CN113121256A - 一种超声响应的4d打印多孔陶瓷件及其制备方法 - Google Patents
一种超声响应的4d打印多孔陶瓷件及其制备方法 Download PDFInfo
- Publication number
- CN113121256A CN113121256A CN202110435829.4A CN202110435829A CN113121256A CN 113121256 A CN113121256 A CN 113121256A CN 202110435829 A CN202110435829 A CN 202110435829A CN 113121256 A CN113121256 A CN 113121256A
- Authority
- CN
- China
- Prior art keywords
- porous ceramic
- printing
- ultrasonic
- porous
- ceramic part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0045—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
- C04B38/0048—Precipitation processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明属于4D打印相关技术领域,其公开了一种超声响应的4D打印多孔陶瓷件及其制备方法,所述方法包括以下步骤:以光固化材料为原料,采用4D打印技术制得多孔陶瓷件;其中,所述光固化材料的组成原料包括压电陶瓷粉体;所述多孔陶瓷件为具备不同孔结构特征的多孔结构,通过超声手段机械刺激所述多孔陶瓷件使其发生形变而产生内源性电场。本发明基于压电陶瓷的压电效应原理,采用增材制造工艺制备出具有不同孔结构特征的压电性多孔陶瓷,采用超声手段提供机械刺激以使多孔陶瓷件发生形变而产生内源性电场,通过调控不同孔结构特征的超声载荷来实现可控的电信号输出,即通过材料和结构设计实现了性能、功能可控变化的陶瓷4D打印。
Description
技术领域
本发明属于4D打印相关技术领域,更具体地,涉及一种超声响应的4D打印多孔陶瓷件及其制备方法。
背景技术
4D打印属于增材制造技术,其通过材料和结构主动设计,利用增材制造技术制备智能构件的技术。通过4D打印技术制备的智能构件能够在时间和空间维度上实现形状、性能和功能的可控变化,满足变形、变性能和变功能的应用需求。在这一概念指导下,近年来4D打印相关专利大量涌现,如专利201711230043.9、201910080768.7、201910080768.7等。这些专利的4D打印材料多聚焦于高分子材料和金属材料,且4D打印成形件多聚焦于形状记忆效应。
随着4D打印技术的深入研究,4D打印材料逐渐拓展到高强度、高硬度的陶瓷材料领域,如专利201910501955.8、201810852295.3、201910156766.1等,这些专利均利用陶瓷前驱体(即一种高分子聚合物)的高弹性特点实现增材制造过程中前驱体的变形效果,但烧结后的陶瓷件本身并不具备变形功能。实际上,陶瓷材料固有的高强、高硬和高脆性特点使其很难具备大尺度变形能力;因此,陶瓷材料的4D打印技术不应习惯性地照搬高分子和金属材料的变形效果,更应关注陶瓷材料本身的变性能、变功能特点。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种超声响应的4D打印多孔陶瓷件及其制备方法,其基于压电陶瓷的压电效应原理,采用增材制造工艺制备出具有不同孔结构特征(孔径类型、孔径尺寸、孔隙率、连通率等)的压电性多孔陶瓷,采用超声手段提供机械刺激以使得多孔陶瓷发生形变而产生内源性电场,通过调控不同孔结构特征的超声载荷来实现可控的电信号输出,即通过材料和结构设计实现了性能、功能可控变化的陶瓷4D打印。
为实现上述目的,按照本发明的一个方面,提供了一种4D打印多孔陶瓷件的制备方法,所述制备方法包括以下步骤:
以光固化材料为原料,采用4D打印技术制得多孔陶瓷件;其中,所述光固化材料的组成原料包括压电陶瓷粉体;所述多孔陶瓷件为具备不同孔结构特征的多孔结构,通过超声手段机械刺激所述多孔陶瓷件来使其发生形变而产生内源性电场。
进一步地,通过调控超声载荷来控制所述多孔陶瓷的电信号输出。
进一步地,所述压电陶瓷粉体为单相陶瓷粉体或者多相均匀混合的陶瓷粉体。
进一步地,所述光固化材料为浆料,其包括以下份数的组分:35~65份的压电陶瓷粉体、40~65份的光固化树脂、0.5~2份的光引发剂及0.5~5份的分散剂。
进一步地,所述压电陶瓷粉体为氧化锌、氮化硼、钛酸钡、锆钛酸钡、锆钛酸钡钙、偏铌酸钾钠、偏铌酸钾钡中的一种或多种。
进一步地,所述孔结构的孔隙率为30~90%,孔径尺寸为200μm~700μm,孔连通率为20~95%。
进一步地,所述多孔陶瓷件还需进行极化处理。
