CN113045318B - 一种亚微米级碳化物陶瓷中空微球及制备方法 - Google Patents
一种亚微米级碳化物陶瓷中空微球及制备方法 Download PDFInfo
- Publication number
- CN113045318B CN113045318B CN202110511822.6A CN202110511822A CN113045318B CN 113045318 B CN113045318 B CN 113045318B CN 202110511822 A CN202110511822 A CN 202110511822A CN 113045318 B CN113045318 B CN 113045318B
- Authority
- CN
- China
- Prior art keywords
- microspheres
- hollow
- hollow microsphere
- submicron
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5622—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5611—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/95—Products characterised by their size, e.g. microceramics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种亚微米级碳化物陶瓷中空微球及制备方法,采用碳中空微球和金属粉末,结合模板法和熔盐法制备。所制备的碳化物陶瓷中空微球的中空微球完整保留了前驱体微球的形貌,微球的粒径小于1微米且尺寸均匀可控,制备成本较低。该碳化物陶瓷中空微球可用于制备碳化物闭气孔陶瓷,也可作为高温陶瓷基复合材料隔热涂层的填料。该方法同样适用于制备其他碳化物中空微球。本发明所提供的技术方案能够制备出粒径可控、粒径均一、微结构和形貌均匀、成分较为纯净的亚微米级碳化锆中空微球。本发明发展的制备工艺稳定,可重复性高,成本低廉,利于碳化锆中空微球的批量化生产。
Description
技术领域
本发明属于材料的制备技术领域,涉及一种亚微米级碳化物陶瓷中空微球及制备方法。
背景技术
随着科学技术的不断创新,飞行器向着高速度、长航时方向发展。这使得飞行器处于极其严苛的气动加热环境,飞行器外壁面热防护材料的服役条件十分苛刻。其中,飞行器的鼻锥、机翼前缘等关键热部件的温度将超过2000℃,传统的热防护材料将很难满足使用需求;而且随着温度的升高,飞行器内部同样面临着高温挑战。因此,未来飞行器的热防护系统中所采用的材料将必须同时具备耐超高温、超低热导率和足够的机械强度等性能特点,才能有效阻隔机身表面或超高温部位的热量向机身内部传播,同时也能承受超高温、强烈振动、急剧热冲击等严酷的热力环境。综上所述,迫切需要发展轻质、隔热和高温稳定的新型航空航天结构材料。
碳化锆(ZrC)作为超高温陶瓷(UHTCs)具有高强度、耐高温、耐腐蚀等特性,是优良的高温结构材料,可应用于航空、航天领域飞行器热端部位。但是,碳化锆陶瓷热导率和密度相对较大,很难同时满足轻质、防隔热一体等多功能需求,限制了其在航空、航天领域的更广泛应用。为了应对更加严苛复杂的服役环境,亟待发展新型碳化锆陶瓷,通过设计和调控其微结构,降低其热导率和密度,使其兼顾隔热和轻质需求。近年来,研究人员已经使用了多种方法来制备多孔UHTCs来降低UHTCs的密度和热导率,例如干法处理,胶体处理和溶液处理方法。与这些制备方法相比,本发明申请人认为使用中空微球作为造孔剂制备孔隙均一的闭气孔碳化锆陶瓷能够大幅降低碳化锆陶瓷的导热系数和密度,有望实现上述多功能需求,弥补现有碳化锆陶瓷的不足。针对这种闭气孔碳化锆陶瓷,首先需要制备碳化锆中空微球作为造孔剂。
迄今为止,关于碳化锆中空微球的报道较少,Guozhen Shen等人以ZrCl4和C6Cl6作为原料以Na作为还原剂在高压反应釜内制备出了碳化锆中空微球(Journal of CrystalGrowth,2004.262(1-4):p.277-280),但是其微球直径在50~80nm,团聚较为严重,且操作较为危险;专利CN 111470867 A采用喷雾造粒结合烧结法所制备的碳化锆中空微球尺寸约为40~100μm,尺寸较大且粒径分布较宽,不能满足多孔碳化锆陶瓷的隔热性能大幅提升,同时大的孔径会导致材料力学性能大幅衰减。目前,还未见有制备尺寸可控、分散性好的碳化锆中空微球的报道。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种亚微米级碳化物陶瓷中空微球及制备方法。
技术方案
一种亚微米级碳化物陶瓷中空微球,其特征在于包括碳中空微球和金属粉末,采用模板法和熔盐法制备形成;所述碳化物陶瓷中空微球的粒径小于1微米。
所述金属粉末单质包括Zr、Hf、Ti、Ta、Nb及其氢化物ZrH2、HfH2、TiH2、TaH2或NbH2;产物包括ZrC、HfC、TiC、TaC、或NbC中空微球。
一种制备亚微米级碳化物陶瓷中空微球的方法,其特征在于步骤如下:
步骤1、混料:以碳中空微球作为碳源及模板,按碳中空微球与金属粉末的摩尔比为1:1配料,得配料A;再与无机盐B按A:B质量比为1:1~5配料后混合均匀;所述碳中空微球的粒径在亚微米级别;
步骤2:将上述配料放入管式炉中在氩气气氛下以5℃/min的升温速度升温至800~1100℃并保温1~4h发生反应;
步骤3,将所得产物在去离子水中浸泡1~2h,再用去离子水洗涤2~3次,然后于100~110℃条件下烘干,得基于模板法结合熔盐法合成的亚微米级碳化物陶瓷中空微球粉体。
所述碳中空微球的制备方法包括但不限于模板法、喷雾干燥法、水热法或自主装法。
所述无机盐包括NaCl、KCl、LiCl、MgCl2、ZnCl2、AlCl2、CaCl2、LiF、NaCl、KF、NaF中的一种或者两种以上任意比例的混合。
有益效果
本发明提出的一种亚微米级碳化物陶瓷中空微球及制备方法,采用碳中空微球和金属粉末,结合模板法和熔盐法制备。所制备的碳化物陶瓷中空微球的中空微球完整保留了前驱体微球的形貌,微球的粒径小于1微米且尺寸均匀可控,制备成本较低。该碳化物陶瓷中空微球可用于制备碳化物闭气孔陶瓷,也可作为高温陶瓷基复合材料隔热涂层的填料。该方法同样适用于制备其他碳化物中空微球。
与现有技术相比,本发明的有益效果有以下几点:
(1)本发明采用模板法结合熔盐法工艺制备亚微米级碳化锆中空微球,其有益效果在于:通过模板法合成的碳中空微球的粒径可以进行调控,且粒径均一,将其制备成亚微米级别,利于碳化锆中空微球的尺寸及分散性控制。
(2)本发明采用模板法结合熔盐法工艺制备亚微米级碳化锆中空微球,其有益效果在于:通过熔盐法工艺可以一步实现碳化锆的生成,反应温度低,产物中碱金属盐易除,可实现成分较为纯净的碳化锆中空微球的制备。
(3)亚微米级碳化锆中空微球作为填料来制备多孔陶瓷使用时,相较于纳米级中空微球的分散性好,不易团聚;相较于微米级的中空微球具有更低的孔径,更利于隔热性能的提升。
(4)本发明工艺步骤简单,工艺过程可重复性高,能够实现产物的可控合成。成本低,生产原材料均为常见的化学试剂,周期短,利于市场化推广。
附图说明
图1.是本发明的工艺流程图。
图2.是本发明实施例1碳中空微球的扫描电子显微镜(SEM)照片,其粒径小于1μm,分散性较好
图3.是本发明实施例1碳化锆中空微球的扫描电子显微镜(SEM)照片,其粒径约为1μm,分散性较好,粒径分布窄。
图4.是本发明实施例1碳化锆中空微球的X射线衍射(XRD)图谱,产物主相是碳化锆,存在微量的氧化锆。
图5.是本发明实施例2碳化钛中空微球的扫描电子显微镜(SEM)照片,其粒径约为1μm,分散性较好,粒径分布窄。
图6.是本发明实施例2碳化钛中空微球的X射线衍射(XRD)图谱。
图7.是本发明实施例3碳化铪中空微球的扫描电子显微镜(SEM)照片,其粒径约为1μm,分散性较好,粒径分布窄。
图8.是本发明实施例3碳化铪中空微球的X射线衍射(XRD)图谱
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1.
步骤1.采用模板法制备碳中空微球
步骤1.1,采用Stober法制备单分散SiO2微球。将适量正硅酸乙酯滴加到去离子水、无水乙醇以及浓氨水的混合溶液中,30℃下搅拌12h后离心并烘干,即得到单分散SiO2微球。
步骤1.2,通过间苯二酚与甲醛的缩聚反应制备酚醛树脂包覆二氧化硅的核壳结构粉体SiO2@RF。将步骤1.1制备的SiO2微球放入到蒸馏水和无水乙醇的混合溶液中,然后依次加入浓氨水、十六烷三甲基溴化铵、间苯二酚,搅拌30min后,再加入甲醛水溶液。搅拌24h后离心并烘干,即得SiO2@RF粉体。
步骤1.3,将SiO2@RF粉体在氮气气氛下800℃裂解2h,然后用氢氟酸溶液刻蚀除去二氧化硅,即得到碳中空微球。
步骤2.熔盐法制备碳化锆中空微球
步骤2.1混料:按碳中空微球:金属锆粉末的摩尔比为1:1配料,得配料A;再按氯化钠:氯化钾的摩尔比为1:1配料,得配料B;然后按A:B质量比为1:5配料,混合均匀。
步骤2.2,将上述配料放入管式炉中在氩气气氛下以5℃/min的升温速度升温至900℃并保温4发生反应。
步骤2.3,将所得产物在去离子水中浸泡2h,再用去离子水洗涤2次,然后于110℃条件下烘干,即得基于模板法结合熔盐法合成的碳化锆中空微球粉体。
图1为本实施例的工艺流程图,首先是制备SiO2@RF核壳结构微球,通过裂解与酸洗后得到亚微米级碳中空微球,将其与金属锆粉末和一定量的无机盐进行混合,在在高温下进行反应,经过除杂后得到亚微米级碳化锆中空微球。
图2为本实施例中制备的亚微米级碳中空微球的扫描电镜照片,可以看出,微球直径小于1μm,内部中空,可以作为模板使用。
图3为本实施例中制备出的亚微米级碳化锆中空微球的扫描电镜照片,可以看出其呈中空结构,表面由细小的碳化锆晶粒组成,尺寸约为1μm,分散性较好。
图4为本实施例中制备出的碳化锆中空微球的X射线衍射(XRD)图谱,其主相为碳化锆,存在微量氧化锆。只是由于在原料粉末中,金属锆粉末易在空气中发生氧化,所以产物中会出现部分氧化锆。
实施例2.
步骤1.采用模板法制备碳中空微球
步骤1.1,采用Stober法制备单分散SiO2微球。将适量正硅酸乙酯滴加到去离子水、无水乙醇以及浓氨水的混合溶液中,30℃下搅拌12h后离心并烘干,即得到单分散SiO2微球。
步骤1.2,通过间苯二酚与甲醛的缩聚反应制备酚醛树脂包覆二氧化硅的核壳结构粉体SiO2@RF。将步骤1.1制备的SiO2微球放入到蒸馏水和无水乙醇的混合溶液中,然后依次加入浓氨水、十六烷三甲基溴化铵、间苯二酚,搅拌30min后,再加入甲醛水溶液。搅拌24h后离心并烘干,即得SiO2@RF粉体。
步骤1.3,将SiO2@RF粉体在氮气气氛下800℃裂解2h,然后用氢氟酸溶液刻蚀除去二氧化硅,即得到碳中空微球。
步骤2.熔盐法制备碳化钛中空微球
步骤2.1混料:按碳中空微球:金属钛粉末的摩尔比为1:1配料,得配料A;再按氯化钠:氯化钾的摩尔比为1:1配料,得配料B;然后按A:B质量比为1:5配料,混合均匀。
步骤2.2,将上述配料放入管式炉中在氩气气氛下以5℃/min的升温速度升温至1000℃并保温4h发生反应。
步骤2.3,将所得产物在去离子水中浸泡2h,再用去离子水洗涤3次,然后于100℃条件下烘干,即得基于模板法结合熔盐法合成的碳化钛中空微球粉体。
实施例3.
步骤1.采用模板法制备碳中空微球
步骤1.1,采用Stober法制备单分散SiO2微球。将适量正硅酸乙酯滴加到去离子水、无水乙醇以及浓氨水的混合溶液中,30℃下搅拌12h后离心并烘干,即得到单分散SiO2微球。
步骤1.2,通过间苯二酚与甲醛的缩聚反应制备酚醛树脂包覆二氧化硅的核壳结构粉体SiO2@RF。将步骤1.1制备的SiO2微球放入到蒸馏水和无水乙醇的混合溶液中,然后依次加入浓氨水、十六烷三甲基溴化铵、间苯二酚,搅拌30min后,再加入甲醛水溶液。搅拌24h后离心并烘干,即得SiO2@RF粉体。
步骤1.3,将SiO2@RF粉体在氮气气氛下800℃裂解2h,然后用氢氟酸溶液刻蚀除去二氧化硅,即得到碳中空微球。
步骤2.熔盐法制备碳化铪中空微球
步骤2.1混料:按碳中空微球:氢化铪粉末的摩尔比为1:1配料,得配料A;再按氯化钠:氯化钾的摩尔比为1:1配料,得配料B;然后按A:B质量比为1:3配料,混合均匀。
步骤2.2,将上述配料放入管式炉中在氩气气氛下以5℃/min的升温速度升温至800℃并保温4h发生反应。
步骤2.3,将所得产物在去离子水中浸泡2h,再用去离子水洗涤3次,然后于110℃条件下烘干,即得基于模板法结合熔盐法合成的碳化铪中空微球粉体。
实施例4.
步骤1.采用模板法制备碳中空微球
步骤1.1,采用Stober法制备单分散SiO2微球。将适量正硅酸乙酯滴加到去离子水、无水乙醇以及浓氨水的混合溶液中,30℃下搅拌12h后离心并烘干,即得到单分散SiO2微球。
步骤1.2,通过间苯二酚与甲醛的缩聚反应制备酚醛树脂包覆二氧化硅的核壳结构粉体SiO2@RF。将步骤1.1制备的SiO2微球放入到蒸馏水和无水乙醇的混合溶液中,然后依次加入浓氨水、十六烷三甲基溴化铵、间苯二酚,搅拌30min后,再加入甲醛水溶液。搅拌24h后离心并烘干,即得SiO2@RF粉体。
步骤1.3,将SiO2@RF粉体在氮气气氛下800℃裂解2h,然后用氢氟酸溶液刻蚀除去二氧化硅,即得到碳中空微球。
步骤2.熔盐法制备碳化锆中空微球
步骤2.1混料:按碳中空微球:金属锆粉末的摩尔比为1:1配料,得配料A;再按氯化钠:氯化钾的摩尔比为1:1配料,得配料B;然后按A:B质量比为1:3配料,混合均匀。
步骤2.2,将上述配料放入管式炉中在氩气气氛下以5℃/min的升温速度升温至1100℃并保温4h发生反应。
步骤2.3,将所得产物在去离子水中浸泡2h,再用去离子水洗涤3次,然后于110℃条件下烘干,即得基于模板法结合熔盐法合成的碳化锆中空微球粉体。
实施例5.
步骤1.采用模板法制备碳中空微球
步骤1.1,采用Stober法制备单分散SiO2微球。将适量正硅酸乙酯滴加到去离子水、无水乙醇以及浓氨水的混合溶液中,30℃下搅拌12h后离心并烘干,即得到单分散SiO2微球。
步骤1.2,通过间苯二酚与甲醛的缩聚反应制备酚醛树脂包覆二氧化硅的核壳结构粉体SiO2@RF。将步骤1.1制备的SiO2微球放入到蒸馏水和无水乙醇的混合溶液中,然后依次加入浓氨水、十六烷三甲基溴化铵、间苯二酚,搅拌30min后,再加入甲醛水溶液。搅拌24h后离心并烘干,即得SiO2@RF粉体。
步骤1.3,将SiO2@RF粉体在氮气气氛下800℃裂解2h,然后用氢氟酸溶液刻蚀除去二氧化硅,即得到碳中空微球。
步骤2.熔盐法制备碳化锆中空微球
步骤2.1混料:按碳中空微球:金属锆粉末的摩尔比为1:1配料,得配料A;再按氯化钠:氯化钾的摩尔比为1:1配料,得配料B;然后按A:B质量比为1:3配料,混合均匀。
步骤2.2,将上述配料放入管式炉中在氩气气氛下以5℃/min的升温速度升温至1100℃并保温4h发生反应。
步骤2.3,将所得产物在去离子水中浸泡2h,再用去离子水洗涤3次,然后于110℃条件下烘干,即得基于模板法结合熔盐法合成的碳化锆中空微球粉体。
Claims (4)
1.一种亚微米级碳化物陶瓷中空微球,其特征在于包括碳中空微球和金属粉末,采用模板法和熔盐法制备形成;所述碳化物陶瓷中空微球的粒径小于1微米;所述亚微米级碳化物陶瓷中空微球的制备方法如下:
步骤1、混料:以碳中空微球作为碳源及模板,按碳中空微球与金属粉末的摩尔比为1:1配料,得配料A;再与无机盐B按A:B质量比为1:1~5配料后混合均匀;所述碳中空微球的粒径在亚微米级别;
步骤2:将上述配料放入管式炉中在氩气气氛下以5℃/min的升温速度升温至800~1100℃并保温1~4h发生反应;
步骤3,将所得产物在去离子水中浸泡1~2h,再用去离子水洗涤2~3次,然后于100~110℃条件下烘干,得基于模板法结合熔盐法合成的亚微米级碳化物陶瓷中空微球粉体。
2.根据权利要求1所述的亚微米级碳化物陶瓷中空微球,其特征在于:所述金属粉末单质包括Zr、Hf、Ti、Ta、Nb及其氢化物ZrH2、HfH2、TiH2、TaH2或NbH2;产物包括ZrC、HfC、TiC、TaC或NbC中空微球。
3.根据权利要求1所述的方法,其特征在于:所述碳中空微球的制备方法包括模板法、喷雾干燥法、水热法或自主装法。
4.根据权利要求1所述的方法,其特征在于:所述无机盐B包括NaCl、KCl、LiCl、MgCl2、ZnCl2、AlCl2、CaCl2、LiF、NaCl、KF、NaF中的一种或者两种以上任意比例的混合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110511822.6A CN113045318B (zh) | 2021-05-11 | 2021-05-11 | 一种亚微米级碳化物陶瓷中空微球及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110511822.6A CN113045318B (zh) | 2021-05-11 | 2021-05-11 | 一种亚微米级碳化物陶瓷中空微球及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113045318A CN113045318A (zh) | 2021-06-29 |
CN113045318B true CN113045318B (zh) | 2022-08-12 |
Family
ID=76518736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110511822.6A Active CN113045318B (zh) | 2021-05-11 | 2021-05-11 | 一种亚微米级碳化物陶瓷中空微球及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113045318B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114368970B (zh) * | 2022-01-12 | 2022-12-06 | 西北工业大学 | 一种亚微米级ZrC-SiC复相陶瓷微球及制备方法 |
CN114988878B (zh) * | 2022-04-29 | 2023-06-20 | 陕西科技大学 | 一种空心碳化物粉体及其制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2785464C (en) * | 2009-12-31 | 2019-08-13 | Oxane Materials, Inc. | Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same |
CN102731111B (zh) * | 2012-07-05 | 2014-01-15 | 北京科技大学 | 一种陶瓷微球的制备方法 |
CN103623823B (zh) * | 2013-12-06 | 2015-06-10 | 河北工业大学 | 一种碳球@CuO核-壳型复合微球及其制备方法和应用 |
CN103979965B (zh) * | 2014-05-12 | 2016-02-24 | 西北工业大学 | 一种制备Si-C-N基陶瓷微球的方法 |
CN106631112B (zh) * | 2016-12-29 | 2019-07-30 | 中国科学院上海应用物理研究所 | 一种空心陶瓷微球的制备方法 |
CN106784729B (zh) * | 2017-01-20 | 2019-07-30 | 武汉科技大学 | 碳化物衍生碳/炭复合储能材料及其制备方法与应用 |
CN110078493B (zh) * | 2019-05-28 | 2022-02-22 | 上海贝奥路生物材料有限公司 | 模板法制备陶瓷微球的方法 |
CN110819302B (zh) * | 2019-11-07 | 2022-08-26 | 哈尔滨工业大学 | 一种碳化硅/碳中空多孔微球吸波材料的制备方法 |
CN111470867B (zh) * | 2020-04-20 | 2021-10-22 | 中国科学院化学研究所 | 一种碳化锆陶瓷空心微球及其制备方法 |
CN111848206A (zh) * | 2020-07-20 | 2020-10-30 | 贵州正业龙腾新材料开发有限公司 | 一种单分散微米级中空陶瓷微球的制备方法 |
-
2021
- 2021-05-11 CN CN202110511822.6A patent/CN113045318B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113045318A (zh) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113045318B (zh) | 一种亚微米级碳化物陶瓷中空微球及制备方法 | |
Cao et al. | Preparation of porous Al 2 O 3-ceramics by biotemplating of wood | |
CN114368970B (zh) | 一种亚微米级ZrC-SiC复相陶瓷微球及制备方法 | |
Tkachenko et al. | High-temperature protective coatings for carbon fibers | |
CN112645729B (zh) | 具有介孔结构的耐高温氧化锆复合隔热材料及其制备方法 | |
Gu et al. | Novel high‐temperature‐resistant Y2SiO5 aerogel with ultralow thermal conductivity | |
CN113845367B (zh) | 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料 | |
US20180272428A1 (en) | Methods of Making Metal Matrix Composites Including Inorganic Particles and Discontinuous Fibers | |
Li et al. | Catalytic preparation of graphitic carbon spheres for Al2O3-SiC-C castables | |
Simonenko et al. | Preparation of HfB 2/SiC composite powders by sol–gel technology | |
CN111992694B (zh) | 一种可构造SiCp/Al铝基复合材料及其制备方法 | |
CN114195539A (zh) | 一种SiC/PyC纳米线增强Al2O3耐高温吸波陶瓷及其制备方法 | |
CN103614808A (zh) | 带有绒毛状晶须的莫来石纤维及制备方法 | |
CN112047343A (zh) | 一种空心碳化硅微珠的制备方法 | |
CN102660725A (zh) | 一种纳米陶瓷涂层及其制备方法 | |
JPH01119559A (ja) | ムライト−アルミナ複合焼結体及びその製造方法 | |
CN106882977B (zh) | 碳化锆晶须改性碳/碳复合材料的制备方法 | |
CN114736400B (zh) | 一种可陶瓷化酚醛气凝胶及其制备方法 | |
CN111470867A (zh) | 一种碳化锆陶瓷空心微球及其制备方法 | |
CN110923493B (zh) | 一种孔结构SiC/Al复合材料的制备工艺 | |
CN114230154B (zh) | 一种高寿命低变形率石英坩埚及其制备方法 | |
CN116377273A (zh) | 一种TiC和YOF改性的铝熔体及其制备方法和中孔径纳米颗粒增强泡沫铝 | |
CN112062577A (zh) | 一种水热法辅助熔盐法制备硼化物超高温陶瓷粉体的方法 | |
CN112341227A (zh) | 一种耐高温纳米隔热材料及其制备方法 | |
Venugopal et al. | NANO-CRYSTALLINE ULTRA HIGH TEMPERATURE HfB 2 AND HfC POWDERS AND COATINGS USING A SOL-GEL APPROACH |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |