CN113046692A - 一种单晶二硒化钨单分子层薄膜的制备方法 - Google Patents

一种单晶二硒化钨单分子层薄膜的制备方法 Download PDF

Info

Publication number
CN113046692A
CN113046692A CN202110287807.8A CN202110287807A CN113046692A CN 113046692 A CN113046692 A CN 113046692A CN 202110287807 A CN202110287807 A CN 202110287807A CN 113046692 A CN113046692 A CN 113046692A
Authority
CN
China
Prior art keywords
growth substrate
monolayer film
tungsten diselenide
tungsten
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110287807.8A
Other languages
English (en)
Inventor
王泽高
王一涵
肖闳畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202110287807.8A priority Critical patent/CN113046692A/zh
Publication of CN113046692A publication Critical patent/CN113046692A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Abstract

本发明提供单晶二硒化钨单分子层薄膜的制备方法,在生长基片表面悬涂种子材料置于石英舟内,然后再在具有种子材料的生长基片表面覆盖钨箔片;在生长基片附近放置氯化钠粉末;通入含有硒的气体,调整反应器内压强;高温反应后,在生长基片表面获得单晶二硒化钨单分子层薄膜。本方法操作步骤简单,原料易得,所得产品纯度高,质量好,主要用于半导体、光电器件、逻辑器件等领域。

Description

一种单晶二硒化钨单分子层薄膜的制备方法
技术领域
本发明属于半导体材料领域,涉及单晶单分子层薄膜的制备方法,尤其是单晶二硒化钨薄膜的制备方法。
背景技术
2004年由英国曼彻斯特大学物理学家Geim、Novoselov发现的石墨烯是人们认知的首个二维材料。二维材料具有与三维块体材料截然不同的奇异性质,如量子尺寸效应、量子隧穿效应,量子干涉效应、二维电子气和量子霍尔效应等,在半导体电子和光电子器件等领域具有极大的潜力。随着研究的深入,科研人员发现虽然石墨烯具有许多优异的电、光、力等性质,但是其零带隙的结构,使石墨烯呈现金属的特性,极大的限制了石墨烯在电子器件,尤其是逻辑器件的应用。最近研究人员发现以二硫化钼为代表的过渡金属硫属化合物因为具有优异的物理化学性质以及原子层厚度的特点引起了人们的关注。二硫化钼在地球上具有丰富的存储,然而其高的硫缺陷浓度,致使二硫化钼往往表现出n型半导体特性。虽然许多科学工作者尝试开展p型二硫化钼的研究,以满足未来对二硫化钼基CMOS电路的要求,但p型掺杂会导致二硫化钼电学性质大幅下降。最近,瑞士科学家采用大数据计算研究发现,具有层状结构的过渡金属硫族化合物超过500种,然而对这些材料的合成制备却相对较难,尤其是单晶质量薄膜的制备进展非常缓慢。
二硒化钨也是过渡金属硫属化合物这一大类材料中的一种,它的费米能级处于禁带中心,表现出显著的双极性半导体特性。此外,二硒化钨的载流子迁移率通常比二硫化钼高出很多,因此二硒化钨有发展成为未来超短沟道CMOS电路的可能。当前二硒化钨的制备方法主要有机械剥离法、化学气相沉积法等。机械剥离法具有操作简单、成本低等优点,但所制备的二硒化钨薄膜随机分布、厚度不受控制且表面往往残留污染物,这些缺点大幅降低其在工业应用中的可能。化学气相沉积法在原料选择上多用三氧化钨作为钨源与硒单质分别升华,在基片上反应以实现薄膜沉积生长。但该方法受三氧化钨蒸汽稳定性差的影响,所制备的二硒化钨薄膜往往成核密度高,导致薄膜呈现多晶的特点。此外载气中的氢气将与三氧化钨反应,所产生的水蒸气将对二硒化钨薄膜产生刻蚀作用,在二硒化钨薄膜中引入大量的缺陷,降低了薄膜晶体质量。
发明内容
本发明的目的在于克服上述缺点,提供一种原料易得、操作简单、所得产品纯度高、质量好的单晶二硒化钨单分子层薄膜的制备方法。
本发明一种单晶二硒化钨单分子层薄膜的制备方法,其步骤如下。
1)在生长基片表面悬涂种子材料置于石英舟内,然后再在具有种子材料的生长基片表面覆盖钨箔片。
2)在生长基片附近放置氯化钠粉末。
3)通入含有硒的气体,调整反应器内压强。
4)高温反应后,在生长基片表面获得单晶二硒化钨单分子层薄膜。
本发明单晶二硒化钨单分子层薄膜的制备方法的优点在于原料易得,操作简单,制备出的二硒化物单晶纯度高,质量好,晶界较少。使用钨箔在硒气氛且高温环境下,钨箔表面优先形成硒化钨纳米颗粒,这种硒化钨纳米颗粒均匀分布在钨箔表面,并蒸发形成蒸汽,在生长基片表面沉积实现二硒化钨单分子层薄膜的生长。其特点在于作为平面钨源较以前采用三氧化钨粉末作为原料,具有更稳定的钨蒸汽,且钨箔与生长基片间形成的小空间提高了二硒化钨薄膜的生长速度及生长质量。采用该方法制备的二硒化钨单分子层薄膜具有三角形、六边形单晶的几何形状。此外,本发明的另一优点在于使用单质钨和单质硒,反应所需蒸汽内不含其他元素,有效抑制了副产物的产生,提高了产品的纯度,也减少了因副产物的产生而对二硒化钨薄膜产生的刻蚀等危害。生长基片表面的种子将大幅提高二硒化钨薄膜的初始形核密度,提高其生长产率。
附图说明
图1. 采用本发明专利制备单晶二硒化钨单分子层薄膜的方法示意图。
具体实施方式
实施例1:本发明制备单晶二硒化钨单分子层薄膜的方法步骤如下。
1)在硅基片表面悬涂厚度为20纳米的PMMA后置于石英舟里,再在具有PMMA的硅基片表面上方5毫米处覆盖纯度在99.98%以上、厚度为1毫米的钨箔片。
2)在硅基片的上游端1厘米处放置0.1克氯化钠粉末。
3)加热硒粉至300℃使其升华,与含氢气20%的氩气氢气混合器混合后,以100sccm的流速通入反应器中,调整反应器内压强至160帕斯卡。
4)加热至850℃后在850℃下反应5分钟,在硅基片表面获得单晶二硒化钨单分子层薄膜。
采用该方法制备的单晶二硒化钨单分子层薄膜尺寸达到50微米。