进一步地,采用的极化直流电压为2000V/m~5000V/m,极化时间为5min~30min,极化温度为20℃~110℃。
按照本发明的另一个方面,提供了一种超声响应的4D打印多孔陶瓷件,所述多孔陶瓷件是采用如上所述的4D打印多孔陶瓷件的制备方法制备而成的。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的超声响应的4D打印多孔陶瓷件及其制备方法主要具有以下有益效果:
1.以光固化材料为原料,采用4D打印技术制得多孔陶瓷件;其中,所述光固化材料的组成原料包括压电陶瓷粉体,利用压电陶瓷的压电效应原理,通过超声刺激增材制造多孔陶瓷产生响应形变从而形成内源性电场,操作简单,响应灵敏,远程操控性强,实现了变性、变功能陶瓷的4D打印,丰富了4D打印陶瓷材料种类。
2.通过不同孔结构特征的超声载荷可响应输出不同强度的内源性电场,从而精确控制4D打印多孔陶瓷件的性能与功能变化。
3.所述多孔陶瓷件在可植入自供电智能化设备、功能性无机材料组织工程支架等领域具有广阔应用前景,实用性较强。
4.通过多孔结构特征(孔径类型、孔径尺寸、孔隙率、连通率等)的设计可使4D打印陶瓷件超声响应并输出特定强度和周期性的内源性电场,实现4D打印陶瓷件变性能与功能的有效调控。
附图说明
图1是本发明提供的超声响应的4D打印多孔陶瓷件的结构示意图;
图2是图1中的超声响应的4D打印多孔陶瓷件的截面示意图;
图3中的(a)、(b)分别是实施例1提供的4D打印多孔陶瓷件及其超声响应内源性电场强度曲线;
图4中的(a)、(b)分别是实施例2提供的4D打印多孔陶瓷件及其超声响应内源性电场强度曲线;
图5是图1中的超声响应的4D打印多孔陶瓷件的响应形变示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1、图2及图5,本发明提供的超声响应的4D打印多孔陶瓷件的制备方法,所述制备方法主要包括以下步骤:
步骤一,陶瓷粉体材料的制备。
具体地,选取单相或者多相均匀混合的压电陶瓷粉体做原材料,其中压电陶瓷粉体为主相材料。所述压电陶瓷粉体优选为氧化锌、氮化硼、钛酸钡、锆钛酸钡、锆钛酸钡钙、偏铌酸钾钠、偏铌酸钾钡中的一种或多种,其添加量不低于20wt%,粉体粒径优选0.5~20μm。
步骤二,多孔结构设计。
具体地,采用三维建模软件设计出具备不同孔结构特征的多孔模型,所述多孔结构优选为梯度多孔结构、均匀多孔结构、无规则多孔结构中的一种或者多种。
所述孔结构特征中孔隙率优选为30%~90%,孔径尺寸优选为200~700μm,孔连通率优选为20~95%,可通过调整孔结构特征参数来调控超声响应电信号的强度。
步骤三,光固化原材料的制备。
具体地,将35~60vol%的陶瓷粉体与40~65vol%的光固化树脂单体、0.5~2wt%的光引发剂、0.5~5wt%的分散剂等混合均匀,以获得浆料。
步骤四,多孔陶瓷件的4D打印。
导入多孔模型,光固化打印浆料获得素坯,素坯烧结后获得超声响应4D打印陶瓷件。4D打印的多孔陶瓷件需要进行极化处理,极化直流电压优选为2000~5000V/m,极化时间优选为5~30min,极化温度优选为20~110℃。
其中,通过超声提供机械刺激来使得所述多孔陶瓷件发生形变而产生内源性电场,且通过调控超声荷载能够实现所述多孔陶瓷件的电信号的可控输出,即通过材料和结构设计实现了性能、功能可控变化的陶瓷4D打印。
本发明还提供了一种超声响应的4D打印多孔陶瓷件,所述多孔陶瓷件是采用如上所述的超声响应的多孔陶瓷件的制备方法制备而成的。
以下以几个实施例来对本发明进行进一步地详细说明。
实施例1
请参阅图3,一种超声响应的4D打印多孔陶瓷材料的制备方法,具体步骤如下:
(1)选取平均粒径尺寸0.5μm的锆钛酸钡粉体作为原材料;
(2)采用三维建模软件设计出均匀多孔结构的三维模型,孔隙率为60%,孔径尺寸为450μm,孔隙连通率为57.5%;
(3)将47.5vol%陶瓷粉体与52.5vol%光固化树脂单体、1.25wt%光引发剂、2.75wt%分散剂等混合均匀,以获得浆料;
(4)陶瓷件的4D打印:导入多孔模型,光固化打印浆料获得素坯,素坯烧结后在3500V/m直流电压、65℃下极化17.5min,最终获得超声响应4D打印陶瓷件。
实施例2
请参阅图4,一种超声响应的4D打印多孔陶瓷材料的制备方法,具体步骤如下:
(1)选取平均粒径尺寸10μm的锆钛酸钡钙/羟基磷灰石粉体作为原材料,其中锆钛酸钡钙粉体含量为60wt%;
(2)采用三维建模软件设计出均匀多孔结构的三维模型,孔隙率为90%,孔径尺寸为200μm,孔隙连通率为20%;
(3)将60vol%陶瓷粉体与40vol%光固化树脂单体、2.0wt%光引发剂、5.0wt%分散剂等混合均匀,以获得浆料;
(4)陶瓷件的4D打印:导入多孔模型,光固化打印浆料获得素坯,素坯烧结后在2000V/m直流电压、20℃下极化5min,最终获得超声响应4D打印陶瓷件。
实施例3
(1)选取平均粒径尺寸20μm的偏铌酸钾钠/β-TCP粉体作为原材料,其中偏铌酸钾钠粉体含量为20wt%;
(2)采用三维建模软件设计出均匀多孔结构的三维模型,孔隙率为30%,孔径尺寸为700μm,孔隙连通率为95%;
(3)将35vol%陶瓷粉体与65vol%光固化树脂单体、0.5wt%光引发剂、0.5wt%分散剂等混合均匀,以获得浆料;
(4)陶瓷件的4D打印:导入多孔模型,光固化打印浆料获得素坯,素坯烧结后在5000V/m直流电压、110℃下极化30min,最终获得超声响应4D打印陶瓷件。
实施例4
(1)选取平均粒径尺寸3μm的氧化锌粉体作为原材料;
(2)采用三维建模软件设计出均匀多孔结构的三维模型,孔隙率为60%,孔径尺寸为450μm,孔隙连通率为57.5%;
(3)将47.5vol%陶瓷粉体与52.5vol%光固化树脂单体、1.25wt%光引发剂、2.75wt%分散剂等混合均匀,以获得浆料;
(4)陶瓷件的4D打印:导入多孔模型,光固化打印浆料获得素坯,素坯烧结后在3500V/m直流电压、65℃下极化17.5min,最终获得超声响应4D打印陶瓷件。
实施例5
(1)选取平均粒径尺寸5μm的钛酸钡/氧化铝粉体作为原材料,其中钛酸钡粉体含量为80wt%;
(2)采用三维建模软件设计出均匀多孔结构的三维模型,孔隙率为60%,孔径尺寸为450μm,孔隙连通率为57.5%;
(3)将47.5vol%陶瓷粉体与52.5vol%光固化树脂单体、1.25wt%光引发剂、2.75wt%分散剂等混合均匀,以获得浆料;
(4)陶瓷件的4D打印:导入多孔模型,光固化打印浆料获得素坯,素坯烧结后在3500V/m直流电压、65℃下极化17.5min,最终获得超声响应4D打印陶瓷件。
实施例6
(1)选取平均粒径尺寸8μm的氮化硼粉体作为原材料;
(2)采用三维建模软件设计出均匀多孔结构的三维模型,孔隙率为60%,孔径尺寸为450μm,孔隙连通率为57.5%;
(3)将47.5vol%陶瓷粉体与52.5vol%光固化树脂单体、1.25wt%光引发剂、2.75wt%分散剂等混合均匀,以获得浆料;
(4)陶瓷件的4D打印:导入多孔模型,光固化打印浆料获得素坯,素坯烧结后在3500V/m直流电压、65℃下极化17.5min,最终获得超声响应4D打印陶瓷件。
实施例7
(1)选取平均粒径尺寸1μm的偏铌酸钾钡/氧化锆粉体作为原材料,其中偏铌酸钾钡粉体含量为90wt%;
(2)采用三维建模软件设计出均匀多孔结构的三维模型,孔隙率为60%,孔径尺寸为450μm,孔隙连通率为57.5%;
(3)将47.5vol%陶瓷粉体与52.5vol%光固化树脂单体、1.25wt%光引发剂、2.75wt%分散剂等混合均匀,以获得浆料;
(4)陶瓷件的4D打印:导入多孔模型,光固化打印浆料获得素坯,素坯烧结后在3500V/m直流电压、65℃下极化17.5min,最终获得超声响应4D打印陶瓷件。
通过上述实施例可获得以下初步结论:
(1)4D打印陶瓷件在超声刺激下均可响应输出20~800mV的内源性电场,其电场强度受压电陶瓷材料的种类及含量、烧结制度和极化条件的影响较大;
(2)通过多孔结构特征(孔径类型、孔径尺寸、孔隙率、连通率等)的设计可使4D打印陶瓷件超声响应并输出特定强度和周期性的内源性电场,以实现4D打印陶瓷件变性能与功能的有效调控;
(3)与生物陶瓷材料混合后成形的4D打印陶瓷件在可植入自供电智能化设备、功能性无机材料组织工程支架等领域具有广阔应用前景。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (9)
1.一种超声响应的4D打印多孔陶瓷件的制备方法,其特征在于,所述制备方法包括以下步骤:
以光固化材料为原料,采用4D打印技术制得多孔陶瓷件;其中,所述光固化材料的组成原料包括压电陶瓷粉体;所述多孔陶瓷件为具备不同孔结构特征的多孔结构,通过超声手段机械刺激所述多孔陶瓷件使其发生形变而产生内源性电场。
2.如权利要求1所述的超声响应的4D打印多孔陶瓷件的制备方法,其特征在于:通过调控超声载荷来控制所述多孔陶瓷的电信号输出。
3.如权利要求1所述的超声响应的4D打印多孔陶瓷件的制备方法,其特征在于:所述压电陶瓷粉体为单相陶瓷粉体或者多相均匀混合的陶瓷粉体。
4.如权利要求1所述的超声响应的4D打印多孔陶瓷件的制备方法,其特征在于:所述光固化材料为浆料,其包括以下份数的组分:35~65份的压电陶瓷粉体、40~65份的光固化树脂、0.5~2份的光引发剂及0.5~5份的分散剂。
5.如权利要求1-4任一项所述的超声响应的4D打印多孔陶瓷件的制备方法,其特征在于:所述压电陶瓷粉体为氧化锌、氮化硼、钛酸钡、锆钛酸钡、锆钛酸钡钙、偏铌酸钾钠、偏铌酸钾钡中的一种或多种。
6.如权利要求1-4任一项所述的超声响应的4D打印多孔陶瓷件的制备方法,其特征在于:所述孔结构的孔隙率为30~90%,孔径尺寸为200μm~700μm,孔连通率为20~95%。
7.如权利要求1-4任一项所述的超声响应的4D打印多孔陶瓷件的制备方法,其特征在于:所述多孔陶瓷件还需进行极化处理。
8.如权利要求7所述的超声响应的4D打印多孔陶瓷件的制备方法,其特征在于:采用的极化直流电压为2000V/m~5000V/m,极化时间为5min~30min,极化温度为20℃~110℃。
9.一种超声响应的4D打印多孔陶瓷件,其特征在于:所述多孔陶瓷件是采用权利要求1-8任一项所述的超声响应的4D打印多孔陶瓷件的制备方法制备而成的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110435829.4A CN113121256B (zh) | 2021-04-22 | 2021-04-22 | 一种超声响应的4d打印多孔陶瓷件及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110435829.4A CN113121256B (zh) | 2021-04-22 | 2021-04-22 | 一种超声响应的4d打印多孔陶瓷件及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113121256A true CN113121256A (zh) | 2021-07-16 |
CN113121256B CN113121256B (zh) | 2022-08-02 |
Family
ID=76779232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110435829.4A Active CN113121256B (zh) | 2021-04-22 | 2021-04-22 | 一种超声响应的4d打印多孔陶瓷件及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113121256B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113461427A (zh) * | 2021-07-21 | 2021-10-01 | 广东工业大学 | 一种光固化4d打印陶瓷基前驱体浆料、陶瓷件及制备方法 |
CN115215675A (zh) * | 2022-06-22 | 2022-10-21 | 华中科技大学 | 一种双响应4d打印异质陶瓷支架及其制备方法 |
CN115887777A (zh) * | 2022-11-21 | 2023-04-04 | 中国科学院上海硅酸盐研究所 | 一种具有超声响应的3d打印支架材料 |
CN116813334A (zh) * | 2023-02-27 | 2023-09-29 | 广东华中科技大学工业技术研究院 | 多孔无铅压电陶瓷元件、空气耦合多孔无铅超声换能器及其制备方法 |
CN117447198A (zh) * | 2023-10-16 | 2024-01-26 | 佛山(华南)新材料研究院 | 一种3d打印的钛酸钡陶瓷及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108788154A (zh) * | 2018-06-26 | 2018-11-13 | 华中科技大学 | 一种具有大变形功能的智能结构的4d打印方法及其产品 |
CN110600254A (zh) * | 2019-09-29 | 2019-12-20 | 华中科技大学 | 一种适用于磁性复合材料的4d打印制造方法 |
CN111409284A (zh) * | 2020-03-09 | 2020-07-14 | 华中科技大学 | 一种基于4d打印的柔性压电传感器及其制备方法 |
-
2021
- 2021-04-22 CN CN202110435829.4A patent/CN113121256B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108788154A (zh) * | 2018-06-26 | 2018-11-13 | 华中科技大学 | 一种具有大变形功能的智能结构的4d打印方法及其产品 |
CN110600254A (zh) * | 2019-09-29 | 2019-12-20 | 华中科技大学 | 一种适用于磁性复合材料的4d打印制造方法 |
CN111409284A (zh) * | 2020-03-09 | 2020-07-14 | 华中科技大学 | 一种基于4d打印的柔性压电传感器及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113461427A (zh) * | 2021-07-21 | 2021-10-01 | 广东工业大学 | 一种光固化4d打印陶瓷基前驱体浆料、陶瓷件及制备方法 |
CN115215675A (zh) * | 2022-06-22 | 2022-10-21 | 华中科技大学 | 一种双响应4d打印异质陶瓷支架及其制备方法 |
CN115887777A (zh) * | 2022-11-21 | 2023-04-04 | 中国科学院上海硅酸盐研究所 | 一种具有超声响应的3d打印支架材料 |
CN115887777B (zh) * | 2022-11-21 | 2024-08-13 | 中国科学院上海硅酸盐研究所 | 一种具有超声响应的3d打印支架材料 |
CN116813334A (zh) * | 2023-02-27 | 2023-09-29 | 广东华中科技大学工业技术研究院 | 多孔无铅压电陶瓷元件、空气耦合多孔无铅超声换能器及其制备方法 |
CN117447198A (zh) * | 2023-10-16 | 2024-01-26 | 佛山(华南)新材料研究院 | 一种3d打印的钛酸钡陶瓷及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113121256B (zh) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113121256B (zh) | 一种超声响应的4d打印多孔陶瓷件及其制备方法 | |
Chen et al. | 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering | |
CN110433343B (zh) | 一种仿生电活性可塑形钛增强复合膜材料及其制备方法 | |
CN103922748B (zh) | 一种多孔氮化硅陶瓷的制备方法 | |
Kiran et al. | Additive manufacturing technologies: an overview of challenges and perspective of using electrospraying | |
CN103638556B (zh) | 一种表面纳米化改性磷酸钙生物活性陶瓷及其制备和应用 | |
Bai et al. | Processing and characterization of a polylactic acid/nanoclay composite for laser sintering | |
CN101518467A (zh) | 一种医用多孔钛种植体及其制备方法 | |
CN111440961A (zh) | 活性元素掺杂的多孔钛材料及其制备方法与应用 | |
Zhang et al. | 3D gel printing of porous calcium silicate scaffold for bone tissue engineering | |
CN105268977A (zh) | 一种钛合金人造生物关节的快速制造方法 | |
JPH085712B2 (ja) | 配向性リン酸カルシウム系化合物成形体及び焼結体並びにそれらの製造方法 | |
CN104274860B (zh) | 一种可控多孔的陶瓷/聚合物基复合骨支架的制备方法 | |
CN113621144A (zh) | 磁电响应仿生水凝胶及可调细胞电学微环境磁电响应仿生水凝胶及其制备方法 | |
CN104491923A (zh) | 纳米/微米晶梯度结构磷酸钙生物陶瓷材料及其制备方法和应用 | |
CN109809811A (zh) | 一种纳米/微米多级孔结构的生物活性陶瓷支架及其制备方法 | |
Nakahira et al. | Fabrication of Porous Hydroxyapatite Using Hydrothermal Hot Pressing and Post‐Sintering | |
Donate et al. | An overview of polymeric composite scaffolds with piezoelectric properties for improved bone regeneration | |
AU2013298687A1 (en) | Multi-component joining of plastic preparations in order to produce medical products with functional surfaces | |
CN110171979A (zh) | 一种大尺寸个性化生物活性陶瓷植入体的制备方法 | |
CN112870440A (zh) | 一种基于3d打印的智能响应型仿生系统及其制备方法和应用 | |
JP3837502B2 (ja) | 生体用多孔質複合体、その製造方法及びその用途 | |
CN101811874B (zh) | 一种纳米氧化锆复合陶瓷的合成方法 | |
AT504168B1 (de) | Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper | |
CN116041055B (zh) | 一种生物陶瓷复合材料的4d打印及变形控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |