CN113046368A - 水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用 - Google Patents

水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用 Download PDF

Info

Publication number
CN113046368A
CN113046368A CN202110477770.5A CN202110477770A CN113046368A CN 113046368 A CN113046368 A CN 113046368A CN 202110477770 A CN202110477770 A CN 202110477770A CN 113046368 A CN113046368 A CN 113046368A
Authority
CN
China
Prior art keywords
rice
ospm1
gene
promoter
transgenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110477770.5A
Other languages
English (en)
Inventor
葛晓春
安硕
姚玲娅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202110477770.5A priority Critical patent/CN113046368A/zh
Publication of CN113046368A publication Critical patent/CN113046368A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于基因工程技术领域,具体为一种水稻基因OsPM1及启动子提高水稻耐高温胁迫能力的应用。在水稻中人为地过量表达OsPM1能够增强水稻的耐热性,提高水稻在高温条件下的存活率。将OsPM1的启动子与热休克启动子融合,转化水稻,可以提高水稻的高温胁迫耐受能力。本发明还包含根据此基因及其启动子功能转化而得到的抗热能力增强的转基因植物。本发明提供的基因及启动子能够增强植物应对高温胁迫的能力,降低农作物在高温天气下的产量损失,具有较高的应用价值。

Description

水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的 应用
技术领域
本发明属于基因工程技术领域,具体涉及一种水稻基因OsPM1的编码区及启动子在提高水稻耐高温胁迫能力方面的应用。利用该基因及其启动子融合热胁迫转录因子,可以对水稻的耐热性进行改造,提高梗稻的耐热性。
背景技术
水稻是全球最重要的粮食作物之一,我国水稻的种植面积约占粮食作物总面积的1/3,产量接近粮食总产量的一半。作为喜温却不耐热作物,水稻种植对环境温度的要求很高。水稻最佳生长温度在28-30度左右,超过35度,大部分水稻品种,生长和结实都会受到严重影响,导致产量和品质的下降。我国大面积种植的水稻品种主要分为籼稻和粳稻两类,籼稻耐热,而粳稻不耐热,相对较耐寒。因此,中国北方主要种植粳稻,而南方适宜种籼稻。粳稻相对于籼稻,饭粒更加软而粘,有弹性,适口性较好,更受老百姓的喜爱。近年来南方的粳稻种植面积在增加。国家也积极推进粳稻发展,推进南方适宜地区籼改粳。我国的长江中下游地区,包括江苏、浙江等省份,原来大部分种植籼稻,现在都几乎已改为种植粳稻。而湖南、江西、湖北等省份,粳稻的种植也在逐年增加,由于粳稻相对籼稻耐热性差,在炎热的年份,产量下降巨大,但我国长江以南地区夏季经常面临37度以上的高温,因此提高粳稻品种的耐热性,扩大粳稻品种在热带及亚热带的种植范围,具有非常现实的意义。
有研究表明,1961年以来全球最高气温升高了3-4 ℃,受此影响水稻产量下降了15-35%(Ortiz et al., 2008; Bita and Gerats, 2013)。开展耐高温水稻新品种的培育不仅对于中国,对于全球水稻种植、稳定水稻产量也是至关重要的。寻找植物高温耐受性相关基因,通过基因工程育种手段将相关基因转入水稻优良品种中,改良水稻的耐高温能力,是培育水稻抗逆新品种的途径之一。本实验室通过转录组分析发现水稻OsPM1基因受高温和ABA的诱导,与高温响应有关。OsPM1定位于细胞膜上,由173个氨基酸组成,与小麦的PM19蛋白有序列同源性(Koike et al.,1997),进一步对OsPM1功能进行深入研究发现,它在水稻中负责ABA向细胞内的转运 (Yao et al., 2018)。在水稻中通过人为地增加OsPM1基因的表达量,可以增强水稻耐高温胁迫的能力。另外,OsPM1启动子是一个ABA及高温胁迫响应启动子,在面临干旱、高温等逆境时,其活性常常提高几百倍以上,而正常生长条件下,该转录因子的活性很低,几乎检测不到其活性。
热休克转录因子(heat shock transcription factor, HSF)广泛存在于动植物中,它通常在长期或者短暂但重复的热胁迫下被诱导到较高水平(Scharf et al., 1998;Kotak et al., 2004),它可以调节热胁迫以及其它胁迫条件下多个基因的表达,增强植物的抗逆能力。这类转录因子通常结构上比较保守,在单、双子叶植物中均存在。高粱是禾本科植物中一类耐热性较强的作物,其热休克转录因子在调节其耐热性上起重要作用,目前对高粱各种HSF的作用了解较少。
我们发现,在水稻中组成性表达OsPM1基因,可以提高粳稻日本晴的耐热性;另外将OsPM1启动子与高粱热休克启动子基因SbHSF03融合,转化对热敏感的粳稻日本晴,可以显著提高日本晴的耐热性,但不影响正常情况下水稻的生长。本发明提供了利用OsPM1及其启动子以及高粱的热休克转录因子SbHSF03来改造水稻耐热性的思路及技术手段。
发明内容
本发明的目的在于提供水稻膜蛋白基因OsPM1及其启动子在提高水稻耐高温胁迫能力方面的应用。
经研究表明,水稻膜蛋白基因OsPM1具有增强植物抗逆性的作用,本发明提供基因OsPM1及其启动子在提高水稻耐高温胁迫能力方面的应用。其中:
所述基因OsPM1提高水稻耐高温胁迫能力的应用,包括提高干旱胁迫下水稻的成活率,从而提高水稻产量。具体是将该基因通过转基因手段转入水稻等粮食作物中,筛选过表达株系,可以得到抗高温能力增强的作物;具体操作步骤为:
(1)将水稻OsPM1的全长cDNA连入植物过表达载体(如pCAMBIA1301ubi)中,获得含OsPM1基因的植物过表达载体;
(2)将含OsPM1基因的植物过表达载体转入农杆菌EHA105中,将鉴定为阳性的农杆菌侵染水稻愈伤,经过共培养、筛选、分化等植物组织培养,获得过表达OsPM1的转基因水稻。
所得的阳性转基因水稻较野生型具有更强的耐高温能力。
所述基因OsPM1启动子提高水稻耐高温胁迫能力的应用,是将水稻OsPM1基因启动子与高粱中分离的SbHSF03 融合,导入水稻中,得到耐热性进一步显著提高的水稻品系。具体是利用基因工程技术,将OsPM1::SbHSF03融合基因转化入水稻中,筛选阳性转基因株系,得到抗高温能力提高的水稻株系,具体操作步骤如下:
(1)从高粱叶片中扩增到SbHSF03基因的全长cDNA,然后通过基因融合技术将SbHSF03与OsPM1基因上游2152bp长的启动子进行无缝连接,将融合基因连入植物转基因载体pCAMBIA1302-eGFP中,获得含有OsPM1::SbHS03融合基因的转基因载体;
(2)将OsPM1::SbHSF03的转基因载体转入农杆菌EHA105中,然后侵染水稻愈伤,经过共培养、筛选、分化等植物组织培养,获得由OsPM1启动子驱动SbHSF03表达的转基因水稻。
得到的转基因水稻在面临逆境或者热胁迫时,能快速上调SbHSF03的表达,从而使得植物在热胁迫下卷叶率下降,膜损伤减少,耐热能力增强。
本发明中,涉及的水稻OsPM1基因,其核苷酸序列如SEQ ID NO.1所示,cDNA全长858bp,无内含子,开放阅读框为522bp(黑体标注)。OsPM1基因的编码区序列长522bp,如SEQID NO.2所示;OsPM1基因编码173个氨基酸,如SEQ ID NO.3所示。OsPM1基因的启动子序列如SEQ ID NO.4所示,具有响应高温及ABA诱导的活性,长度为2152 bp。
本发明涉及的热休克相关转录因子(heat shock transcription factor)SbHSF03 ,是从高粱中扩增的HSF,其CDS序列如SEQ ID NO.5所示,长度为1116 bp。
本发明还提供引物序列SEQ ID NO.6和SEQ ID NO.7,用于从水稻总cDNA中扩增膜蛋白基因OsPM1的cDNA全长,所示引物序列为:
上游引物(BamHI):TACGGATCCACGAGATGGCCGGAGTAGGGAG(SEQ ID NO.6)
下游引物(SacI):ACTACGAGCTCCCGGTGTGTCGGGGTCAAATT(SEQ ID NO.7)
本发明还提供的引物序列SEQ ID NO.8- SEQ ID NO.11,用于从水稻总cDNA中扩增膜蛋白基因OsPM1所具有的特异性最强的片段(如SEQ ID NO.1所示),从而构建RNAi-OPM1,所述引物序列为:
正向上游引物(NcoI BamHI):CATGCCATGGGGATCCCTGCTCTACGTCGCCATGC(SEQ IDNO.8)
正向下游引物(KpnI):GGGGTACCCGGTACATACATATGATTACGAACG
(SEQ ID NO.9)
反向上游引物(SpeI):GGACTAGTCTGCTCTACGTCGCCATGC(SEQ ID NO.10)
反向下游引物(HindIII):CCCAAGCTTCGGTACATACATATGATTACGAACG
(SEQ ID NO.11)
本发明还提供克隆上述水稻OsPM1基因的载体pCAMBIA1301ubi。
本发明还提供含上述水稻OsPM1基因载体的宿主。优选地,所述宿主为单子叶粮食作物,更优选地,所述宿主为水稻。
本发明还提供干扰内源OsPM1基因表达的方法,具体为:将OsPM1特异性最强的片段以正反双向形式和一段无功能的序列连接,然后连入植物表达载体中,获得RNAi-OsPM1的植物表达载体。然后通过转基因手段获得RNAi-OsPM1的转基因水稻。
本发明还提供利用荧光定量PCR技术检测转基因水稻中OsPM1表达量的方法,具体步骤为:在液氮中研磨水稻叶片后,用TRIzol法抽提水稻总RNA,用DNaseI消化DNA杂质后,反转录得到cDNA,以此为模板通过荧光定量PCR进行分析,以野生型为对照。荧光定量PCR所需的引物序列为:
上游引物:GGAGTAGGGAGGACGATGAT(SEQ ID NO.12)
下游引物:CCGTTGATGTAGTGGTTGAGAT(SEQ ID NO.13)
本发明还提供从高粱叶片中扩增sbHSF03 基因的引物:
上游引物(Bst p1):GGGTGACCCCATGGATCCCTTCCACGGCGG(SEQ ID NO.14)
下游引物(BST P1):GGGTGACCTCACTTCCCACTGGGGCTGCC(SEQ ID NO.15)
本发明具有以下优点及意义:
(1) 本发明提供的水稻OsPM1基因及其启动子在提高植物耐热能力上具有明显的作用,能够提高农作物在40℃以上高热天气下的存活率,具有很大的应用价值。
(2) 利用转基因手段将OsPM1基因以及OsPM1::SbHSF03融合基因转入水稻或其它单子叶作物中,可得到耐热性增强的作物。
附图说明
图1为各非生物胁迫及45℃热胁迫下水稻OsPM1在水稻叶片中的表达情况。其中,A为各种非生物胁迫下OsPM1的表达情况;B为45℃热胁迫不同时间后OsPM1基因的表达。
图2为过表达OsPM1转基因植株及RNA干扰转基因植株中RNA水平的鉴定。其中,A.过表达植株中RNA水平鉴定。WT为水稻日本晴,OE-2、OE-13、OE-14、OE-15均为过表达OsPM1的转基因水稻株系。B为RNAi-OsAPM1转基因植株RNA水平的鉴定。其中,WT为水稻日本晴,RNAi-1、RNAi-3、RNAi-4、RNAi-12均为RNA干扰株系。
图3为过表达OsPM1的植株具有高温耐受性图示。其中,A为水稻苗期在45℃高温胁迫条件下的生长情况。WT为水稻日本晴,OE-2、OE-14为过表达转基因株系,RNAi-1、RNAi-3、RNAi-12为RNA干扰株;B为水稻在45℃高温胁迫前后MDA(丙二醛)水平变化; C为水稻在45℃高温胁迫前后叶片的离子泄漏率测定。
图4为OsPM1::SbHSF03转基因植株E452的热耐受性增强图示。A. 45℃热处理46小时后野生型及转基因植株的表型;B. 热处理前后不同植株的卷叶率及叶片离子泄漏率;C.热处理前后MDA水平变化。
图5为45℃光照6小时光照/28℃黑暗18小时处理1个月以后植株的野生型及OsPM1::SbHSF03转基因植株E452的表型。
具体实施方式
下面结合具体实施例,进一步阐明本发明。应理解这些实施例仅用于说明本发明而不用于限制本发明的范围。下面实施例中未注明具体条件的实验方法均按照常规条件,例如Sambrook等著的《分子克隆》实验手册,或按照制造厂商所建议的条件。
实施例1,各种胁迫处理后OsPM1在水稻叶片中的表达变化
1. 将刚刚露白的水稻(日本晴)放入底部有孔的96孔板中,每一个孔放入一粒种子,然后放在盛有水稻营养液(木村B)的枪头盒中培养,28°C光照培养(16小时光照/8小时黑暗),当水稻苗生长至三叶期时开始进行不同胁迫处理。分别用20% PEG处理24h、200mMNaCl处理24h、50µM ABA处理12h、45°C处理4h、0°C处理4h,处理结束后取水稻的叶片收集、编号,同时取同时期生长的正常条件下的水稻叶片作对照,重复三次取样。
2. 通过荧光定量PCR分析各胁迫处理后水稻叶片中OsPM1的表达变化
利用TRIzol法提取步骤1中所收集的各种样品的RNA(具体操作见TaKaRa公司TRIzol的说明书),反转录成cDNA(具体操作见TaKaRa公司PrimeScriptTM RT Reagent Kit的说明书),以这些cDNA为模板进行real time荧光定量分析,然后根据—ΔΔCT法分析干旱条件下OsPM1基因的表达情况,以OsUBQ5为内参基因,以正常条件下的水稻组织材料为对照;用于real time荧光定量PCR的引物为引物对1和引物对2所示:
引物对1,用于OsPM1的组织表达分析:
上游引物:ACACACCGGCCAATCGAT(SEQ ID NO.16)
下游引物:AGCGGGAAACACAAAGTGAAG(SEQ ID NO.17)
引物对2,用于定量PCR中扩增内参基因OsUBQ5
上游引物:CATGGACTGGTTAAATCAATCGTCA(SEQ ID NO.18)
下游引物:TACCATATACCACGACCGTCAAAA(SEQ ID NO.19)
利用TRIzol法提取RNA(具体操作见TaKaRa公司TRIzol的说明书),经DNaseI处理后除去DNA(具体操作见TaKaRa公司DNase I的说明书),反转录成cDNA(具体操作见TaKaRa公司PrimeScriptTM Reverse Transcriptase的说明书)。结果显示:除冷胁迫处理(0°C)外,干旱、高温、高盐这些非生物胁迫均可以诱导OsPM1在水稻叶片中的表达,上调倍数多达1000倍(图1(A)),说明OsPM1在水稻中受干旱、高温、高盐胁迫诱导表达,且该启动子在正常情况下活性非常低,诱导后表达水平高。
利用45°C处理生长到3叶期的幼苗,在热处理后不同时间点取样,抽提RNA后利用荧光定量PCR检测OsPM1的表达水平,发现热处理后4小时,OsPM1的表达水平可以达到处理前的400倍左右,而在其它时间点,诱导表达的水平大概在100多倍(图1(B))。
实施例2,在水稻中过表达OsPM1基因,获得过表达转基因水稻
1. 水稻OsPM1基因的过表达载体构建:
利用引物对SEQ ID NO.6和SEQ ID NO.7,可以从水稻苗的总cDNA中可以扩增到OsPM1的cDNA全长,然后连入中间载体PCR-Blunt中,用设计的酶切位点(本例为BamHI、SacI)将OsPM1基因全长酶切下来,然后连入到过表达载体pCAMBIA1301ubi上,测序,在保证阅读框架正确的前提下将该过表达载体转入农杆菌EHA105中,并转化模式植物水稻日本晴(梗稻)。
2. 农杆菌介导法进行水稻转基因:送武汉伯远公司进行。
3. 转基因植株的鉴定
剪取转基因水稻叶片,根据CTAB法提取水稻叶片DNA,PCR检测潮霉素基因,共检测了9个株系,用于检测潮霉素基因存在与否的引物序列如下:
上游引物:CGATTTGTGTACGCCCGACAGTC(SEQ ID NO.20)
下游引物:CGATGTAGGAGGGCGTGGATATG(SEQ ID NO.21)
选取潮霉素阳性转基因株系2、13、14、15用TRIzol法抽取叶片RNA,反转录成cDNA(方法同实施例1),根据基因序列设计引物(如SEQ ID NO.12- SEQ ID NO.13和SEQ IDNO.18-SEQ ID NO.19)进行荧光定量PCR,根据—ΔΔCT法分析转基因水稻中OsPM1基因的表达情况(图2(A)),具体操作按照TaKaRa公司定量PCR试剂盒说明操作,荧光定量PCR仪为ABIStep one plusTM
实施例3,抑制水稻OsPM1基因的体内表达,得到RNA干扰株系
1.水稻RNAi- OsPM1表达载体构建:
根据基因OsPM1的cDNA序列设计引物(如SEQ ID NO.8- SEQ ID NO.11所示),用PCR扩增的方式得到区别于其他基因特异性最强的片段(如SEQ ID NO.1所示)用于构建RNAi-OsPM1表达载体。在保证载体正确的前提下将该基因沉默的表达载体转入农杆菌EHA105中,并转化梗稻日本晴。
2. 农杆菌介导法进行水稻转基因:将载体送至武汉伯远公司进行转基因,得到转基因阳性株系30株。
3. 转基因植株的鉴定
剪取转基因水稻叶片,根据CTAB法提取水稻叶片DNA,通过PCR检测潮霉素基因来鉴定转基因情况,共检测10个株系,引物序列如SEQ ID NO.20- SEQ ID NO.21所示。
选取潮霉素阳性转基因株系1、3、4、12用TRIzol法抽取叶片RNA,反转录成cDNA(方法同实施例2),根据基因序列设计引物(如SEQ ID NO.12- SEQ ID NO.13和SEQ ID NO.18-SEQ ID NO.19所示)进行荧光定量PCR,扩增OsPM1基因产物以及OsUBQ5产物,根据—ΔΔCT法分析转基因水稻中OsPM1基因的表达情况(图2(B))。
实施例4,OsPM1过表达株系及RNA干扰株系的耐高温能力鉴定
OsPM1基因的过表达及RNA干扰转基因株系在苗期进行胁迫处理,观察它们的抗高温能力。
水稻种子用3%双氧水消毒30分钟后,用蒸馏水洗3次,然后置蒸馏水中,在28℃温箱浸泡两天至露白,把刚刚露白的水稻种子放入底部有孔的96孔板中,每一个孔放入一粒种子,然后放在盛有水稻营养液(木村B)的枪头盒中培养,28°C光照培养(16小时光照/8小时黑暗),当水稻苗生长至三叶期时将水稻苗放入45℃的高温培养箱中培养(12小时45℃光照/12小时28°C黑暗),高温处理5天后观察植株表型,发现过表达转基因株系叶片较野生型更绿,而RNA干扰株系则较野生型更黄(图3)。叶片的离子泄露率可以用来衡量叶片在高温下细胞膜的损伤程度,损伤程度较低的植物细胞膜相对完整,通透性较低,因此离子泄露率也较低;而丙二醛也是膜脂过氧化的产物,它可以导致蛋白质、核酸等发生交联,影响酶活性,另外,它自身亦可损伤膜结构,加剧膜损伤,因此丙二醛含量的高低可以作为考察细胞受到胁迫严重程度的指标。我们同时检测了正常条件下及高温处理条件下植物的丙二醛(MDA)含量及离子泄漏率,结果显示:相比较野生型,过表达株系的丙二醛(MDA)含量及离子泄漏率都较低,而OsPM1干扰株系的则较高,说明OsPM1基因参与了水稻抗高温反应(图3),过表达OsPM1可以减轻植物在高温下的膜损伤。
综上所述,通过在水稻中过表达OsPM1基因,可以增强植物的耐热性。因此,OsPM1基因可以应用于通过转基因手段改善作物的抗高温能力。
实施例 5, OsPM1::SbHSF03融合基因转基因株系的耐高温能力鉴定
1. OsPM1::SbHSFSbHS03融合基因的转基因载体构建:
利用引物对SEQ ID NO.14和SEQ ID NO.15,可以从高粱叶片的总cDNA中扩增到SbHSF03基因的cDNA全长,然后连入中间载体PCR-Blunt中,用设计的酶切位点(本例为Bst pI)将SbHSF03基因全长酶切下来,然后通过基因融合技术将SbHSF03OsPM1基因上游2152bp长的启动子进行无缝连接,测序,在保证阅读框架正确的前提下将该融合载体转入农杆菌EHA105中,并转化模式植物水稻(日本晴)。
2. 农杆菌介导法进行水稻转基因:送武汉伯远公司进行,得到30株左右转基因水稻。
3. OsPM1::SbHSF03融合基因转基因株系耐高温能力鉴定
利用转基因株系的第二代种子进行高温实验,种子萌发方法同实施例4,培养条件为28°C,12小时光照/12小时黑暗,当水稻苗生长至两周时将水稻苗放入45℃的高温培养箱中培养(12小时45℃光照/12小时45°C黑暗),高温处理46小时后观察植株表型,发现OsPM1::SbHSF03融合基因转基因株系较野生型卷叶少,说明转基因株系更加耐热,进一步进行卷叶率统计(图4),与观察到的表型一致。同时利用叶片,检测了正常条件下及高温处理条件下植物的丙二醛(MDA)含量及离子泄漏率,结果显示:相比较野生型,高温胁迫后OsPM1::SbHSF03融合基因转基因株系的丙二醛(MDA)含量及离子泄漏率都较低,表明细胞膜损伤少,在水稻中表达OsPM1::SbHSF03融合基因可以增强植物的耐热性(图4)。
将上述苗进行高温处理1个月,条件为6小时45℃光照/18小时28°C黑暗,结果如图5所示,此时未转基因野生型材料几乎完全枯萎发黄,而转OsPM1::SbHSF03的水稻株系则依然活着,叶子为绿色,无枯萎现象,说明转基因作物较野生型更耐热。
序列表
<110> 复旦大学
<120> 水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 858
<212> DNA
<213> OsPM1-cDNA
<400> 1
acttaatcac agtagctctc agctagctag ctaaaccagt gctaattgtg ttgctaattt 60
gtgttgattt gtgattttga tacgagatgg ccggagtagg gaggacgatg atcgcgccgc 120
tgctggtgct gaatctgatc atgtacttga tcgtgatcgg gttcgcgagc tggaatctca 180
accactacat caacggcgag accaaccacc cgggggtcgc cggcaacggc gccaccttct 240
acttcctcgt cttcgccatc ctcgcggggg tggtcggcgc cgcctccaag ctcgccggcg 300
tccaccacgt ccgctcctgg ggcgcgcaca gcctcgccgc cggcgccgcg tcggcgctca 360
tcgcctgggc catcaccgcg ctcgccttcg gcctcgcctg caaggagatc cacatcggcg 420
gctaccgcgg gtggcgcctc cgcgtgctcg aggccttcgt catcatcctc gccttcacgc 480
agctgctcta cgtcgccatg ctccacggcg gcctcttctc cggcaaccac gccgccggcg 540
ccggcggcta cggcggcgac taccccgccg accaccacca caagcccgcc gccgcggcca 600
gggtctaact gaatttgacc ccgacacacc ggccaatcga tcgatgccat ccatcatgca 660
cacgactgcc tatatatctc ggtgtgatcg agctttgatt ttctcgtaat ttcttcactt 720
tgtgtttccc gctcgtgcat tgctgctaga tgcaatggca atgcacgaac aacgctgttc 780
atatactctc cgtatgtaaa cttctgttct ctgtatcgac gttcgtaatc atatgtatgt 840
accgtttggt ttggtttt 858
<210> 2
<211> 522
<212> DNA
<213> OsPM1-CDS
<400> 2
atggccggag tagggaggac gatgatcgcg ccgctgctgg tgctgaatct gatcatgtac 60
ttgatcgtga tcgggttcgc gagctggaat ctcaaccact acatcaacgg cgagaccaac 120
cacccggggg tcgccggcaa cggcgccacc ttctacttcc tcgtcttcgc catcctcgcg 180
ggggtggtcg gcgccgcctc caagctcgcc ggcgtccacc acgtccgctc ctggggcgcg 240
cacagcctcg ccgccggcgc cgcgtcggcg ctcatcgcct gggccatcac cgcgctcgcc 300
ttcggcctcg cctgcaagga gatccacatc ggcggctacc gcgggtggcg cctccgcgtg 360
ctcgaggcct tcgtcatcat cctcgccttc acgcagctgc tctacgtcgc catgctccac 420
ggcggcctct tctccggcaa ccacgccgcc ggcgccggcg gctacggcgg cgactacccc 480
gccgaccacc accacaagcc cgccgccgcg gccagggtct aa 522
<210> 3
<211> 173
<212> PRT
<213> OsPM1
<400> 3
Met Ala Gly Val Gly Arg Thr Met Ile Ala Pro Leu Leu Val Leu Asn
1 5 10 15
Leu Ile Met Tyr Leu Ile Val Ile Gly Phe Ala Ser Trp Asn Leu Asn
20 25 30
His Tyr Ile Asn Gly Glu Thr Asn His Pro Gly Val Ala Gly Asn Gly
35 40 45
Ala Thr Phe Tyr Phe Leu Val Phe Ala Ile Leu Ala Gly Val Val Gly
50 55 60
Ala Ala Ser Lys Leu Ala Gly Val His His Val Arg Ser Trp Gly Ala
65 70 75 80
His Ser Leu Ala Ala Gly Ala Ala Ser Ala Leu Ile Ala Trp Ala Ile
85 90 95
Thr Ala Leu Ala Phe Gly Leu Ala Cys Lys Glu Ile His Ile Gly Gly
100 105 110
Tyr Arg Gly Trp Arg Leu Arg Val Leu Glu Ala Phe Val Ile Ile Leu
115 120 125
Ala Phe Thr Gln Leu Leu Tyr Val Ala Met Leu His Gly Gly Leu Phe
130 135 140
Ser Gly Asn His Ala Ala Gly Ala Gly Gly Tyr Gly Gly Asp Tyr Pro
145 150 155 160
Ala Asp His His His Lys Pro Ala Ala Ala Ala Arg Val
165 170
<210> 4
<211> 2152
<212> DNA
<213> OsPM1
<400> 4
ctcgtatcaa aatcacaaat caacacaaat tagcaacaca attagcactg gtttagctag 60
ctagctgaga gctactgtga ttaagtgagg agaaaacgtg ctggttggtg gagggatata 120
taggcgggga gaggggtgac acgtgtgggt ggatggggat ggcacgtgtc ggcgtgtggc 180
aaggggtagg ggggacacgt acgcgcgggg ccacgccacg gacgcccggc ttctggtgat 240
ttccggagag gcgcgacgcg agggagacgg gggtaaagaa agcgtaaaaa agtgcagcgc 300
gcgcggcgtc ggcgtgtgcg gaggtggcga cgcgcgggcg ggagatcgag gggaggagaa 360
gcagatggtt ccggactttc gccgcaagcg cctcggctcg gggtcccaga ggcggcgtac 420
gtggcgggcg tggttagagc acccgcaatg ataaagtaag gtgctatcta taaaacatgt 480
acatctcagc aatagattcg attaatagta aaccacctta atagtatatc tacattggta 540
tctataaatc tctcatgcat tgtctcgttt ttctctatag actatctcta agttagtaga 600
tagctttgct ctctctcttc atttaatacc ttccaagtag aaaaatatgc tgacatggat 660
ctcttgtaga gagcttatag ataaccattg tgggtgtcct tagcggctaa tttaggctaa 720
agtgtgcgtg gttttactta ctctggcggg tgtggcagca ggaggcaggg ttagctgctt 780
gctttaggtt tgatgatgat ggtgttgctg cctctttttt gttcctcctt tctttgacgc 840
ctagtgcaaa tgtgcttccc tgttttgggt ttacgctgat ccggcctact ccgtacttct 900
tatcgtctgc ctaagtaatg cagcaatctg gagtctgtac tccctgcatt tcaaaatgtt 960
taacaccatt gactttttaa gtacgtattt gaccattcat tttattcaaa aattttgagt 1020
aattatttat ttttttcata tcattttatt cattattaaa tatactttta tgtataatgt 1080
atacatatag ttttacatat ttcacaaatt tttttaataa gacgaacggt taaacatatg 1140
ctaaaaagtt aacggtgtca aacattttga aatagaggga gtacatcgat cctcagaatc 1200
tttcgagcgc acatacgtgg atgcagattt aaccatggtc gatacgcgcc actaggccag 1260
tcagtactcc cccatttgtg cattgacgaa tttaaattaa gaccttcaac cataaaatgc 1320
ctaatccctt gtttgctggg ttttaaatct tactcctctg tcaaaacaaa ccaattatag 1380
atatgtatct ggacaatatt tatgtccaga tacatccttt aggattagaa tttttagatg 1440
gatggaatac actatactag tacgagccaa gcataatgag atcttctatc cccatggggc 1500
tgtcctgtca aactggctat gtgatgtgcc tatccttcta atcggaggct gttgcctctt 1560
tgatattaaa aaaaaaaacc ggtcagaggt tcgttgctca caaccacaca tgcgtgcaat 1620
ttgggcagta gtgggctagt ggcgtacgta agctgccaat ttgggcccgg ccttttcgcg 1680
gtggctcctg ccgccgtcct gcgtcttctg ccagagtgct gtaccatctc gacatccttt 1740
tttgagaaat gacaacaatc tcgacatctc gtagtctctt aggcgtggga actggcatgt 1800
gtacaacaag gagtacgttg tgattttggc ctcgatcagt tggctggtga ttactgatgg 1860
ccgttatgcg gtacggagtt acaaagttac aacaccaaaa ttacgctgtc atattgtttg 1920
taggggtagc aaacaaacac cttggctaaa atgttgtcca acaaacttcg ctgtcacatt 1980
gcccaagttc gatgaatcgg tcacgtcctc ctgcatatga aattgatcta cttaatctag 2040
gttgcgagat aactactttc cataacaatg gataccagtt gatacttttc cccattccat 2100
aatataagac ttgtttcata atatagagca tgtatgtatg catgccatta ac 2152
<210> 5
<211> 1080
<212> DNA
<213> SbHSF03 -CDS
<400> 5
atggatccct tccacggcgg cattgtgaag gaggaggagt tcgacttcga cttcgacttc 60
accggcgttt ctgcggggga cgcggcggtg gcggcggcgg cgtcctcgtg ggccgtcgcc 120
ttgccggagc tgccccggcc gatggaagga ctcggcgagg tgggccccac cccattcctg 180
accaagacct acgacgtcgt ggacgacccc aataccgaca ccgtcgtctc ctgggggttc 240
gccggcaaca gcttcgtggt ctgggacgct aacgccttcg ccacggtgat cctcccgcgc 300
tacttcaagc atagcaactt ctccagcttc gtccgccagc tcaacaccta cgggttcagg 360
aaggttgacc cggacaggtg ggagttcgcg aacgaggggt tccagcgtgg ccagaaggag 420
ctcctgagaa cgatcaagcg ccggcgcccg ccgtcgagcc cgtcggcgca gcaggggcag 480
gcgccatcgt cgtgtctgga gatgggacga ttcgggctcg acggcgaggt gcaccggctg 540
cagcgcgaca agcgcatcct gctcgcggag gtggtgaagc tgcggcagga gcagcaggcg 600
acgcgcgcgc agatgcaggc catggaggag cgcatcacca cggcggagca gaagcagctg 660
cagatgacgg tgttcctggc gcgcgccttg aagaacccga gcttcatccg gatgctggtc 720
gaccggcagg gccttggtgg ccgccgtagg gagctcgagg acgcgctctc caagaagcgc 780
cgccgcccca tcgagtacca cctcccgccc gacggcgaga gcagcggcac cgctacggag 840
gcggcggtga acgactacat ttgcggcctt ccggtcggcg ttaatggcgt ggcggaggcg 900
gacgacgacg ggagccggct ggaggggagc ggcggcggcg gggacacgga gagcttctgg 960
gtggagttgc tcagcctcgg cctggaggag aagcacctgg agggcggcgg cggcagcgag 1020
gaggggagcg gagctgacgt ggacgacgac gtggatgtgc tggtgcagag catctaccac 1080
<210> 6
<211> 31
<212> DNA
<213> BamHI
<400> 6
tacggatcca cgagatggcc ggagtaggga g 31
<210> 7
<211> 32
<212> DNA
<213> SacI
<400> 7
actacgagct cccggtgtgt cggggtcaaa tt 32
<210> 8
<211> 35
<212> DNA
<213> NcoI BamHI
<400> 8
catgccatgg ggatccctgc tctacgtcgc catgc 35
<210> 9
<211> 33
<212> DNA
<213> KpnI
<400> 9
ggggtacccg gtacatacat atgattacga acg 33
<210> 10
<211> 27
<212> DNA
<213> SpeI
<400> 10
ggactagtct gctctacgtc gccatgc 27
<210> 11
<211> 34
<212> DNA
<213> HindIII
<400> 11
cccaagcttc ggtacataca tatgattacg aacg 34
<210> 12
<211> 30
<212> DNA
<213> BST P1
<400> 12
gggtgacccc atggatccct tccacggcgg 30
<210> 13
<211> 29
<212> DNA
<213> BST P1
<400> 13
gggtgacctc acttcccact ggggctgcc 29

Claims (5)

1.一种水稻膜蛋白基因OsPM1或其启动子提高水稻耐高温胁迫能力的应用;所述基因OsPM1核苷酸序列为SEQ ID NO.1所示,所述基因OsPM1启动子核苷酸序列为SEQ ID NO.4所示。
2.如权利要求1所述应用,其特征在于,所述基因OsPM1提高水稻耐高温胁迫能力的应用,包括提高干旱胁迫下水稻的成活率,从而提高水稻产量;具体是将该基因通过转基因手段转入水稻等粮食作物中,筛选过表达株系,得到抗高温能力增强的作物;具体操作步骤为:
(1)将水稻OsPM1的全长cDNA连入植物过表达载体中,获得含OsPM1基因的植物过表达载体;
(2)将含OsPM1基因的植物过表达载体转入农杆菌EHA105中,将鉴定为阳性的农杆菌侵染水稻愈伤,经过共培养、筛选、分化植物组织培养,获得过表达OsPM1的转基因水稻;
所得的阳性转基因水稻较野生型具有更强的耐高温能力。
3.如权利要求1所述应用,其特征在于,所述基因OsPM1启动子提高水稻耐高温胁迫能力的应用,是将水稻OsPM1基因启动子与高粱中分离的SbHSF03 融合,导入水稻中,筛选阳性转基因株系,得到抗高温能力提高的水稻株系,具体操作步骤如下:
(1)从高粱叶片中扩增到SbHSF03基因的全长cDNA,然后通过基因融合技术将SbHSF03OsPM1基因上游2152bp长的启动子进行无缝连接,将融合基因连入植物转基因载体pCAMBIA1302-eGFP中,获得含有OsPM1::SbHS03融合基因的转基因载体;
(2)将OsPM1::SbHSF03的转基因载体转入农杆菌EHA105中,然后侵染水稻愈伤,经过共培养、筛选、分化植物组织培养,获得由OsPM1启动子驱动SbHSF03表达的转基因水稻;
其中,SbHSF03基因是从高粱中扩增的HSF,其CDS序列如SEQ ID NO.5所示;
得到的转基因水稻在面临逆境或者热胁迫时,能快速上调SbHSF03的表达,从而使得植物在热胁迫下卷叶率下降,膜损伤减少,耐热能力增强。
4.如权利要求2所述应用,其特征在于,所述载体为pCAMBIA1301ubi。
5.如权利要求2所述应用,其特征在于,通过干扰内源OsPM1基因表达,将OsPM1特异性最强的片段以正反双向形式和一段无功能的序列连接,然后连入植物表达载体中,获得RNAi-OsPM1的植物表达载体;然后通过转基因手段获得RNAi-OsPM1的转基因水稻。
CN202110477770.5A 2021-04-30 2021-04-30 水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用 Pending CN113046368A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110477770.5A CN113046368A (zh) 2021-04-30 2021-04-30 水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110477770.5A CN113046368A (zh) 2021-04-30 2021-04-30 水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用

Publications (1)

Publication Number Publication Date
CN113046368A true CN113046368A (zh) 2021-06-29

Family

ID=76517925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110477770.5A Pending CN113046368A (zh) 2021-04-30 2021-04-30 水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用

Country Status (1)

Country Link
CN (1) CN113046368A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088526A (zh) * 2021-05-27 2021-07-09 安徽农业大学 热激相关基因ZmHsf11及其在调控植物耐热性中的应用
CN113846109A (zh) * 2021-11-05 2021-12-28 浙江大学 OsCRRP在水稻耐热胁迫中的应用
CN114410649A (zh) * 2021-12-29 2022-04-29 浙江农林大学 一种热胁迫下水稻内参基因及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050251880A1 (en) * 2004-03-29 2005-11-10 Bressan Ray A Methods and compositions for regulating plant stress tolerance
US20090094717A1 (en) * 2007-10-03 2009-04-09 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
US20100138958A1 (en) * 2007-03-15 2010-06-03 Phil Mullinbaux Plant Responses
CN106318952A (zh) * 2015-07-03 2017-01-11 复旦大学 水稻基因OsAPM1及其提高水稻耐干旱及高温胁迫能力的应用
CN106754925A (zh) * 2016-12-21 2017-05-31 复旦大学 一种脱落酸快速诱导启动子及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050251880A1 (en) * 2004-03-29 2005-11-10 Bressan Ray A Methods and compositions for regulating plant stress tolerance
US20100138958A1 (en) * 2007-03-15 2010-06-03 Phil Mullinbaux Plant Responses
US20090094717A1 (en) * 2007-10-03 2009-04-09 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
CN106318952A (zh) * 2015-07-03 2017-01-11 复旦大学 水稻基因OsAPM1及其提高水稻耐干旱及高温胁迫能力的应用
CN106754925A (zh) * 2016-12-21 2017-05-31 复旦大学 一种脱落酸快速诱导启动子及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
林翠香等: "高温胁迫下水稻生理特性变化及适应机制研究进展", 《安徽农学通报》 *
裴柳玲等: "水稻胁迫相关基因OsPM1启动子的克隆与分析", 《西北植物学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088526A (zh) * 2021-05-27 2021-07-09 安徽农业大学 热激相关基因ZmHsf11及其在调控植物耐热性中的应用
CN113846109A (zh) * 2021-11-05 2021-12-28 浙江大学 OsCRRP在水稻耐热胁迫中的应用
CN113846109B (zh) * 2021-11-05 2022-09-30 浙江大学 OsCRRP在水稻耐热胁迫中的应用
CN114410649A (zh) * 2021-12-29 2022-04-29 浙江农林大学 一种热胁迫下水稻内参基因及其应用

Similar Documents

Publication Publication Date Title
US8927807B2 (en) Nitrate-responsive promoter
CN101875689B (zh) 水稻锌指蛋白转录因子新基因及抗旱耐盐应用
CN113046368A (zh) 水稻基因OsPM1基因及启动子提高水稻耐高温胁迫能力的应用
Huang et al. Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis thaliana drought tolerance
CN108998470B (zh) 大豆MYB32转录因子编码基因GmMYB32的应用
CN113025626B (zh) 一种茎瘤芥BjuEAR1基因在调节植物抗逆性中的应用
EP1960528A2 (en) Constitutive plant promoters
CN102776203B (zh) 枳抗寒转录因子PtrICE1基因及其在植物抗寒改良中的应用
CN109021084B (zh) 枳抗寒基因PtrERF109及其在植物抗寒遗传改良中的应用
CN111454972B (zh) 枳抗寒基因PtrBADH及其在植物抗寒遗传改良中的应用
CN103695439A (zh) 金柑FcWRKY70基因及其在提高植物耐旱中的应用
CN117511957A (zh) 一个水稻NBS-LRR编码新基因Piyn及其在抗稻瘟病育种中的应用
CN107904238B (zh) 厚藤高盐、干旱诱导型启动子IpLEA-PRO及其应用
CN116496373A (zh) MYBHv33转录因子在植物抗盐性中的应用
CN111676227B (zh) 大豆核糖体蛋白编码基因GmRPL12的基因工程应用
CN111217898B (zh) 蛋白质OsZZW1在调控水稻抗旱性中的应用
CN106987598B (zh) 一种菊芋V型质子泵c亚基基因HtVHAc1及其克隆方法和应用
CN107988222B (zh) 厚藤高盐、脱水诱导型启动子IpDHN-PRO及其应用
CN112626081B (zh) 一种龙眼开花调控基因DlWRKY25及其调控蛋白与应用
CN114605514B (zh) 蛋白质VvANN1在提高植物抗旱性中的应用
CN113666993B (zh) 紫花苜蓿MsSPL12蛋白及其相关生物材料与它们在提高植物抗逆性中的应用
CN112608929B (zh) 一种龙眼开花调控基因DlERF23及其蛋白与应用
CN115948454B (zh) 一种葡萄VvDREB2c基因在提高植物耐热能力中的应用
CN117844829B (zh) 大豆耐热蛋白GmBSK1及其编码基因在调控植物抗逆性中的应用
CN111303260B (zh) 一种植物抗逆性相关蛋白OsC3HC4及编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210629

WD01 Invention patent application deemed withdrawn after publication