Claims (10)

1.一种单晶二硒化钨单分子层薄膜的制备方法,其特征在于如下步骤:
1)在生长基片表面悬涂种子材料置于石英舟内,然后再在具有种子材料的生长基片表面覆盖钨箔片;
2)在生长基片附近放置氯化钠粉末;
3)通入含有硒的气体,调整反应器内压强;
4)高温反应后,在生长基片表面获得单晶二硒化钨单分子层薄膜。
2.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于生长基片可以是石英基片、玻璃基片、蓝宝石单晶基片、硅基片、云母基片中的一种。
3.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于所指的种子材料可以是酞菁分子、卟啉分子、PEDOT、PTAS、PMMA中的一种。
4.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于所采用的钨箔片纯度在99.98%以上,厚度是0.05~3毫米。
5.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于钨箔与生长基片的间距为3~8毫米。
6.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于氯化钠粉末是放置在气体的上游一端且距离生长基片的间距是1~4厘米,氯化钠粉末的质量是0.01~10克。
7.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于所指的含有硒的气体是通过对硒粉进行加热至升华,混合于氢氩混合气体。
8.如权利要求8所述混合于氩气是指氢氩混合气体中氢气的浓度为10%~50%,氢氩混合气体的流量为20~200sccm。
9.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于反应器内压强是100~100000帕斯卡。
10.如权利要求1所述的单晶二硒化钨单分子层薄膜的制备方法,其特征在于所指的高温反应是指在800~1000摄氏度,高温反应时间是5~60分钟。
CN202110287807.8A 2021-03-17 2021-03-17 一种单晶二硒化钨单分子层薄膜的制备方法 Pending CN113046692A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110287807.8A CN113046692A (zh) 2021-03-17 2021-03-17 一种单晶二硒化钨单分子层薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110287807.8A CN113046692A (zh) 2021-03-17 2021-03-17 一种单晶二硒化钨单分子层薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN113046692A true CN113046692A (zh) 2021-06-29

Family

ID=76513200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110287807.8A Pending CN113046692A (zh) 2021-03-17 2021-03-17 一种单晶二硒化钨单分子层薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN113046692A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835090A (zh) * 2022-05-08 2022-08-02 中国科学院重庆绿色智能技术研究院 一种基于竖直结构二硒化钨的电化学传感器制作方法
CN115367714A (zh) * 2022-08-31 2022-11-22 西北工业大学 一种二硒化钨纳米片及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201605121D0 (en) * 2016-03-24 2016-05-11 Isis Innovation Process
CN107445206A (zh) * 2017-07-18 2017-12-08 北京大学 一种碱金属离子辅助过渡金属硫属化合物生长的方法
CN107445488A (zh) * 2017-06-15 2017-12-08 北京大学 一种制备大面积均匀单层过渡金属硫属化合物的方法
CN107662906A (zh) * 2017-11-10 2018-02-06 福州大学 一种二硒化钨薄膜的制备方法和光催化还原二氧化碳的应用
CN109292824A (zh) * 2018-10-17 2019-02-01 北京大学 一种氯化钠辅助多层过渡金属硫属化合物生长的方法
CN110451564A (zh) * 2019-08-01 2019-11-15 复旦大学 基于衬底硫化预处理的单层二硫化钼的制备方法
CN111960388A (zh) * 2020-07-31 2020-11-20 天津理工大学 制备大面积不同层数二维二硒化钼薄膜的方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201605121D0 (en) * 2016-03-24 2016-05-11 Isis Innovation Process
CN107445488A (zh) * 2017-06-15 2017-12-08 北京大学 一种制备大面积均匀单层过渡金属硫属化合物的方法
CN107445206A (zh) * 2017-07-18 2017-12-08 北京大学 一种碱金属离子辅助过渡金属硫属化合物生长的方法
CN107662906A (zh) * 2017-11-10 2018-02-06 福州大学 一种二硒化钨薄膜的制备方法和光催化还原二氧化碳的应用
CN109292824A (zh) * 2018-10-17 2019-02-01 北京大学 一种氯化钠辅助多层过渡金属硫属化合物生长的方法
CN110451564A (zh) * 2019-08-01 2019-11-15 复旦大学 基于衬底硫化预处理的单层二硫化钼的制备方法
CN111960388A (zh) * 2020-07-31 2020-11-20 天津理工大学 制备大面积不同层数二维二硒化钼薄膜的方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835090A (zh) * 2022-05-08 2022-08-02 中国科学院重庆绿色智能技术研究院 一种基于竖直结构二硒化钨的电化学传感器制作方法
CN114835090B (zh) * 2022-05-08 2024-05-07 中国科学院重庆绿色智能技术研究院 一种基于竖直结构二硒化钨的电化学传感器制作方法
CN115367714A (zh) * 2022-08-31 2022-11-22 西北工业大学 一种二硒化钨纳米片及其制备方法

Similar Documents

Publication Publication Date Title
Zeng et al. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control
McDonnell et al. Atomically-thin layered films for device applications based upon 2D TMDC materials
CN109023298B (zh) 一种过渡金属掺杂二硫化钼薄层材料及其制备方法和用途
Shen et al. CVD technology for 2-D materials
KR101284059B1 (ko) 그라핀-산화물반도체 이종접합 소자 및 그의 제조방법
Wang et al. Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method
Chang et al. Facile colloidal synthesis of quinary CuIn 1− x Ga x (S y Se 1− y) 2 (CIGSSe) nanocrystal inks with tunable band gaps for use in low-cost photovoltaics
Shi et al. Synthesis and structure of two-dimensional transition-metal dichalcogenides
Li Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides
CN113046692A (zh) 一种单晶二硒化钨单分子层薄膜的制备方法
Sun et al. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures
CN109437124B (zh) 一种合成单层过渡金属硫族化合物的方法
Tan et al. Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition
Li et al. Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors
Sawant et al. Chemical bath deposition of CuInS2 thin films and synthesis of CuInS2 nanocrystals: a review
Khimani et al. Study of indium and antimony incorporation into SnS2 single crystals
Zhang et al. Synthesis, properties, and stacking of two-dimensional transition metal dichalcogenides
Wei et al. Monolayer MoS 2 epitaxy
Ledneva et al. Crystalline and nanostructured materials based on transition metal dichalcogenides: Synthesis and electronic properties
CN110344025B (zh) 一种二维Zn掺杂Ca2Si纳米薄膜及其化学气相沉积方法
CN109023296B (zh) 一种在氟金云母衬底上化学气相沉积生长钼钨硒合金的方法
Zhang et al. Growth and applications of two-dimensional single crystals
Salazar et al. Synthesis of graphene and other two-dimensional materials
Ananthakumar Influence of co-ordinating and non-coordinating solvents in structural and morphological properties of Cu2ZnSnS4 (CZTS) nanoparticles
Yadav et al. Effect of different precursors on morphology of CVD synthesized MoSe2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210629

RJ01 Rejection of invention patent application after publication