保护性氮气并混合还原性氢气,由于玻璃与空心吸盘之间会存在透气间隙,在吸附空心吸盘的同时,将圆筒箱内部的空气置换为保护性氮气和还原性氢气,然后加热管的加热速度以5℃/min升温至300℃,温度监控通过温度传感器传输到PLC控制器,PLC控制器调控电源为加热管的供电电流,在300℃保温30min后,先关闭电机和加热管的电源,然后打开箱门,关闭真空泵,取出两块玻璃,完成退火工序。
步骤(3)中在透明基体表面得到银纳米颗粒在玻璃上均匀排列,退火后的银纳米颗粒的半径尺寸为10nm;步骤(4)中氧化铝透明介质层的厚度为10 nm,氧化铝透明介质层的折射率为1.59。
步骤(4)的具体过程为:以三甲基铝和高纯水作为反应源,高纯N2作为吹洗气体,在金属纳米颗粒外部生长出氧化铝透明介质,沉积温度: 120℃,三甲基铝脉冲时间:0.2-0.6S; 高纯水脉冲时间: 0.3S; 吹扫时间: 10S; 循环周期: 25 次。
步骤(5)和(10)中的二氧化硅透明薄膜厚度为120-200nm,二氧化硅透明薄膜折射率为1.45。
步骤(8)中得到金纳米颗粒在玻璃上均匀排列,退火后的金纳米颗粒的半径尺寸为15nm;步骤(9)中二氧化钛透明介质层的厚度为5 nm,二氧化钛透明介质层的折射率为2.45。
采用上述技术方案,金属膜的厚度取决于镀膜生长速率和时间,金属可以是银,金或者铝等。如果需要金属颗粒的结构是核壳结构,则在金属颗粒形成后,使用原子层沉积(ALD)方法在金属颗粒外部生长透明介质层。最后在金属颗粒上方镀一层透明薄膜,该过程可以防止金属颗粒在空气中氧化,也可以调节共振位置,薄膜材料是透明的,且不唯一。金属颗粒的均匀分布是靠镀膜方式实现的,本发明中的金属不限制为银也可以是金或者铝等其它金属,例如是金,在一定折射率介质环境下,可以有效吸收黄光。
退火装置采用真空泵对空心吸盘抽气吸附镀膜玻璃的方式,并通过电机带动空心吸盘和两块镀膜玻璃缓慢旋转,这样不仅提高受热面的温度保持一致,同时使镀膜与保护性氮气及还原性氢气动态接触,从而提高退火工序的处理质量。
加热管沿圆筒箱的圆周方向均匀布置若干根,这样也可提高对镀膜加热的均匀度。
隔离网不仅具有良好的透热性,而且具有在取放玻璃时,防止玻璃触碰到加热管。
隔热材料层(可采用聚氨酯保温材料)可避免热量散失,提高加热效率。
退火装置采用圆筒箱具有体积小、结构紧凑的特点,整个退火处理工序也操作方便,采用真空吸附的方式不仅固定牢靠,而且在处理过程中可以旋转,提高镀膜表面温度的一致性,大大提高了产品质量。
综上所述,本发明整体具有以下有益效果:
(1)本发明提供了一种新的基于等离激元颗粒的防蓝光保护膜的制备方法。采用氩离子溅射镀膜仪与电子束热蒸发镀膜仪,在透明基体上镀上一层银膜,然后经退火处理后得到具有强波长选择性光学天线功能的银纳米颗粒,采用ALD法在银纳米颗粒包裹一层氧化铝透明介质,调节不同的共振波长,从而实现对蓝光有效吸收。在上方镀一层二氧化硅环境介质,不仅能对银纳米颗粒的共振位置进行调节,而且可以有效防止银纳米颗粒氧化。本发明制备过程简单,金属颗粒分布均匀,且可以通过控制镀膜时间来控制金属颗粒的尺寸。
(2)镀膜所使用的金属靶材的价格远低于其他方法获得的金属颗粒,造价低廉,市场前景广阔。
(3)本发明制备防蓝光保护膜实验周期短,节省时间成本,更有效率。
(4)与蓝光吸收颗粒层(镀银膜)制备方式一样,使用溅射或蒸发的方式在基板上方镀一层金膜,在保护气体中进行退火得到具有所需尺寸的金纳米颗粒。使用ALD等物理气相沉积的方法在所制备颗粒上方生长二氧化钛介质,通过控制仪器参数控制二氧化钛介质层厚度,最后在上方镀上一层二氧化硅环境介质。从而最终实现对黄光的吸收。
(5)本发明通过简单的镀膜和退火工艺,能够形成形状规则且大小、共振波段可控的纳米颗粒,从而有效吸收蓝光并减小薄膜发黄,具有重要的应用价值。
附图说明
图1是本发明中退火装置的结构示意图;
图2是图1的右视图。
图3是图1的左视图;
图4是石英环境下实现蓝光吸收(420-450nm)的等离激元颗粒的消光、散射和吸收谱;
图5是石英环境下实现黄光吸收(570-600nm)的等离激元颗粒的消光、散射和吸收谱;
图6是电子束热蒸发镀膜仪在光学玻璃基体上镀的银膜退火前后的SEM形貌;
图7是使用电子束热蒸发镀膜仪所得透明显示屏的反射、透射与吸收光谱;
图8是本发明的防蓝光保护膜的层状结构。
具体实施方式
如图8所示,本发明的基于等离激元颗粒的防蓝光保护膜制备方法,包括以下步骤:
(1)使用溅射镀膜或蒸发镀膜在透明基体上镀一层银膜,透明基体23的材料采用玻璃、塑料、树脂或聚合物;
(2)对所镀银膜的透明基体23放入退火装置内进行退火处理;
(3)退火处理后在透明基体23表面得到银纳米颗粒,银纳米颗粒尺寸与膜厚度有关;根据Mie散射理论计算得出颗粒尺寸;
(4)使用原子层沉积方法在银纳米颗粒外部包裹一层氧化铝透明介质层,形成银-氧化铝核壳结构;
(5)采用溅射或蒸发镀膜法在氧化铝透明介质层上方镀一层二氧化硅透明薄膜;形成防蓝光等离激元结构层24;
(6)采用如步骤(1)的方式在二氧化硅透明薄膜表面镀一层金膜;
(7)采用如步骤(2)的方式对所镀金膜的透明基体23放入退火装置内进行退火处理;
(8)退火处理后得到金纳米颗粒,金纳米颗粒尺寸与膜厚度有关;根据Mie散射理论计算得出颗粒尺寸;
(9)采用如步骤(4)的方式使用原子层沉积方法在金纳米颗粒外部包裹一层二氧化钛透明介质层,形成金-二氧化钛核壳结构;
(10)采用如步骤(5)的方式在二氧化钛透明介质层上方镀一层二氧化硅透明薄膜;形成黄光吸附等离激元结构层25。
步骤(1)使用电子束热蒸发镀膜仪在玻璃表面镀银膜,具体步骤如下:将清洗洁净的8cm×8cm的光学玻璃放入电子束热蒸发镀膜仪的基片架上,将纯度99.99%的银颗粒放入蒸发用的钨坩埚内,真空度抽到5×10-4Pa以下,开始镀膜;在镀膜过程中可通过控制电子束电流大小控制镀膜速率,通过调节镀膜速率和时间控制膜厚。
步骤(1)使用氩离子溅射镀膜仪在玻璃表面镀银,具体步骤如下:把清洗洁净的8cm×8cm的光学玻璃放入氩离子溅射镀膜仪的样品杆载物台内,将样品杆载物台推入氩离子溅射镀膜仪中,抽真空,待真空度抽到5×10-4Pa以下,开始溅射镀膜;调节电子枪工作电压和电流,推荐参数7kv/300uA,银的镀膜速率为8nm/min;最终得到的银颗粒尺寸与镀膜时间有关,时间分别控制为15S、30S、45S、60S、75S得到膜状结构,其中30S-75S的银颗粒为岛状。
如图1-图3所示,步骤(2)中的退火装置包括底座1,底座1上设有圆筒箱2,圆筒箱2的中心线沿左右方向水平设置,圆筒箱2的内圆沿圆周方向均匀设有若干根加热管3,圆筒箱2的左侧面板中心和右侧面板中心之间转动设有一根空心轴4,空心轴4右端封堵,空心轴4外部相对两侧分别固定设有一个空心吸盘5,空心轴4左端穿出圆筒箱2的左侧面板并通过一个旋转接头6连接有抽真空管7,抽真空管7连接有真空泵8,圆筒箱2的右侧面板右侧设有电机9(通过连接板10和螺栓11连接),电机9的主轴与空心轴4的右端同轴线传动连接,圆筒箱2的左侧面板上设有箱门12,圆筒箱2的右侧面板上部设有进气管13。
每根加热管3均平行于圆筒箱2的中心线,每根加热管3右端均伸出圆筒箱2的右侧面板并固定连接有一个接线柱14,所有的接线柱14通过导线15串联,导线15连接有电源线16。圆筒箱2内设有温度传感器17。圆筒箱2内在所有加热管3的内侧固定设有圆筒状的隔离网18。圆筒箱2的外部和箱门12的外部均设有隔热材料层19。空心吸盘5为矩形板体结构,空心吸盘5的中心具有矩形空腔20,空心吸盘5与空心轴4固定连接的一侧面沿空心轴4长度方向间隔设有若干个第一抽吸口21,空心吸盘5的另一侧面均匀设有若干个第二抽吸口22。箱门12在圆筒箱2的左侧面板处设有两个,两个箱门12关于圆筒箱2的中心线左右对称。
步骤(2)中退火处理的具体过程为: 打开两个箱门12,先将两个空心吸盘5转动到竖向状态,然后将两块镀银膜后的玻璃放入到圆筒箱2内,玻璃未镀银膜的一侧面与空心吸盘5表面接触,开启真空泵8,真空泵8通过抽真空管7、空心轴4、第一抽吸口21和第二抽吸口22将两块玻璃牢牢地吸附在空心吸盘5上,然后关闭两个箱门12,启动电机9和加热管3的电源,加热管3对封闭的圆筒箱2内部空间进行加热,电机9驱动空心轴4转动,空心轴4带动两个空心吸盘5转动(旋转接头6的设置,抽真空管7不动),吸附在空心吸盘5上的两块镀膜玻璃也随着转动,同时通过进气管13向圆筒箱2内充入0.01MPa的保护性氮气并混合还原性氢气,由于玻璃与空心吸盘5之间会存在透气间隙,在吸附空心吸盘5的同时,将圆筒箱2内部的空气置换为保护性氮气和还原性氢气,然后加热管3的加热速度以5℃/min升温至300℃,温度监控通过温度传感器17传输到PLC控制器,PLC控制器调控电源为加热管3的供电电流,在300℃保温30min后,先关闭电机9和加热管3的电源,然后打开箱门12,关闭真空泵8,取出两块玻璃,完成退火工序。
步骤(3)中在透明基体23表面得到银纳米颗粒在玻璃上均匀排列,退火后的银纳米颗粒的半径尺寸为10nm;步骤(4)中氧化铝透明介质层的厚度为10 nm,氧化铝透明介质层的折射率为1.59。
步骤(4)的具体过程为:以三甲基铝和高纯水作为反应源,高纯N2作为吹洗气体,在金属纳米颗粒外部生长出氧化铝透明介质,沉积温度: 120℃,三甲基铝脉冲时间:0.2-0.6S; 高纯水脉冲时间: 0.3S; 吹扫时间: 10S; 循环周期: 25 次。
步骤(5)和(10)中的二氧化硅透明薄膜厚度为120-200nm,二氧化硅透明薄膜折射率为1.45。
步骤(8)中得到金纳米颗粒在玻璃上均匀排列,退火后的金纳米颗粒的半径尺寸为15nm;步骤(9)中二氧化钛透明介质层的厚度为5 nm,二氧化钛透明介质层的折射率为2.45。
金属膜的厚度取决于镀膜生长速率和时间,金属可以是银,金或者铝等。如果需要金属颗粒的结构是核壳结构,则在金属颗粒形成后,使用原子层沉积(ALD)方法在金属颗粒外部生长透明介质层。最后在金属颗粒上方镀一层透明薄膜,该过程可以防止金属颗粒在空气中氧化,也可以调节共振位置,薄膜材料是透明的,且不唯一。金属颗粒的均匀分布是靠镀膜方式实现的,本发明中的金属不限制为银也可以是金或者铝等其它金属,例如是金,在一定折射率介质环境下,可以有效吸收黄光。
采用真空泵8对空心吸盘5抽气吸附镀膜玻璃的方式,并通过电机9带动空心吸盘5和两块镀膜玻璃缓慢旋转,这样不仅提高受热面的温度保持一致,同时使镀膜与保护性氮气及还原性氢气动态接触,从而提高退火工序的处理质量。
加热管3沿圆筒箱2的圆周方向均匀布置若干根,这样也可提高对镀膜加热的均匀度。
隔离网18不仅具有良好的透热性,而且具有在取放玻璃时,防止玻璃触碰到加热管3。
隔热材料层19(可采用聚氨酯保温材料)可避免热量散失,提高加热效率。
退火装置采用圆筒箱2具有体积小、结构紧凑的特点,整个退火处理工序也操作方便,采用真空吸附的方式不仅固定牢靠,而且在处理过程中可以旋转,提高镀膜表面温度的一致性,大大提高了产品质量。
图4是石英(透明基体23)环境下防蓝光等离激元结构层24实现蓝光吸收(420-450nm)的等离激元颗粒的消光、散射和吸收谱,所用颗粒为银-氧化铝核壳结构,其中内层银颗粒半径可以是10-15nm中的任意尺寸,壳层介质氧化铝厚度可以是10-15nm中的任意尺寸。另外颗粒还可以是纯银颗粒,半径在10-20nm之间,环境介质折射率n b =1.7;纯铝颗粒,半径为10-15nm之间,环境介质折射率n b =2.45。
图5是石英环境下黄光吸附等离激元结构层25实现黄光吸收(570-600nm)的等离激元颗粒的消光、散射和吸收谱,所用颗粒为金-二氧化钛核壳结构,其中内层银颗粒半径可以是15-20nm中的任意尺寸,壳层介质二氧化钛厚度可以是5-10nm中的任意尺寸。另外颗粒还可以是纯金颗粒,半径在15-20nm之间,环境介质折射率n b =1.7。
图6为电子束热蒸发镀膜仪在光学玻璃基体上镀的银膜退火前后的SEM形貌。左侧为镀膜后的SEM形貌,膜厚为5nm,右侧为相应的退火后的SEM形貌,所得银颗粒尺寸大部分在20nm以下。
图7为使用电子束热蒸发镀膜仪所得透明显示屏的反射、透射与吸收光谱,A=1-R-T。Reflection指反射率,所得防蓝光保护膜在420nm-470nm左右的蓝光波段反射率最强,在0.18-0.24之间,在其他大部分可见光波段都降到0.12以下。Transmittance指透射率,在420nm-470nm左右的蓝光波段透射率最弱,在0.5-0.7之间,而其他大部分波段都在0.8以上。Absorption指吸收率在420nm-470nm左右的蓝光吸收最强,在0.15-0.28之间,而其他大部分波段都在0.05以下。
以上实施例说明了本发明的基本原理和特点,但上述仅仅说明了本发明的较优实施例,并不受所述实施例的限制。本领域的普通技术人员在本专利的启发下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式变形和改进,这些均属于本发明的保护范围之内。因此,本发明专利和保护范围应以所附权利要求书为准。

Claims (10)

1.基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:包括以下步骤:
(1)使用溅射镀膜或蒸发镀膜在透明基体上镀一层银膜,透明基体的材料采用玻璃、塑料、树脂或聚合物;
(2)对所镀银膜的透明基体放入退火装置内进行退火处理;
(3)退火处理后在透明基体表面得到银纳米颗粒,银纳米颗粒尺寸与膜厚度有关;根据Mie散射理论计算得出颗粒尺寸;
(4)使用原子层沉积方法在银纳米颗粒外部包裹一层氧化铝透明介质层,形成银-氧化铝核壳结构;
(5)采用溅射或蒸发镀膜法在氧化铝透明介质层上方镀一层二氧化硅透明薄膜;
(6)采用如步骤(1)的方式在二氧化硅透明薄膜表面镀一层金膜;
(7)采用如步骤(2)的方式对所镀金膜的透明基体放入退火装置内进行退火处理;
(8)退火处理后得到金纳米颗粒,金纳米颗粒尺寸与膜厚度有关;根据Mie散射理论计算得出颗粒尺寸;
(9)采用如步骤(4)的方式使用原子层沉积方法在金纳米颗粒外部包裹一层二氧化钛透明介质层,形成金-二氧化钛核壳结构;
(10)采用如步骤(5)的方式在二氧化钛透明介质层上方镀一层二氧化硅透明薄膜。
2.根据权利要求1所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(1)使用电子束热蒸发镀膜仪在玻璃表面镀银膜,具体步骤如下:将清洗洁净的8cm×8cm的光学玻璃放入电子束热蒸发镀膜仪的基片架上,将纯度99.99%的银颗粒放入蒸发用的钨坩埚内,真空度抽到5×10-4Pa以下,开始镀膜;在镀膜过程中可通过控制电子束电流大小控制镀膜速率,通过调节镀膜速率和时间控制膜厚。
3.根据权利要求1所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(1)使用氩离子溅射镀膜仪在玻璃表面镀银,具体步骤如下:把清洗洁净的8cm×8cm的光学玻璃放入氩离子溅射镀膜仪的样品杆载物台内,将样品杆载物台推入氩离子溅射镀膜仪中,抽真空,待真空度抽到5×10-4Pa以下,开始溅射镀膜;调节电子枪工作电压和电流,推荐参数7kv/300uA,银的镀膜速率为8nm/min;最终得到的银颗粒尺寸与镀膜时间有关,时间分别控制为15S、30S、45S、60S、75S得到膜状结构,其中30S-75S的银颗粒为岛状。
4.根据权利要求2或3所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(2)中的退火装置包括底座,底座上设有圆筒箱,圆筒箱的中心线沿左右方向水平设置,圆筒箱的内圆沿圆周方向均匀设有若干根加热管,圆筒箱的左侧面板中心和右侧面板中心之间转动设有一根空心轴,空心轴外部相对两侧分别固定设有一个空心吸盘,空心轴左端穿出圆筒箱的左侧面板并通过一个旋转接头连接有抽真空管,抽真空管连接有真空泵,圆筒箱的右侧面板右侧设有电机,电机的主轴与空心轴的右端同轴线传动连接,圆筒箱的左侧面板上设有箱门,圆筒箱的右侧面板上部设有进气管。
5.根据权利要求4所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:每根加热管均平行于圆筒箱的中心线,每根加热管右端均伸出圆筒箱的右侧面板并固定连接有一个接线柱,所有的接线柱通过导线串联,导线连接有电源线;圆筒箱内设有温度传感器;圆筒箱内在所有加热管的内侧固定设有圆筒状的隔离网;圆筒箱的外部和箱门的外部均设有隔热材料层;空心吸盘为矩形板体结构,空心吸盘的中心具有矩形空腔,空心吸盘与空心轴固定连接的一侧面沿空心轴长度方向间隔设有若干个第一抽吸口,空心吸盘的另一侧面均匀设有若干个第二抽吸口;箱门在圆筒箱的左侧面板处设有两个,两个箱门关于圆筒箱的中心线左右对称。
6.根据权利要求5所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(2)中退火处理的具体过程为:打开两个箱门,先将两个空心吸盘转动到竖向状态,然后将两块镀银膜后的玻璃放入到圆筒箱内,玻璃未镀膜的一侧面与空心吸盘表面接触,开启真空泵,真空泵通过抽真空管、空心轴、第一抽吸口和第二抽吸口将两块玻璃牢牢地吸附在空心吸盘上,然后关闭两个箱门,启动电机和加热管的电源,加热管对封闭的圆筒箱内部空间进行加热,电机驱动空心轴转动,空心轴带动两个空心吸盘转动,吸附在空心吸盘上的两块镀膜玻璃也随着转动,同时通过进气管向圆筒箱内充入0.01MPa的保护性氮气并混合还原性氢气,由于玻璃与空心吸盘之间会存在透气间隙,在吸附空心吸盘的同时,将圆筒箱内部的空气置换为保护性氮气和还原性氢气,然后加热管的加热速度以5℃/min升温至300℃,温度监控通过温度传感器传输到PLC控制器,PLC控制器调控电源为加热管的供电电流,在300℃保温30min后,先关闭电机和加热管的电源,然后打开箱门,关闭真空泵,取出两块玻璃,完成退火工序。
7.根据权利要求6所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(3)中在透明基体表面得到银纳米颗粒在玻璃上均匀排列,退火后的银纳米颗粒的半径尺寸为10nm;步骤(4)中氧化铝透明介质层的厚度为10 nm,氧化铝透明介质层的折射率为1.59。
8.根据权利要求7所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(4)的具体过程为:以三甲基铝和高纯水作为反应源,高纯N2作为吹洗气体,在金属纳米颗粒外部生长出氧化铝透明介质,沉积温度: 120℃,三甲基铝脉冲时间:0.2-0.6S; 高纯水脉冲时间: 0.3S; 吹扫时间: 10S; 循环周期: 25 次。
9.根据权利要求8所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(5)和(10)中的二氧化硅透明薄膜厚度为120-200nm,二氧化硅透明薄膜折射率为1.45。
10.根据权利要求8所述的基于等离激元颗粒的防蓝光保护膜制备方法,其特征在于:步骤(8)中得到金纳米颗粒在玻璃上均匀排列,退火后的金纳米颗粒的半径尺寸为15nm;步骤(9)中二氧化钛透明介质层的厚度为5 nm,二氧化钛透明介质层的折射率为2.45。
CN202110410956.9A 2021-04-16 2021-04-16 基于等离激元颗粒的防蓝光保护膜制备方法 Active CN113122802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110410956.9A CN113122802B (zh) 2021-04-16 2021-04-16 基于等离激元颗粒的防蓝光保护膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110410956.9A CN113122802B (zh) 2021-04-16 2021-04-16 基于等离激元颗粒的防蓝光保护膜制备方法

Publications (2)

Publication Number Publication Date
CN113122802A true CN113122802A (zh) 2021-07-16
CN113122802B CN113122802B (zh) 2023-03-10

Family

ID=76777245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110410956.9A Active CN113122802B (zh) 2021-04-16 2021-04-16 基于等离激元颗粒的防蓝光保护膜制备方法

Country Status (1)

Country Link
CN (1) CN113122802B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181949A (zh) * 2022-07-07 2022-10-14 江苏理工学院 用于折射率传感的金银复合纳米颗粒薄膜及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039843A1 (en) * 1997-03-14 2003-02-27 Christopher Johnson Photoactive coating, coated article, and method of making same
CN1780728A (zh) * 2003-02-25 2006-05-31 曼弗雷德·R·库赫奈利 吸收紫外频段的电磁能量的包覆纳米颗粒
CN102046522A (zh) * 2008-06-03 2011-05-04 旭硝子株式会社 核—壳粒子的制造方法、核—壳粒子、中空粒子的制造方法、涂料组合物及物品
CN102299261A (zh) * 2011-09-23 2011-12-28 清华大学 一种利用核壳纳米颗粒提高转化效率的有机太阳电池
CN103192075A (zh) * 2013-04-16 2013-07-10 杨晓红 包裹有二氧化钛纳米颗粒涂层的核壳复合材料的制备方法
CN103568441A (zh) * 2013-10-24 2014-02-12 复旦大学 一种低成本大面积薄膜超吸收体及其制备方法
CN104916782A (zh) * 2015-05-25 2015-09-16 中国科学院半导体研究所 采用表面等离激元效应的倒置太阳电池结构及制备方法
US20160268962A1 (en) * 2015-03-13 2016-09-15 University Of Florida Research Foundation, Inc. Sunlight Harvesting Transparent Windows
CN108176393A (zh) * 2017-12-27 2018-06-19 肇庆市华师大光电产业研究院 一种有序、高密度Ag-Al2O3-MoS2纳米结构的制备方法
CN108919391A (zh) * 2018-06-14 2018-11-30 国家纳米科学中心 基于金属薄膜-核壳等离子体结构的宽带完美吸收体
US20200189959A1 (en) * 2017-04-28 2020-06-18 Saint-Gobain Glass France Coloured glazing and method for obtaining same
CN111313215A (zh) * 2020-03-02 2020-06-19 陕西科技大学 基于金属纳米核壳结构-金属薄膜等离子体复合结构的有机固体激光器及制备方法
CN111761897A (zh) * 2020-05-21 2020-10-13 厦门大学 吸收干涉型的全介质结构色薄膜

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039843A1 (en) * 1997-03-14 2003-02-27 Christopher Johnson Photoactive coating, coated article, and method of making same
CN1780728A (zh) * 2003-02-25 2006-05-31 曼弗雷德·R·库赫奈利 吸收紫外频段的电磁能量的包覆纳米颗粒
CN102046522A (zh) * 2008-06-03 2011-05-04 旭硝子株式会社 核—壳粒子的制造方法、核—壳粒子、中空粒子的制造方法、涂料组合物及物品
CN102299261A (zh) * 2011-09-23 2011-12-28 清华大学 一种利用核壳纳米颗粒提高转化效率的有机太阳电池
CN103192075A (zh) * 2013-04-16 2013-07-10 杨晓红 包裹有二氧化钛纳米颗粒涂层的核壳复合材料的制备方法
CN103568441A (zh) * 2013-10-24 2014-02-12 复旦大学 一种低成本大面积薄膜超吸收体及其制备方法
US20160268962A1 (en) * 2015-03-13 2016-09-15 University Of Florida Research Foundation, Inc. Sunlight Harvesting Transparent Windows
CN104916782A (zh) * 2015-05-25 2015-09-16 中国科学院半导体研究所 采用表面等离激元效应的倒置太阳电池结构及制备方法
US20200189959A1 (en) * 2017-04-28 2020-06-18 Saint-Gobain Glass France Coloured glazing and method for obtaining same
CN108176393A (zh) * 2017-12-27 2018-06-19 肇庆市华师大光电产业研究院 一种有序、高密度Ag-Al2O3-MoS2纳米结构的制备方法
CN108919391A (zh) * 2018-06-14 2018-11-30 国家纳米科学中心 基于金属薄膜-核壳等离子体结构的宽带完美吸收体
CN111313215A (zh) * 2020-03-02 2020-06-19 陕西科技大学 基于金属纳米核壳结构-金属薄膜等离子体复合结构的有机固体激光器及制备方法
CN111761897A (zh) * 2020-05-21 2020-10-13 厦门大学 吸收干涉型的全介质结构色薄膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181949A (zh) * 2022-07-07 2022-10-14 江苏理工学院 用于折射率传感的金银复合纳米颗粒薄膜及其制备方法
CN115181949B (zh) * 2022-07-07 2023-07-11 江苏理工学院 用于折射率传感的金银复合纳米颗粒薄膜及其制备方法

Also Published As

Publication number Publication date
CN113122802B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
Rezaei et al. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment
Li et al. Achieving better greenhouse effect than glass: visibly transparent and low emissivity metal-polymer hybrid metamaterials
CN105874379B (zh) 光调制装置
US5305143A (en) Inorganic thin film polarizer
CN113122802B (zh) 基于等离激元颗粒的防蓝光保护膜制备方法
US20220038048A1 (en) Sunlight harvesting transparent windows
CN104120394B (zh) 一种Ag/TiO2纳米复合变色材料制备方法
CN101186448A (zh) 一种提高气致变色薄膜气致变色速度的方法
CN109917594B (zh) 一种隐私保护红外反射智能窗及其制备方法
CN104614888B (zh) 一种基于液晶移动的电响应智能窗及光调节方法
Huang et al. Simultaneous achievement of high visible transmission and near-infrared heat shielding in flexible liquid crystal-based smart windows via electrode design
CN107326415B (zh) 一种低辐射透明电加热薄膜及其制备方法
Dai et al. Dual-Responsive Hydrogels with Three-Stage Optical Modulation for Smart Windows
CN111116050A (zh) 一种钨掺杂二氧化钒薄膜及其制备方法和应用
LU500721B1 (en) Anti-blue light protective film based on plasmonic particles and preparation method thereof
Baygi Effect of the Thin Silver Layer in SnO2/Ag/SnO2 Nano-Coatings with Low Emission for Energy Storage
CN109709737A (zh) 一种新型电致变色薄膜的制作方法
Shen et al. Enhancing the spectral tunability of localized surface plasmon resonance and small polaron transfer in Li-doped CsxWO3 nanocrystals for energy-efficient windows
CN203037946U (zh) 光子晶体紫外线防护眼镜
CN107892488B (zh) 一种镀膜型防蓝光护眼玻璃
JP2004131335A (ja) 調光窓
CN107935405B (zh) 一种锑掺杂氧化锡电致变色薄膜的制备方法
CN112479603B (zh) 一种双银低辐射镀膜玻璃及其制备方法
CN107986637B (zh) 一种原位结晶的锡掺杂氧化铟纳米晶薄膜的制备方法
CN206579241U (zh) 一种玻璃护肤膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant