CN113035979B - 用于太阳能热光伏电池的吸收-辐射器结构的制备方法 - Google Patents

用于太阳能热光伏电池的吸收-辐射器结构的制备方法 Download PDF

Info

Publication number
CN113035979B
CN113035979B CN202110257431.6A CN202110257431A CN113035979B CN 113035979 B CN113035979 B CN 113035979B CN 202110257431 A CN202110257431 A CN 202110257431A CN 113035979 B CN113035979 B CN 113035979B
Authority
CN
China
Prior art keywords
silicon
sample
radiator
setting
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110257431.6A
Other languages
English (en)
Other versions
CN113035979A (zh
Inventor
徐骏
侯国智
王清源
朱钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202110257431.6A priority Critical patent/CN113035979B/zh
Publication of CN113035979A publication Critical patent/CN113035979A/zh
Application granted granted Critical
Publication of CN113035979B publication Critical patent/CN113035979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

本发明公开一种用于太阳能热光伏电池的吸收‑辐射器结构,包括一侧以硅纳米阵列结构作为吸收器、另一侧以金属‑布拉格反射镜结构作为辐射器的一体化结构;所述硅纳米阵列采用的衬底硅片为双抛p或n型单晶硅,所述金属‑布拉格反射镜结构的金属采用高熔点金属钽、钨或钼,布拉格反射镜结构采用氮化硅、氮氧化硅交替多层叠面结构。本发明结构可通过简易的微加工方式进行大规模制备,能够实现优异光学吸收高效利用太阳能,以及实现针对窄带隙光伏电池带隙位置的窄带辐射,有效抑制长波处的吸收,减少热辐射损耗。此硅基一体化结构具有优异的高温稳定性,能够耐受太阳能热光伏系统超高温环境的工作条件。

Description

用于太阳能热光伏电池的吸收-辐射器结构的制备方法
技术领域
本发明涉及用于太阳能热光伏电池的吸收-辐射器结构及其制备方法,更具体的说是涉及一种硅纳米阵列吸收器-硅基塔姆窄带辐射器一体化结构及其制备方法,属于太阳能热光伏领域。
背景技术
结合微纳结构材料和纳米光子学的特点,针对太阳光谱进行宽光谱调控,探索相应结构材料中的光-热-电转换物理机制,实现高效率的光电转换是当前国际上的研究前沿。为此,研究者们提出了聚光太阳能热光伏系统的设计,通过吸收宽谱太阳能辐射能量转换成靠近底部光伏电池带隙的光子,实现窄带光子的再辐射,这一设计可以突破单结光伏电池的效率极限,达到85.4%的高效光电转换效率。然而,目前国际上最高的太阳能热光伏系统实验效率却低于10%,其中影响系统效率最关键的因素就是系统中的吸收器-辐射器一体化部件性能。
研究者们提出了多种吸收器-辐射器一体化结构设计方案,包括一维相干完美吸收结构、二维光子晶体结构,然而相应的器件光谱性能却存在多种不利因素进而影响整体系统效率:无法实现针对底部光伏电池带隙的窄带辐射造成额外的热化损耗;长波范围内无法有效抑制样品辐射,辐射出不会被吸收利用的低于光伏电池带隙的光子,造成辐射损耗。同时,为了尽可能使辐射器黑体辐射谱的峰位与底部光伏电池相匹配,吸收器会吸收高强度聚光辐射使整体结构达到超高温度(>900摄氏度),因此所设计一体化部件需要优异的高温稳定性,这也是一个极大的挑战。
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明提供用于太阳能热光伏系统的硅基吸收器-辐射器一体化结构及其制备方法。本结构可通过简易的微加工方式进行大规模制备,能够实现优异光学吸收高效利用太阳能,以及实现针对窄带隙光伏电池带隙位置的窄带辐射,有效抑制长波处的吸收,减少热辐射损耗。此硅基一体化结构具有优异的高温稳定性,能够耐受太阳能热光伏系统超高温环境的工作条件。
本发明的技术方案:用于太阳能热光伏电池的吸收-辐射器结构,其特征在于:包括一侧以硅纳米阵列结构作为吸收器、另一侧以金属-布拉格反射镜结构作为辐射器的一体化结构;所述硅纳米阵列采用的衬底硅片为双抛p或n型单晶硅,所述金属-布拉格反射镜结构的金属采用高熔点金属钽、钨或钼,布拉格反射镜结构采用氮化硅、氮氧化硅交替多层叠面结构。
本发明进一步限定的技术方案为:所述硅纳米阵列结构为干法刻蚀得到的硅纳米锥阵列或硅纳米柱阵列。
本发明还涉及一种用于太阳能热光伏电池的吸收-辐射器结构的制备方法,其特征在于,包括以下步骤:
1)清洗P或N单晶双抛硅片作为衬底,用RCA标准清洗流程进行清洗;
2)通过液面提拉法在双抛硅片一侧覆盖单层PS小球密堆积阵列,并在样品表面放置环形模板,中间留出覆盖有PS小球的裸露区域;
3)将以上样品置于等离子体刻蚀腔内,腔室真空抽至3*10-4Pa,通入反应气体氧气、六氟化硫、四氟化碳,流量分别设置为5sccm、 5~40sccm、5~40sccm,功率设置为100W,刻蚀300s~600s;形成纳米锥/纳米柱阵列;
4)利用RCA标准清洗流程再清洗以上样品;
5)在样品另一侧磁控溅射高熔点金属薄膜,将样品置于仪器腔内,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品上表面溅射300s~600s;
6)利用等离子体化学气相沉积系统交替生长氮化硅、氮氧化硅多层膜,得到分布式布拉格反射镜DBR结构;
7)在DBR结构生长完成后,继续提高腔体温度至500℃,使样品在真空环境中500℃退火1小时,得到高温稳定的硅基辐射器样品;
8)将此硅基辐射器样品置于管式退火炉中,持续通入氩气氛围,管式炉升温至900℃,退火1小时。
进一步的,所述6)步骤中,将样品放置在系统生长室内,腔体抽真空至5*10-4Pa,同时腔体升温至350℃,其中生长氮化硅时通入生长气体硅烷与氨气,流量分别设置为5sccm、5sccm,功率设置为 10W,生长时间为5~15min,生长氮氧化硅时通入生长气体硅烷与氧化亚氮,功率设置为10W,生长时间为5~15min,两种薄膜交替生长五个周期。
进一步的,所述P或N单晶双抛硅片的尺寸为1cm*1cm,中间留出覆盖有PS小球的裸露区域尺寸为0.5cm*0.5cm。
有益效果:与现有技术相比,本发明提出的硅基吸收器-辐射器一体化结构具有以下优点:
1)与硅基工艺兼容,可以通过半导体微加工工艺进行大通量制备。
2)吸收器及辐射器结构直接构建在双抛硅两侧,两侧结构制备过程互不干扰,不会影响对方性能,并且吸收器以及辐射器的面积比可以通过掩膜版尺寸进行调节。
3)硅基吸收器结构制备过程采用PS小球作为掩膜,直接利用等离子体刻蚀得到尺寸可控的纳米锥/柱阵列,在300~1100nm波段实现了平均95%以上的光学吸收,能够充分吸收利用太阳能辐射。
4)硅基辐射器通过制备一维光子晶体结构,利用金属与氮化硅、氮氧化硅多层膜界面处激发的光学塔姆态,能够实现特定波长95%以上的窄带吸收,同时抑制长波范围内的吸收,根据基尔霍夫热辐射定律,即可实现高效窄带辐射,以及减少长波波段热辐射损耗,并且辐射峰位可以通过改变氮化硅/氮氧化硅多层膜所构建的布拉格反射镜的禁带位置进行自由调节。
5)所制备的吸收器-辐射器一体化结构有着优异的高温稳定性,能够在太阳能热光伏系统所需的高温条件下正常工作。
附图说明
图1为实施例1中硅基吸收器-辐射器结构示意图及实物形貌图。
图2为实施例1中硅基吸收器-硅纳米锥结构的吸收光谱图。
图3为实施例1中硅基辐射器-金属-布拉格反射镜结构的吸收光谱图。
图4为实施例1中硅基辐射器九百度高温热处理前后的吸收光谱图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
实施例1:
如图1-4所示,本实施例提供了一种用于太阳能热光伏系统的硅基吸收器-辐射器结构,包括一侧以硅纳米锥阵列结构作为吸收器、另一侧以金属-布拉格反射镜结构作为辐射器的一体化结构;所述硅纳米锥阵列采用的衬底硅片为双抛p型单晶硅,所述金属-布拉格反射镜结构的金属采用高熔点金属钨,布拉格反射镜结构采用氮化硅、氮氧化硅交替多层叠面结构,样品结构图及制备后两侧形貌如图1中的图(a)、(b)及(c)的所示。
本实施例还公开了上述用于太阳能热光伏系统的硅基吸收器-辐射器结构的制备方法,包括如下几个步骤:
1)清洗P单晶双抛硅片,尺寸1cm*1cm作为衬底,用RCA标准清洗流程进行清洗;
2)通过液面提拉法在双抛硅片一侧覆盖单层PS小球密堆积阵列,并在样品表面放置环形模板,中间留出覆盖有PS小球的裸露区域,尺寸0.5cm*0.5cm;
3)将上述样品置于等离子体刻蚀腔内,腔室真空抽至3*10-4Pa,通入反应气体氧气、六氟化硫、四氟化碳,流量分别设置为5sccm、 20sccm、20sccm,功率设置为100W,刻蚀300s~600s;形成硅纳米锥阵列;
4)利用RCA标准清洗流程再清洗以上样品;
5)在样品另一侧磁控溅射金属钨薄膜,将洁净硅片置于仪器腔内,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品上表面溅射300s~600s;
6)利用等离子体化学气相沉积系统交替生长氮化硅、氮氧化硅多层膜,得到分布式布拉格反射镜(DBR)结构。将样品放置在系统生长室内,腔体抽真空至5*10-4Pa,同时腔体升温至350℃,其中生长氮化硅时通入生长气体硅烷与氨气,流量分别设置为5sccm、5sccm,功率设置为10W,生长时间为5~15min,生长氮氧化硅时通入生长气体硅烷与氧化亚氮,功率设置为10W,生长时间为5~15min,两种薄膜交替生长五个周期;
7)在DBR结构生长完成后,继续提高腔体温度至500℃,使样品在真空环境中500℃退火1小时,得到高温稳定的硅基辐射器样品;
8)将此硅基辐射器样品置于管式退火炉中,持续通入氩气氛围,管式炉升温至900℃,退火1小时;
9)制备得到的硅基吸收器-辐射器一体化样品即可应用于太阳能热光伏系统中。
本实施例中硅纳米阵列为硅纳米锥阵列,硅纳米锥结构可以实现高效优异的光学吸收,充分吸收太阳能辐射能量,光谱图如图2所示;由金属-布拉格反射镜界面处激发的光学塔姆态实现优异的窄带辐射,同时在长波范围内实现了有效的辐射抑制,光谱图如图3所示,辐射器结构亦能保持优异的高温稳定性,其900℃退火前后光谱图如图4所示。
实施例2
本实施例提供了一种用于太阳能热光伏系统的硅基吸收器-辐射器结构,包括一侧以硅纳米柱阵列结构作为吸收器、另一侧以金属- 布拉格反射镜结构作为辐射器的一体化结构;所述硅纳米柱阵列采用的衬底硅片为双抛n型单晶硅,所述金属-布拉格反射镜结构的金属采用高熔点金属钼,布拉格反射镜结构采用氮化硅、氮氧化硅交替多层叠面结构,
本实施例还公开了上述用于太阳能热光伏系统的硅基吸收器-辐射器结构的制备方法,包括如下几个步骤:
1)清洗N单晶双抛硅片,尺寸1cm*1cm作为衬底,用RCA标准清洗流程进行清洗;
2)通过液面提拉法在双抛硅片一侧覆盖单层PS小球密堆积阵列,并在样品表面放置环形模板,中间留出覆盖有PS小球的裸露区域,尺寸0.5cm*0.5cm;
3)将上述样品置于等离子体刻蚀腔内,腔室真空抽至3*10-4Pa,通入反应气体氧气、六氟化硫、四氟化碳,流量分别设置为5sccm、 15sccm、40sccm,功率设置为100W,刻蚀300s~600s;形成硅纳米柱阵列;
4)利用RCA标准清洗流程再清洗以上样品;
5)在样品另一侧磁控溅射金属钼薄膜,将洁净硅片置于仪器腔内,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品上表面溅射300s~600s;
6)利用等离子体化学气相沉积系统交替生长氮化硅、氮氧化硅多层膜,得到分布式布拉格反射镜(DBR)结构。将样品放置在系统生长室内,腔体抽真空至5*10-4Pa,同时腔体升温至350℃,其中生长氮化硅时通入生长气体硅烷与氨气,流量分别设置为5sccm、5sccm,功率设置为10W,生长时间为5~15min,生长氮氧化硅时通入生长气体硅烷与氧化亚氮,功率设置为10W,生长时间为5~15min,两种薄膜交替生长五个周期;
7)在DBR结构生长完成后,继续提高腔体温度至500℃,使样品在真空环境中500℃退火1小时,得到高温稳定的硅基辐射器样品;
8)将此硅基辐射器样品置于管式退火炉中,持续通入氩气氛围,管式炉升温至900℃,退火1小时;
9)制备得到的硅基吸收器-辐射器一体化样品即可应用于太阳能热光伏系统中。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (5)

1.一种用于太阳能热光伏电池的吸收-辐射器结构的制备方法,其特征在于,包括以下步骤:
1)清洗P或N单晶双抛硅片作为衬底,用 RCA 标准清洗流程进行清洗;
2)通过液面提拉法在双抛硅片一侧覆盖单层PS小球密堆积阵列,并在样品表面放置环形模板,中间留出覆盖有PS小球的裸露区域;
3)将以上样品置于等离子体刻蚀腔内,腔室真空抽至3*10-4Pa,通入反应气体氧气、六氟化硫、四氟化碳,流量分别设置为5sccm、5~40sccm、5~40sccm,功率设置为100W,刻蚀300s~600s;形成硅纳米锥阵列 或硅 纳米柱阵列;
4)利用RCA 标准清洗流程再清洗以上样品;
5)在样品另一侧磁控溅射高熔点金属薄膜,将样品置于仪器腔内,腔体抽真空至4*10- 4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品上表面溅射300s~600s;
6)利用等离子体化学气相沉积系统交替生长氮化硅、氮氧化硅多层膜,得到分布式布拉格反射镜DBR结构;
7)在DBR结构生长完成后,继续提高腔体温度至500℃,使样品在真空环境中500℃退火1小时,得到高温稳定的硅基辐射器样品;
8)将此硅基辐射器样品置于管式退火炉中,持续通入氩气氛围,管式炉升温至900℃,退火1小时。
2.根据权利要求1所述的用于太阳能热光伏电池的吸收-辐射器结构的制备方法,其特征在于,所述6)步骤中,将样品放置在系统生长室内,腔体抽真空至5*10-4Pa,同时腔体升温至350℃,其中生长氮化硅时通入生长气体硅烷与氨气,流量分别设置为5sccm、5sccm,功率设置为10W,生长时间为5~15min,生长氮氧化硅时通入生长气体硅烷与氧化亚氮,功率设置为10W,生长时间为5~15min,两种薄膜交替生长五个周期。
3.根据权利要求2所述的用于太阳能热光伏电池的吸收-辐射器结构的制备方法,其特征在于,所述P或N单晶双抛硅片的尺寸为1cm*1cm,中间留出覆盖有PS小球的裸露区域尺寸为0.5cm*0.5cm。
4.根据权利要求1所述的用于太阳能热光伏电池的吸收-辐射器结构的制备方法,其特征在于,采用所述方法制备的吸收-辐射器结构包括:一侧以硅纳米阵列结构作为吸收器、另一侧以金属-布拉格反射镜结构作为辐射器的一体化结构;所述硅纳米阵列采用的衬底硅片为双抛p或n型单晶硅,所述金属-布拉格反射镜结构的金属采用高熔点金属钽、钨或钼,布拉格反射镜结构采用氮化硅、氮氧化硅交替多层叠面结构。
5.根据权利要求4所述的用于太阳能热光伏电池的吸收-辐射器结构的制备方法,其特征在于,所述硅纳米阵列结构为干法刻蚀得到的硅纳米锥阵列或硅纳米柱阵列。
CN202110257431.6A 2021-03-09 2021-03-09 用于太阳能热光伏电池的吸收-辐射器结构的制备方法 Active CN113035979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110257431.6A CN113035979B (zh) 2021-03-09 2021-03-09 用于太阳能热光伏电池的吸收-辐射器结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110257431.6A CN113035979B (zh) 2021-03-09 2021-03-09 用于太阳能热光伏电池的吸收-辐射器结构的制备方法

Publications (2)

Publication Number Publication Date
CN113035979A CN113035979A (zh) 2021-06-25
CN113035979B true CN113035979B (zh) 2022-08-19

Family

ID=76467529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110257431.6A Active CN113035979B (zh) 2021-03-09 2021-03-09 用于太阳能热光伏电池的吸收-辐射器结构的制备方法

Country Status (1)

Country Link
CN (1) CN113035979B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058900A1 (de) * 2005-12-09 2007-06-14 Osram Opto Semiconductors Gmbh Vertikal emittierender, optisch gepumpter Halbleiterlaser mit externem Resonator
CN101443887A (zh) * 2006-03-10 2009-05-27 Stc.Unm公司 Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
CN102637752A (zh) * 2012-03-06 2012-08-15 苏州大学 一种薄膜太阳能电池
CN102931267A (zh) * 2012-11-20 2013-02-13 蚌埠玻璃工业设计研究院 一种硅基异质结太阳能电池及其制备方法
CN103579405A (zh) * 2012-09-10 2014-02-12 清华大学 具有强吸收结构的高速snspd及其制备方法
CN105514197A (zh) * 2016-02-18 2016-04-20 陆玉正 一种热管式太阳能热光伏光热一体化装置
CN105556680A (zh) * 2013-05-22 2016-05-04 王士原 微结构增强型吸收光敏装置
CN105576384A (zh) * 2016-01-15 2016-05-11 南京邮电大学 一种多通道可调谐Tamm等离子体完美吸收器
CN105957915A (zh) * 2016-05-16 2016-09-21 华南师范大学 一种耐高温的太阳能光谱选择性吸收与辐射结构
CN106409938A (zh) * 2016-10-26 2017-02-15 东南大学 一种基于锥形超表面结构的光伏型光电探测器及其制备方法
CN208062083U (zh) * 2018-04-10 2018-11-06 北京创昱科技有限公司 一种氮化物薄膜太阳能电池
CN109155340A (zh) * 2015-12-21 2019-01-04 文和文森斯设备公司 微结构增强吸收光敏器件
CN110109204A (zh) * 2019-05-15 2019-08-09 苏州大学 一种基于塔姆结构的彩色辐射降温器
CN111244219A (zh) * 2020-01-17 2020-06-05 南京大学 用于太阳能热光伏电池的硅基单面集成吸收发射器及其制备方法
CN212180625U (zh) * 2020-02-10 2020-12-18 四川普纳斯蒙光电科技有限公司 一种基于塔姆态等离激元的光学传感器
CN112201705A (zh) * 2020-10-30 2021-01-08 苏州斯特科光电科技有限公司 一种硅基超宽谱光子吸收器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007002416A1 (de) * 2006-04-13 2007-10-18 Osram Opto Semiconductors Gmbh Strahlungsemittierender Körper und Verfahren zur Herstellung eines strahlungsemittierenden Körpers
US10197711B2 (en) * 2011-05-18 2019-02-05 Ip Equity Management, Llc Thin-film integrated spectrally-selective plasmonic absorber/ emitter for solar thermophotovoltaic applications
US9530905B2 (en) * 2014-11-18 2016-12-27 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058900A1 (de) * 2005-12-09 2007-06-14 Osram Opto Semiconductors Gmbh Vertikal emittierender, optisch gepumpter Halbleiterlaser mit externem Resonator
CN101443887A (zh) * 2006-03-10 2009-05-27 Stc.Unm公司 Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
CN102637752A (zh) * 2012-03-06 2012-08-15 苏州大学 一种薄膜太阳能电池
CN103579405A (zh) * 2012-09-10 2014-02-12 清华大学 具有强吸收结构的高速snspd及其制备方法
CN102931267A (zh) * 2012-11-20 2013-02-13 蚌埠玻璃工业设计研究院 一种硅基异质结太阳能电池及其制备方法
CN105556680A (zh) * 2013-05-22 2016-05-04 王士原 微结构增强型吸收光敏装置
CN109155340A (zh) * 2015-12-21 2019-01-04 文和文森斯设备公司 微结构增强吸收光敏器件
CN105576384A (zh) * 2016-01-15 2016-05-11 南京邮电大学 一种多通道可调谐Tamm等离子体完美吸收器
CN105514197A (zh) * 2016-02-18 2016-04-20 陆玉正 一种热管式太阳能热光伏光热一体化装置
CN105957915A (zh) * 2016-05-16 2016-09-21 华南师范大学 一种耐高温的太阳能光谱选择性吸收与辐射结构
CN106409938A (zh) * 2016-10-26 2017-02-15 东南大学 一种基于锥形超表面结构的光伏型光电探测器及其制备方法
CN208062083U (zh) * 2018-04-10 2018-11-06 北京创昱科技有限公司 一种氮化物薄膜太阳能电池
CN110109204A (zh) * 2019-05-15 2019-08-09 苏州大学 一种基于塔姆结构的彩色辐射降温器
CN111244219A (zh) * 2020-01-17 2020-06-05 南京大学 用于太阳能热光伏电池的硅基单面集成吸收发射器及其制备方法
CN212180625U (zh) * 2020-02-10 2020-12-18 四川普纳斯蒙光电科技有限公司 一种基于塔姆态等离激元的光学传感器
CN112201705A (zh) * 2020-10-30 2021-01-08 苏州斯特科光电科技有限公司 一种硅基超宽谱光子吸收器及其制备方法

Also Published As

Publication number Publication date
CN113035979A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US8268728B2 (en) Method of cleaning and forming a negatively charged passivation layer over a doped region
CN109346536B (zh) 一种接触钝化晶体硅太阳能电池结构及制备方法
US20090229659A1 (en) Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
JP2002270879A (ja) 半導体装置
CN114086126B (zh) 一种单晶太阳能电池薄膜材料及其制备方法
Xiao et al. Plasma-aided fabrication in Si-based photovoltaic applications: an overview
CN104993059A (zh) 一种硅基钙钛矿异质结太阳电池及其制备方法
CN104882516A (zh) 一种高温低压的硅片扩散方法
CN100416863C (zh) 廉价多晶硅薄膜太阳电池
CN102582150B (zh) 一种太阳能选择性吸收膜系及其制备方法
CN113035979B (zh) 用于太阳能热光伏电池的吸收-辐射器结构的制备方法
CN111244219B (zh) 基于硅基单面集成吸收发射器的太阳能热光伏电池
WO2021258728A1 (zh) 一种高结晶质量纯相氧化亚铜薄膜的制备方法
CN109786480A (zh) 一种纳米阵列结构太阳能电池及其制备方法
CN104064625A (zh) 一种基于硅纳米锥晶体的全太阳光谱响应的太阳电池制备方法
US8841544B2 (en) Uniformly distributed self-assembled solder dot formation for high efficiency solar cells
CN110416336B (zh) 新型纳米结构薄膜太阳能电池及其制备方法
JP2007180364A (ja) 光電変換素子及びその製造方法並びに薄膜形成装置
JP2005159320A (ja) 太陽電池及び太陽電池の製造方法
Agostinelli et al. Advanced dry processes for crystalline silicon solar cells
Tsuo et al. High-flux solar furnace processing of silicon solar cells
CN109487212A (zh) 一种多层微纳结构vo2智能热控器件及其制备方法
KR101074131B1 (ko) 다결정 실리콘 태양전지의 제조방법 및 그 방법으로 제조된 태양전지
CN216120312U (zh) 一种ibc结构锑化镓热光伏电池
KR101462563B1 (ko) 실리콘불화물 막을 이용한 결정질 실리콘 웨이퍼 식각방법 및 식각장치, 이를 이용한 태양전지 제조방법 및 제조장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant