CN111244219B - 基于硅基单面集成吸收发射器的太阳能热光伏电池 - Google Patents

基于硅基单面集成吸收发射器的太阳能热光伏电池 Download PDF

Info

Publication number
CN111244219B
CN111244219B CN202010051089.XA CN202010051089A CN111244219B CN 111244219 B CN111244219 B CN 111244219B CN 202010051089 A CN202010051089 A CN 202010051089A CN 111244219 B CN111244219 B CN 111244219B
Authority
CN
China
Prior art keywords
silicon
emitter
absorption
sample
photovoltaic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010051089.XA
Other languages
English (en)
Other versions
CN111244219A (zh
Inventor
徐骏
侯国智
王朝晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010051089.XA priority Critical patent/CN111244219B/zh
Publication of CN111244219A publication Critical patent/CN111244219A/zh
Application granted granted Critical
Publication of CN111244219B publication Critical patent/CN111244219B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种基于硅基单面集成吸收发射器的太阳能热光伏电池,包括顶层太阳能聚光系统、底部的选择性吸收发射器、环绕在选择性吸收发射器周围的窄带隙光伏电池以及选择性吸收发射器下部的储热层;所述选择性吸收发射器包括硅片衬底以及设置在所述硅片衬底上的若干个不同深度层次的扇形侧壁纳米孔阵列。本发明提出的无光刻简易制备的硅基半导体金属复合结构,利用其独特光学特性可应用为太阳能热光伏系统的单面集成吸收发射器,得到更高的太阳能转换效率。

Description

基于硅基单面集成吸收发射器的太阳能热光伏电池
技术领域
本发明涉及一种可应用为单面集成吸收发射器的硅基半导体-金属复合结构及其制备方法,属于太阳能热光伏领域。
背景技术
太阳能热光伏技术,是利用太阳能热源来加热一个辐射体,再将辐射体的红外辐射转换为电的技术。相比于其他太阳能转换系统,太阳能热光伏技术可以同时补充其他能源来长时间工作,并与储热系统集成在一起,这一技术可以突破单结太阳能电池的理论极限,达到85.4%的高效光电转换效率。其中,光谱选择性的吸收体和发射体是太阳能热光伏系统的核心器件。为了最大化利用太阳能,热光伏太阳能系统要求吸收体高效吸收与发射体窄带发射的协同工作,理想的热光伏吸收体要同时高效吸收太阳能和抑制辐射损耗,理想的热光伏发射体要求只在对应系统内光伏电池带隙能量的波长处有着高的发射率。
绝大部分报道的吸收体和发射体都是各自独立设计,集成在衬底的两面,这样的设计直接简单,却增加了制备与系统搭建的难度。于是科学家们开始将吸收体与发射体集成设计,可以大大简化制备工艺,且单面双功能器件可以使热光伏系统引入新的系统设计,例如集成储能器件。但是目前单面集成选择吸收器的设计多为结构复杂,尺寸精细,需要借助高精度的光刻手段,实现难度大。
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明提供用于太阳能热光伏电池的硅基单面集成吸收发射器及其制备方法,本结构可通过简易的微加工方式进行制备,能够实现短波范围内优异的光学吸收,以及长波处可选择性的窄带辐射。
技术方案:基于硅基单面集成吸收发射器的太阳能热光伏电池,包括顶层太阳能聚光系统,其特征在于:还包括底部的选择性吸收发射器、环绕在选择性吸收发射器周围的窄带隙光伏电池以及选择性吸收发射器下部的储热层;所述选择性吸收发射器包括硅片衬底以及设置在所述硅片衬底上的若干个不同深度层次的扇形侧壁纳米孔阵列;所述硅片衬底的上表面和扇形侧壁纳米孔阵列的扇形侧壁自外而内依次包括高温保护及相干吸收层、等离激元吸收层以及有序硅纳米孔阵列,所述高温保护及相干吸收层为氧化铝,所述等离激元吸收层为金。
本发明还公开了一种用于太阳能热光伏电池的硅基单面集成吸收发射器的制备方法,其特征在于包括如下几个步骤:
1)清洗单晶硅片作为衬底,用 RCA 标准清洗流程进行清洗;
2)掩膜板制作,通过提拉法在硅片上覆盖一层密堆积两种不同尺寸的PS小球作为掩膜板;
3)将铺有单层PS小球掩膜的硅片样品放入等离子体刻蚀机腔室,腔室抽真空至8*10-4Pa,通入刻蚀气体氧气,流量设置为50sccm,功率设置为100W,通过自主设定气体流量刻蚀时间,气体刻蚀PS小球速率为每分钟40nm,获得不同大小尺寸的PS小球;
4)磁控溅射铝薄膜,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品上表面溅射铝膜300s~600s;
5)将溅射有铝薄膜的样品置于酒精中超声,在样品上表面获得铝纳米网络阵列结构;
6)将样品放入等离子体刻蚀机腔室,腔室抽真空至8*10-4Pa,交替通入刻蚀气体六氟化硫、钝化气体八氟化四碳,气体流量设置为100sccm,功率设置为100W,刻蚀时间为10s~20s,钝化时间为5s~10s,通过改变交替循环次数获得不同深度层次的扇形侧壁纳米孔阵列;
7)在刻蚀获得的纳米孔阵列的表面磁控溅射形成金薄膜,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品表面溅射金薄膜40s~150s;
8)将样品放入原子层沉积腔室,沉积源为三甲基铝及氧气,生长模式选择plasma模式,升温至300℃,生长速度:0.11nm/cycle,沉积100~900个循环;
9)利用有限时域差分方法,对经步骤8)处理的样品在220nm~2600nm范围内进行电磁场模拟,其中材料介电常数选用Palik数据,网格精度设为2nm,添加两个能量监视器获得反射值与透射值,进一步计算得到吸收值;
10)制备得到的单面集成吸收发射器即可应用于热光伏系统中。
优选的,上述制备方法进一步限定的技术方案为:在步骤2)中,所述PS小球直径分别为1μm或2μm。
有益效果:与现有技术相比,本发明提出的无光刻简易制备的硅基半导体金属复合结构,利用其独特光学特性可应用为太阳能热光伏系统的单面集成吸收发射器,得到更高的太阳能转换效率。本发明的制备方法利用PS小球掩膜这种无光刻方式制备得到了大面积有序可控的铝纳米孔阵列模板,进而利用等离子体交替刻蚀方式得到了硅纳米孔亚微米扇形侧壁结构阵列,通过改变循环周期数可以控制纳米孔结构的深度,循环数增加使纳米孔结构变深,其陷光效果得到增强,即光吸收提高,同时由于亚微米扇形侧壁结构的存在,可将入射光场局域于扇形结构附近,使得该结构的陷光效应相较于普通竖直纳米孔结构获得了一定的增强;将金属溅射在硅纳米孔结构表面,由于纳米孔的腔模式以及金属等离激元效应的耦合协同作用,可在长波处实现选择性的光学吸收,通过改变纳米孔的直径与周期能对长波处的吸收峰进行调节,进而在结构外层包覆耐高温材料三氧化二铝,保证结构高温下的稳定性,同时三氧化二铝也可以作为干涉相消吸收层,结合金的本征吸收,在短波处对太阳能实现优异的光学吸收。通过有限时域差分方法对结构进行了模拟,能够看到有着亚微米扇形侧壁的纳米孔结构能更强的将电场分布集中在侧壁上,实现更强的光吸收,在加入金属等离激元吸收层之后,能够在长波段实现了优异的窄带吸收,并且吸收峰的位置可进行调控,能使长波窄带吸收峰的位置调控至匹配热光伏太阳能电池系统所用PV电池的带隙。
附图说明
图1 本发明实施例1提供的硅基单面集成吸收发射器结构制备流程示意图。
图2 本发明实施例1提供的硅基纳米孔亚波长扇形侧壁结构阵列的SEM图。其中图(a)是五个循环,图(b)是十个循环。
图3 本发明实施例1提供的普通竖直孔与有亚微米扇形侧壁纳米孔的模拟计算图(a与b)以及电场分布图以及制备的单面集成吸收发射器(未沉积氧化铝)实验及理论上的吸收图谱(c与d)。
图4 本发明实施例1提供的太阳能热光伏-燃料热光伏集成系统。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
如图1-4所示,本实施例提供了一种基于硅基单面集成吸收发射器的太阳能热光伏电池,包括顶层太阳能聚光系统、底部的选择性吸收发射器、环绕在选择性吸收发射器周围的窄带隙光伏电池以及选择性吸收发射器下部的储热层;所述选择性吸收发射器包括硅片衬底以及设置在所述硅片衬底上的若干个截面为扇形结构的不同深度层次的扇形侧壁纳米孔阵列,所述选择性吸收发射器能在可见光波段高效光吸收以及在1um~2.5um范围内实现可调波长位置的窄带光吸收,同时对其他光谱波段抑制光学吸收。所述硅片衬底的上表面和扇形侧壁纳米孔阵列的扇形侧壁自外而内依次包括高温保护及相干吸收层、等离激元吸收层以及有序硅纳米孔阵列,所述高温保护及相干吸收层为氧化铝,所述等离激元吸收层为金。
本实施例还公开了一种用于太阳能热光伏电池的硅基单面集成吸收发射器的制备方法,其特征在于包括如下几个步骤:
1)清洗P或N单晶硅片作为衬底,用 RCA 标准清洗流程进行清洗;
2)掩膜板制作,利用PS小球水中自组装特性,在水中得到单层密排PS小球,通过提拉法在硅片上覆盖一层密堆积两种不同尺寸的PS小球作为掩膜板,PS小球直径分别为1μm或2μm;
3)将铺有单层PS小球掩膜的硅片样品放入等离子体刻蚀机腔室,腔室抽真空至8*10-4Pa,通入刻蚀气体氧气,流量设置为50sccm,功率设置为100W,通过自主设定气体流量刻蚀时间,气体刻蚀PS小球速率约为每分钟40nm,获得不同大小尺寸的PS小球;
4)磁控溅射铝薄膜,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品上表面溅射铝膜300s~600s;
5)将溅射有铝薄膜的样品置于酒精中超声,在样品上表面获得铝纳米网络阵列结构,铝纳米网络阵列是下一步等离子体刻蚀的掩膜;
6)将样品放入等离子体刻蚀机腔室,腔室抽真空至8*10-4Pa,交替通入刻蚀气体六氟化硫、钝化气体八氟化四碳,气体流量设置为100sccm,功率设置为100W,刻蚀时间为10s~20s,钝化时间为5s~10s,通过改变交替循环次数获得不同深度层次的扇形侧壁纳米孔阵列。如图2所示:在纳米孔的侧壁呈现弧状扇形结构,在等离子体刻蚀过程中每一轮交替刻蚀可以获得一个扇形孔洞,经过多轮交替刻蚀获得了具有扇形侧壁的纳米孔阵列
7)在刻蚀获得的纳米孔阵列的表面磁控溅射形成金薄膜,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品表面溅射金薄膜40s~150s;
8)将样品放入原子层沉积腔室,沉积源为三甲基铝及氧气,生长模式选择plasma模式,升温至300℃,生长速度:0.11nm/cycle,沉积100~900个循环;
9)利用有限时域差分方法,通过软件FDTD进行模拟,用有限时域差分方法对此结构在220nm~2600nm范围内进行电磁场模拟,其中材料介电常数选用Palik数据,网格精度设为2nm,添加两个能量监视器获得反射值(T)与透射值(A),进一步计算A=1-T-R,得到吸收值(A);
10)制备得到的单面集成吸收发射器即可应用于热光伏系统中。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (3)

1.一种基于硅基单面集成吸收发射器的太阳能热光伏电池,包括顶层太阳能聚光系统,其特征在于:还包括底部的选择性吸收发射器、环绕在选择性吸收发射器周围的窄带隙光伏电池以及选择性吸收发射器下部的储热层;所述选择性吸收发射器包括硅片衬底以及设置在所述硅片衬底上的若干个不同深度层次的扇形侧壁纳米孔阵列;
所述硅片衬底的上表面和扇形侧壁纳米孔阵列的扇形侧壁自外而内依次包括高温保护及相干吸收层、等离激元吸收层以及有序硅纳米孔阵列,所述高温保护及相干吸收层为氧化铝,所述等离激元吸收层为金。
2.一种用于太阳能热光伏电池的硅基单面集成吸收发射器的制备方法,采用权利要求1中所述的硅基单面集成吸收发射器,其特征在于包括如下几个步骤:
1)清洗单晶硅片作为衬底,用 RCA 标准清洗流程进行清洗;
2)掩膜板制作,通过提拉法在硅片上覆盖一层密堆积两种不同尺寸的PS小球作为掩膜板;
3)将铺有单层PS小球掩膜的硅片样品放入等离子体刻蚀机腔室,腔室抽真空至8*10- 4Pa,通入刻蚀气体氧气,流量设置为50sccm,功率设置为100W,通过自主设定气体流量刻蚀时间,气体刻蚀PS小球速率为每分钟40nm,获得不同大小尺寸的PS小球;
4)磁控溅射铝薄膜,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品上表面溅射铝膜300s~600s;
5)将溅射有铝薄膜的样品置于酒精中超声,在样品上表面获得铝纳米网络阵列结构;
6)将样品放入等离子体刻蚀机腔室,腔室抽真空至8*10-4Pa,交替通入刻蚀气体六氟化硫、钝化气体八氟化四碳,气体流量设置为100sccm,功率设置为100W,刻蚀时间为10s~20s,钝化时间为5s~10s,通过改变交替循环次数获得不同深度层次的扇形侧壁纳米孔阵列;
7)在刻蚀获得的纳米孔阵列的表面磁控溅射形成金薄膜,腔体抽真空至4*10-4Pa,通入氩气,流量设置为40sccm,功率设置为100W,预溅射120s后打开挡板阀,在样品表面溅射金薄膜40s~150s;
8)将样品放入原子层沉积腔室,沉积源为三甲基铝及氧气,生长模式选择plasma模式,升温至300℃,生长速度:0.11nm/cycle,沉积100~900个循环;
9)利用有限时域差分方法,对经步骤8)处理的样品在220nm~2600nm范围内进行电磁场模拟,其中材料介电常数选用Palik数据,网格精度设为2nm,添加两个能量监视器获得反射值与透射值,进一步计算得到吸收值;
10)制备得到的单面集成吸收发射器即可应用于热光伏系统中。
3.根据权利要求2所述的用于太阳能热光伏电池的硅基单面集成吸收发射器的制备方法,其特征在于:在步骤2)中,所述PS小球直径分别为1μm或2μm。
CN202010051089.XA 2020-01-17 2020-01-17 基于硅基单面集成吸收发射器的太阳能热光伏电池 Active CN111244219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010051089.XA CN111244219B (zh) 2020-01-17 2020-01-17 基于硅基单面集成吸收发射器的太阳能热光伏电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010051089.XA CN111244219B (zh) 2020-01-17 2020-01-17 基于硅基单面集成吸收发射器的太阳能热光伏电池

Publications (2)

Publication Number Publication Date
CN111244219A CN111244219A (zh) 2020-06-05
CN111244219B true CN111244219B (zh) 2021-10-26

Family

ID=70874616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010051089.XA Active CN111244219B (zh) 2020-01-17 2020-01-17 基于硅基单面集成吸收发射器的太阳能热光伏电池

Country Status (1)

Country Link
CN (1) CN111244219B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035979B (zh) * 2021-03-09 2022-08-19 南京大学 用于太阳能热光伏电池的吸收-辐射器结构的制备方法
CN113296179B (zh) * 2021-06-08 2022-11-01 哈尔滨工业大学 一种用于热光伏的金属超表面滤波器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1003860B (el) * 2001-04-12 2002-04-08 Τριπλο υβριδικο ηλιακο συστημα συγκεντρωτικου τυπου για την ταυτοχρονη παραγωγη ηλεκτρικης, θερμικης και ψυκτικης ενεργειας
CN100569631C (zh) * 2008-03-20 2009-12-16 南京大学 一种制备合金相变材料纳米点阵的方法
US9228761B2 (en) * 2010-07-26 2016-01-05 Purdue Research Foundation Electromagnetic wave concentrator and absorber
US8642880B2 (en) * 2011-07-07 2014-02-04 Chia-Chin Cheng Interchangeable and fully adjustable solar thermal-photovoltaic concentrator systems
US8791016B2 (en) * 2012-09-25 2014-07-29 International Business Machines Corporation Through silicon via wafer, contacts and design structures
CN108895690B (zh) * 2018-07-05 2019-06-25 南京大学 一种硅基半导体-金属纳米复合材料及其制备方法
CN109795979B (zh) * 2018-12-28 2021-11-09 南京大学 具有内嵌金属环的纳米孔阵列结构的制备方法

Also Published As

Publication number Publication date
CN111244219A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
US8053665B2 (en) Truncated pyramid structures for see-through solar cells
TWI438904B (zh) 薄膜式太陽能電池及其製造方法
CN107256898A (zh) 管式perc双面太阳能电池及其制备方法和专用设备
CN201699033U (zh) 双面受光型晶体硅太阳能电池
CN103887347B (zh) 一种双面p型晶体硅电池结构及其制备方法
CN111244219B (zh) 基于硅基单面集成吸收发射器的太阳能热光伏电池
Cui et al. A novel silver nanoparticle assisted texture as broadband antireflection coating for solar cell applications
CN102534547A (zh) 一种晶体硅太阳电池的渐变减反射氮化硅薄膜的制备工艺
CN101667602A (zh) 一种多晶硅太阳电池及其制备方法
CN104051575B (zh) 一种仿生双面受光太阳能电池的制作工艺
CN105355671B (zh) 一种宽光谱高效太阳能光伏电池
CN102364691A (zh) 具有上/下转换发光结构的晶体硅太阳能电池及制备方法
CN102403376A (zh) 含有硅量子点的n-i-p异质结太阳能电池及其制备方法
CN103346200A (zh) 玻璃基板及其制造方法和薄膜太阳能电池的制造方法
CN103572903A (zh) 一体化光伏建筑屋顶瓦
CN105970175A (zh) 一种碳化钛-碳化锆高温太阳能选择性吸收涂层及其制备方法
CN109786480B (zh) 一种纳米阵列结构太阳能电池及其制备方法
CN104521003B (zh) 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池
CN104851923A (zh) 一种提升晶体硅太阳能电池效率减反射膜制备方法
CN102582150A (zh) 一种太阳能选择性吸收膜系及其制备方法
Cui et al. Developments in the aluminium induced texturing (AIT) glass process
CN101399292A (zh) 一种用于光伏发电的高温热辐射集成器件
El Amrani et al. Determination of the suitable refractive index of solar cells silicon nitride
CN102881776B (zh) 一种背钝化晶体硅太阳能电池的制备方法及太阳能电池
CN205282486U (zh) 一种太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant