CN113035783A - 石墨烯器件与GaN器件异质集成结构及制备方法 - Google Patents

石墨烯器件与GaN器件异质集成结构及制备方法 Download PDF

Info

Publication number
CN113035783A
CN113035783A CN202110269233.1A CN202110269233A CN113035783A CN 113035783 A CN113035783 A CN 113035783A CN 202110269233 A CN202110269233 A CN 202110269233A CN 113035783 A CN113035783 A CN 113035783A
Authority
CN
China
Prior art keywords
layer
graphene
gan
gan device
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110269233.1A
Other languages
English (en)
Other versions
CN113035783B (zh
Inventor
蔡泉福
魏婷婷
左亚丽
朱伟超
马飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jimaike Microelectronics Co Ltd
Original Assignee
Zhejiang Jimaike Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Jimaike Microelectronics Co Ltd filed Critical Zhejiang Jimaike Microelectronics Co Ltd
Priority to CN202110269233.1A priority Critical patent/CN113035783B/zh
Publication of CN113035783A publication Critical patent/CN113035783A/zh
Application granted granted Critical
Publication of CN113035783B publication Critical patent/CN113035783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种石墨烯器件与GaN器件异质集成结构及制备方法,可以在GaN基单片上同时集成P型石墨烯器件和N型GaN器件,以替代传统的Si‑CMOS;插入在AlGaN势垒层和第二Al2O3层之间的第二石墨烯层可提高GaN器件的散热,同时可降低欧姆接触电阻,总体提升GaN器件性能;第一Al2O3层作为石墨烯器件的隔离埋氧层,第二Al2O3层则作为石墨烯器件与GaN器件的栅氧介质层,且所述第一Al2O3层及第二Al2O3层可直接作为石墨烯器件与GaN器件的隔离侧墙,以减少制备工艺,降低成本,提高器件质量。

Description

石墨烯器件与GaN器件异质集成结构及制备方法
技术领域
本发明属于半导体技术领域,涉及一种石墨烯器件与GaN器件异质集成结构及制备方法。
背景技术
随着半导体技术的发展,更小、集成度更高的芯片受到越来越大的重视,其中,单片集成各种功能器件,以使整个封装模块做到体积更小、性能更高、节约后道工艺成本越来越受到人们的关注。
作为第三代半导体材料的代表,氮化镓(GaN)具有如高临界击穿电场、高电子迁移率、高二维电子气浓度和良好的高温工作能力等许多优良的特性,因此,基于GaN的第三代半导体器件,如高电子迁移率晶体管(HEMT)、异质结场效应晶体管(HFET)等已经得到了应用,尤其在射频、微波等需要大功率和高频率的领域具有明显优势。
GaN作为第三代半导体材料,其在频率、耐压方面的性能超过Si技术,但目前尚无采用GaN基的可替代Si-CMOS的技术。
因此,提供一种石墨烯器件与GaN器件异质集成结构及制备方法,实属必要。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种石墨烯器件与GaN器件异质集成结构及制备方法,用于解决现有技术中尚无采用GaN基替代Si-CMOS的技术的问题。
为实现上述目的及其他相关目的,本发明提供一种石墨烯器件与GaN器件异质集成结构的制备方法,包括以下步骤:
提供外延叠层,所述外延叠层包括自下而上堆叠设置的GaN沟道层及AlGaN势垒层;
于所述外延叠层上形成第一Al2O3层;
采用光刻法定义GaN器件区,并去除位于所述GaN器件区中的所述第一Al2O3层,显露所述外延叠层;
采用薄膜转移技术,形成石墨烯层,所述石墨烯层包括覆盖所述第一Al2O3层的第一石墨烯层及覆盖所述外延叠层的第二石墨烯层;
形成第二Al2O3层,所述第二Al2O3层覆盖所述石墨烯层及显露的所述第一Al2O3层的侧壁;
采用光刻法,分别定义所述GaN器件与所述石墨烯器件的源区及漏区,并去除所述源区及漏区所对应的所述第二Al2O3层,形成分别对应于所述GaN器件与所述石墨烯器件的源极及漏极,且所述源极及漏极均与对应的所述石墨烯层相接触;
采用光刻法,分别定义所述GaN器件与所述石墨烯器件的栅区,形成分别对应于所述GaN器件与所述石墨烯器件的栅极,且所述栅极位于所述第二Al2O3层上。
可选地,形成的所述第一Al2O3层的厚度为50nm~1μm;所述GaN器件与所述石墨烯器件在水平方向上通过所述第一Al2O3层隔离。
可选地,所述第二Al2O3层的厚度为10nm~100nm;所述GaN器件与所述石墨烯器件在垂直方向上通过所述第二Al2O3层隔离。
可选地,所述第一石墨烯层包括1~10层原子层;所述第二石墨烯层包括1~10层原子层。
可选地,在同一步骤中形成对应于所述GaN器件与所述石墨烯器件的源极及漏极;在同一步骤中形成对应于所述GaN器件与所述石墨烯器件的栅极。
可选地,形成所述第一Al2O3层的步骤包括:
先通入臭氧进行表面清洁,且形成Ga-O薄膜氧化物;
通入Al气源,并持续通入臭氧,以制备所述第一Al2O3层。
可选地,形成所述第二Al2O3层的步骤包括:
先通入臭氧进行预处理,以钝化所述石墨烯层表面的缺陷;
再通入Al气源,并持续通入臭氧,以制备所述第二Al2O3层。
可选地,去除位于所述GaN器件区中的所述第一Al2O3层的方法包括BOE湿法刻蚀。
本发明还提供一种石墨烯器件与GaN器件异质集成结构,所述异质集成结构包括:
外延叠层,所述外延叠层包括自下而上堆叠设置的GaN沟道层及AlGaN势垒层;
石墨烯器件,所述石墨烯器件位于所述外延叠层上,包括,
第一Al2O3层,所述第一Al2O3层位于所述外延叠层上;
第一石墨烯层,所述第一石墨烯层位于所述第一Al2O3层上,且覆盖所述第一Al2O3层;
GaN器件,所述GaN器件位于所述外延叠层上,包括,
第二石墨烯层,所述第二石墨烯层位于所述外延叠层上,且覆盖所述外延叠层;以及
第二Al2O3层,所述第二Al2O3层覆盖所述第一石墨烯层、第二石墨烯层及显露的所述第一Al2O3层的侧壁;
分别对应于所述GaN器件与所述石墨烯器件的源极及漏极,且所述源极及漏极贯穿所述第二Al2O3层;
分别对应于所述GaN器件与所述石墨烯器件的栅极,且所述栅极位于所述第二Al2O3层上。
可选地,所述第一Al2O3层的厚度为50nm~1μm;所述GaN器件与所述石墨烯器件在水平方向上通过所述第一Al2O3层隔离;所述第二Al2O3层的厚度为10nm~100nm;所述GaN器件与所述石墨烯器件在垂直方向上通过所述第二Al2O3层隔离;所述第一石墨烯层包括1~10层原子层;所述第二石墨烯层包括1~10层原子层。
如上所述,本发明的石墨烯器件与GaN器件异质集成结构及制备方法,可以在GaN基单片上同时集成P型石墨烯器件和N型GaN器件,以替代传统的Si-CMOS;插入在AlGaN势垒层和第二Al2O3层之间的第二石墨烯层可提高GaN器件的散热,同时可降低欧姆接触电阻,以总体提升GaN器件性能;第一Al2O3层作为石墨烯器件的隔离埋氧层,第二Al2O3层则作为石墨烯器件与GaN器件的栅氧介质层,且通过所述第一Al2O3层及第二Al2O3层可直接作为石墨烯器件与GaN器件的隔离侧墙,以减少制备工艺,降低成本,提高器件质量。
附图说明
图1显示为本发明实施例中制备石墨烯器件与GaN器件异质集成结构的工艺流程示意图。
图2显示为本发明实施例中形成第一Al2O3层后的结构示意图。
图3显示为本发明实施例中去除位于GaN器件区中的第一Al2O3层后的结构示意图。
图4显示为本发明实施例中形成第一石墨烯层及第二石墨烯层后的结构示意图。
图5显示为本发明实施例中形成第二Al2O3层后的结构示意图。
图6显示为本发明实施例中分别形成对应于GaN器件与石墨烯器件的源极及漏极后的结构示意图。
图7显示为本发明实施例中分别形成对应于GaN器件与石墨烯器件的栅极后的结构示意图。
元件标号说明
100-衬底;200-外延叠层;210-缓冲层;220-GaN沟道层;230-AlGaN势垒层;310-第一Al2O3层;320-第二Al2O3层;321,322-栅氧介质层;323-隔离侧墙;411-第一石墨烯层;421-第二石墨烯层;511,521-源极;512,522-漏极;611,621-栅极;A-石墨烯器件;B-GaN器件。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。本文使用的“介于……之间”表示包括两端点值。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,其组件布局型态也可能更为复杂。
参阅图1,本实施例提供一种石墨烯器件与GaN器件异质集成结构的制备方法,本实施例中的石墨烯器件与GaN器件异质集成结构的制备方法,可以在GaN基单片上同时集成P型石墨烯器件和N型GaN器件,以替代传统的Si-CMOS;插入在所述AlGaN势垒层和所述第二Al2O3层之间的所述第二石墨烯层可提高所述GaN器件的散热,同时可降低欧姆接触电阻,以总体提升所述GaN器件性能;所述第一Al2O3层作为所述石墨烯器件的隔离埋氧层,所述第二Al2O3层则作为所述石墨烯器件与所述GaN器件的栅氧介质层,且通过所述第一Al2O3层及第二Al2O3层可直接作为所述石墨烯器件与所述GaN器件的隔离侧墙,以减少制备工艺,降低成本,提高器件质量。
具体的,参阅图2~图7,显示为制备石墨烯器件A与GaN器件B异质集成结构时,各步骤所呈现的结构示意图。
首先,参阅图2,提供衬底100,所述衬底100可包括Si衬底、SiC衬底、GaN衬底及蓝宝石衬底中的一种,但所述衬底的选材并非局限于此。其中,所述衬底100可采用Si(111)衬底,以满足节约成本的需求,以及基于晶格适应性,(111)取向的Si衬底有利于后续GaN材料的生长,所述衬底100的尺寸可采用8寸晶圆、12寸晶圆等,此处不作过分限制。
接着,于所述衬底100上形成所述外延叠层200,所述外延叠层200包括自下而上堆叠设置的GaN沟道层220及AlGaN势垒层230。
具体的,本实施例中,所述外延叠层200包括自下而上依次堆叠设置的缓冲层210、GaN沟道层220及AlGaN势垒层230。其中,形成的所述缓冲层210可包括AlGaN缓冲层,但并非局限于此,进一步的,所述缓冲层210还可包括位于所述AlGaN缓冲层上的高阻GaN缓冲层等。如可在所述衬底100上先形成外延AlN成核层,以作为种子层;而后再外延AlxGa1-xN叠层,以形成所述缓冲层210,且在所述AlxGa1-xN叠层中,x的取值范围包括0<x<1,且远离所述GaN沟道层220的AlxGa1-xN层的x值大于临近所述GaN沟道层220的AlxGa1-xN层的x值,以缓解所述衬底100与所述GaN沟道层220之间晶格不匹配及热膨胀系数不匹配的问题;在形成所述缓冲层210之后,还可形成高阻的所述GaN缓冲层,以便于后续形成具有良好的防漏电性能的所述GaN器件B;且在形成高阻的所述GaN缓冲层后,还可形成背势垒层,如AlGaN背势垒层或InGaN背势垒层,以通过所述背势垒层的自极化能力,进一步的提高二维电子气浓度,从而制备具有良好的防漏电性能及较高的击穿电压的所述GaN器件B。本实施例中,所述外延叠层200采用所述AlGaN缓冲层/GaN沟道层/AlGaN势垒层,但关于所述外延叠层200的结构,可根据需要进行选择,此处不作过分限制。
接着,参阅图2,于所述外延叠层200上形成第一Al2O3层310。
作为示例,形成所述第一Al2O3层310的步骤包括:
先通入臭氧进行表面清洁,且形成Ga-O薄膜氧化物;
通入Al气源,并持续通入臭氧,以制备所述第一Al2O3层310。
具体的,可利用ALD(原子层沉积),以臭氧(O3)作为气源沉积所述第一Al2O3层310,其中,在沉积薄膜前,可在ALD腔内先进行原位表面预处理,所述原位表面预处理包括在ALD腔内先通入O3进行表面清洁,以去除样品表面的有机物、光刻胶残留等,并形成界面良好的Ga-O薄膜氧化物。随后通入Al气源,如TMA,并持续通入O3,以制备所述第一Al2O3层310,获得均匀薄膜。其中,形成所述第一Al2O3层310的方法并非局限于此。
接着,参阅图3,采用光刻法定义GaN器件区,并去除位于所述GaN器件区中的所述第一Al2O3层310,显露所述外延叠层200。
作为示例,去除位于所述GaN器件区中的所述第一Al2O3层310的方法包括BOE湿法刻蚀。
具体的,可先在所述第一Al2O3层310上形成掩膜,如光刻胶,利用光刻定义出所述GaN器件区后,可通过BOE湿法刻蚀,去除所述GaN器件区处所对应的所述第一Al2O3层310,以保留所述石墨烯器件区对应的所述第一Al2O3层310,以通过所述第一Al2O3层310作为所述石墨烯器件区的隔离埋氧层。
作为示例,形成的所述第一Al2O3层310的厚度可为50nm~1μm;所述GaN器件B与所述石墨烯器件A在水平方向上通过所述第一Al2O3层310隔离。
具体的,形成的所述第一Al2O3层310的厚度可为50nm、80nm、100nm、500nm、1μm等,所述第一Al2O3层310的厚度具体可根据需要进行设置,此处不作过分限制。通过具有预设厚度的所述第一Al2O3层310,一方面可作为所述石墨烯器件A的隔离埋氧层,另一方面,参阅图7,具有预设厚度的所述第一Al2O3层310还可作为所述GaN器件B与所述石墨烯器件A在水平方向的隔离层,避免所述GaN器件B与所述石墨烯器件A的电连接,从而无需在所述GaN器件B与所述石墨烯器件A的水平方向上额外制备绝缘隔离层,从而可减少制备工艺,降低成本,提高最终器件的质量。
接着,参阅图4,采用薄膜转移技术,形成石墨烯层,所述石墨烯层包括覆盖所述第一Al2O3层310的第一石墨烯层411及覆盖所述外延叠层200的第二石墨烯层421。
作为示例,所述第一石墨烯层411包括1~10层原子层;所述第二石墨烯层421包括1~10层原子层。
具体的,可利用薄膜转移技术在整个样品表面上沉积所述第一石墨烯层411及第二石墨烯层421,其中,所述第一石墨烯层411的原子层数可包括1~10层,如1层、4层、5层、8层、10层等,所述第二石墨烯层421的原子层数可包括1~10层,如1层、4层、5层、8层、10层等,进一步的,所述第一石墨烯层411与所述第二石墨烯层421的原子层数可以不同,但也可相同,具体可根据需要进行选择,本实施例中,优选所述第一石墨烯层411与所述第二石墨烯层421采用相同的原子层数,以降低工艺复杂度,但并非局限于此。其中,所述第一石墨烯层411与所述第二石墨烯层421之间通过所述第一Al2O3层310可形成高度差,参阅图4,从而通过所述第一Al2O3层310可直接作为所述第一石墨烯层411及第二石墨烯层421之间的绝缘隔离层,避免电路导通,以减少制备工艺,降低成本,提高最终器件的质量。
接着,参阅图5,形成第二Al2O3层320,所述第二Al2O3层320覆盖所述石墨烯层及显露的所述第一Al2O3层310的侧壁。
作为示例,形成所述第二Al2O3层320的步骤包括:
先通入臭氧进行预处理,以钝化所述石墨烯层表面的缺陷;
再通入Al气源,并持续通入臭氧,以制备所述第二Al2O3层320。
具体的,可利用ALD,以O3进行预处理,以钝化所述石墨烯层表面的缺陷,而后通入Al气源,如TMA,并持续通入O3,以制备所述第二Al2O3层320,获得均匀薄膜。其中,形成所述第二Al2O3层320的方法并非仅局限于此。
作为示例,所述第二Al2O3层320的厚度可为10nm~100nm;所述GaN器件B与所述石墨烯器件A在垂直方向上通过所述第二Al2O3层320隔离。
具体的,形成的所述第二Al2O3层320的厚度可为10nm、20nm、50nm、80nm、100nm等,所述第二Al2O3层320的厚度具体可根据需要进行设置,此处不作过分限制。通过具有预设厚度的所述第二Al2O3层320,一方面可作为所述石墨烯器件A以及所述GaN器件B的栅氧介质层321及322,参阅图7,另一方面,具有预设厚度且覆盖所述第一Al2O3层310的侧壁的所述第二Al2O3层320还可作为所述GaN器件B与所述石墨烯器件A在垂直方向上的隔离侧墙323,避免所述GaN器件B与所述石墨烯器件A的电连接,从而无需在所述GaN器件B与所述石墨烯器件A的垂直方向上额外制备绝缘隔离层,从而可减少制备工艺,降低成本,提高最终器件的质量。
进一步的,插入所述AlGaN势垒层230与所述第二Al2O3层320之间的所述第二石墨烯层421可提高所述GaN器件B的散热,同时可降低欧姆接触电阻,以总体提升所述GaN器件B的性能。
接着,参阅图6,采用光刻法,分别定义所述GaN器件B与所述石墨烯器件A的源区及漏区,并去除所述源区及漏区所对应的所述第二Al2O3层320,形成分别对应于所述GaN器件B与所述石墨烯器件A的源极511、521及漏极512、522,且所述源极511、521及漏极512、522均与对应的所述石墨烯层相接触。
作为示例,可在同一步骤中形成对应于所述GaN器件B与所述石墨烯器件A的所述源极511、521及漏极512、522。
具体的,可在所述第二Al2O3层320上形成掩膜,如光刻胶,并采用光刻图形化所述光刻胶,并同时定义所述GaN器件B与所述石墨烯器件A所对应的所述源、漏区,去除位于所述源、漏区处的所述第二Al2O3层320,以分别显露所述第一石墨烯层411及第二石墨烯层421,从而通过沉积金属、剥离,可实现所述GaN器件B与所述石墨烯器件A所对应的所述源极511、521及漏极512、522的同步制备。但所述源极511、521及漏极512、522的制备并非局限于此,所述源极511、521以及所述漏极512、522也可分别采用不同材质、或不同的步骤依次制备,具体可根据需要进行选择,此处不作过分限制。
接着,参阅图7,采用光刻法,分别定义所述GaN器件B与所述石墨烯器件A的栅区,形成分别对应于所述GaN器件B与所述石墨烯器件A的栅极611、621,且所述栅极611、621位于所述第二Al2O3层320上。
具体的,可在所述第二Al2O3层320上形成掩膜,如光刻胶,并采用光刻图形化所述光刻胶,并同时定义所述GaN器件B与所述石墨烯器件A所对应的所述栅区,以分别显露所述栅氧介质层321及322,从而通过沉积金属、剥离,可实现所述GaN器件B与所述石墨烯器件A所对应的所述栅极611、621的同步制备。但所述栅极611、621的制备并非局限于此,所述栅极611、621也可分别采用不同材质、或不同的步骤依次制备,具体可根据需要进行选择,此处不作过分限制。
参阅图7,本实施还提供一种石墨烯器件A与GaN器件B异质集成结构,所述石墨烯器件A与GaN器件B异质集成结构可采用上述制备方法制备,但并非局限于此,有关所述石墨烯器件A与GaN器件B异质集成结构的材质及制备方法等,此处不作赘述。
具体的,参阅图2~图7,所述异质集成结构包括:
外延叠层200,所述外延叠层200包括自下而上堆叠设置的GaN沟道层220及AlGaN势垒层230;
石墨烯器件A,所述石墨烯器件A位于所述外延叠层200上,包括,
第一Al2O3层310,所述第一Al2O3层310位于所述外延叠层200上;
第一石墨烯层411,所述第一石墨烯层411位于所述第一Al2O3层310上,且覆盖所述第一Al2O3层310;
GaN器件B,所述GaN器件B位于所述外延叠层200上,包括,
第二石墨烯层421,所述第二石墨烯层421位于所述外延叠层200上,且覆盖所述外延叠层200;以及
第二Al2O3层320,所述第二Al2O3层320覆盖所述第一石墨烯层411、第二石墨烯层421及显露的所述第一Al2O3层310的侧壁;
分别对应于所述GaN器件B与所述石墨烯器件A的源极511、521及漏极512、522,且所述源极511、521及漏极512、522贯穿所述第二Al2O3层320;
分别对应于所述GaN器件B与所述石墨烯器件A的栅极611、621,且所述栅极611、621位于所述第二Al2O3层上320。
作为示例,所述第一Al2O3层310的厚度为50nm~1μm;所述GaN器件B与所述石墨烯器件A在水平方向上通过所述第一Al2O3层310隔离。
具体的,所述第一Al2O3层310的厚度可为50nm、80nm、100nm、500nm、1μm等,所述第一Al2O3层310的厚度具体可根据需要进行选择,此处不作过分限制。通过具有预设厚度的所述第一Al2O3层310,一方面可作为所述石墨烯器件A的隔离埋氧层,另一方面,参阅图7,具有预设厚度的所述第一Al2O3层310还可作为所述GaN器件B与所述石墨烯器件A在水平方向的隔离层,避免所述GaN器件B与所述石墨烯器件A的电连接,从而无需在所述GaN器件B与所述石墨烯器件A的水平方向上额外制备绝缘隔离层,从而可减少制备工艺,降低成本,提高最终器件的质量。
作为示例,所述第二Al2O3层320的厚度可为10nm~100nm;所述GaN器件B与所述石墨烯器件A在垂直方向上通过所述第二Al2O3层320隔离。
具体的,所述第二Al2O3层320的厚度可为10nm、20nm、50nm、80nm、100nm等,所述第二Al2O3层320的厚度具体可根据需要进行设置,此处不作过分限制。通过具有预设厚度的所述第二Al2O3层320,一方面可作为所述石墨烯器件A以及所述GaN器件B的栅氧介质层321及322,参阅图7,另一方面,具有预设厚度且覆盖所述第一Al2O3层310的侧壁的所述第二Al2O3层320还可作为所述GaN器件B与所述石墨烯器件A在垂直方向上的隔离侧墙323,避免所述GaN器件B与所述石墨烯器件A的电连接,从而无需在所述GaN器件B与所述石墨烯器件A的垂直方向上额外制备绝缘隔离层,从而可减少制备工艺,降低成本,提高最终器件的质量。
作为示例,所述第一石墨烯层411包括1~10层原子层;所述第二石墨烯层421包括1~10层原子层。
具体的,可利用薄膜转移技术在整个样品表面上沉积所述第一石墨烯层411及第二石墨烯层421,其中,所述第一石墨烯层411的原子层数可包括1~10层,如1层、4层、5层、8层、10层等,所述第二石墨烯层421的原子层数可包括1~10层,如1层、4层、5层、8层、10层等,进一步的,所述第一石墨烯层411与所述第二石墨烯层421的原子层数可以不同,但也可相同,具体可根据需要进行选择,本实施例中,优选所述第一石墨烯层411与所述第二石墨烯层421采用相同的原子层数,以降低工艺复杂度,但并非局限于此。其中,所述第一石墨烯层411与所述第二石墨烯层421之间通过所述第一Al2O3层310可形成高度差,从而通过所述第一Al2O3层310可直接作为所述第一石墨烯层411及第二石墨烯层421之间的绝缘隔离层,以减少制备工艺,降低成本,提高最终器件的质量。
再者,插入所述AlGaN势垒层230与所述第二Al2O3层320之间的所述第二石墨烯层421可提高所述GaN器件B的散热,同时可降低欧姆接触电阻,以总体提升所述GaN器件B的性能。
综上所述,本发明的石墨烯器件与GaN器件异质集成结构及制备方法,可以在GaN基单片上同时集成P型石墨烯器件和N型GaN器件,以替代传统的Si-CMOS;插入在AlGaN势垒层和第二Al2O3层之间的第二石墨烯层可提高GaN器件的散热,同时可降低欧姆接触电阻,总体提升GaN器件性能;第一Al2O3层作为石墨烯器件的隔离埋氧层,第二Al2O3层则作为石墨烯器件与GaN器件的栅氧介质层,且通过所述第一Al2O3层及第二Al2O3层可直接作为石墨烯器件与GaN器件的隔离侧墙,以减少制备工艺,降低成本,提高器件质量。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种石墨烯器件与GaN器件异质集成结构的制备方法,其特征在于,包括以下步骤:
提供外延叠层,所述外延叠层包括自下而上堆叠设置的GaN沟道层及AlGaN势垒层;
于所述外延叠层上形成第一Al2O3层;
采用光刻法定义GaN器件区,并去除位于所述GaN器件区中的所述第一Al2O3层,显露所述外延叠层;
采用薄膜转移技术,形成石墨烯层,所述石墨烯层包括覆盖所述第一Al2O3层的第一石墨烯层及覆盖所述外延叠层的第二石墨烯层;
形成第二Al2O3层,所述第二Al2O3层覆盖所述石墨烯层及显露的所述第一Al2O3层的侧壁;
采用光刻法,分别定义所述GaN器件与所述石墨烯器件的源区及漏区,并去除所述源区及漏区所对应的所述第二Al2O3层,形成分别对应于所述GaN器件与所述石墨烯器件的源极及漏极,且所述源极及漏极均与对应的所述石墨烯层相接触;
采用光刻法,分别定义所述GaN器件与所述石墨烯器件的栅区,形成分别对应于所述GaN器件与所述石墨烯器件的栅极,且所述栅极位于所述第二Al2O3层上。
2.根据权利要求1所述的制备方法,其特征在于:形成的所述第一Al2O3层的厚度为50nm~1μm;所述GaN器件与所述石墨烯器件在水平方向上通过所述第一Al2O3层隔离。
3.根据权利要求1所述的制备方法,其特征在于:所述第二Al2O3层的厚度为10nm~100nm;所述GaN器件与所述石墨烯器件在垂直方向上通过所述第二Al2O3层隔离。
4.根据权利要求1所述的制备方法,其特征在于:所述第一石墨烯层包括1~10层原子层;所述第二石墨烯层包括1~10层原子层。
5.根据权利要求1所述的制备方法,其特征在于:在同一步骤中形成对应于所述GaN器件与所述石墨烯器件的源极及漏极;在同一步骤中形成对应于所述GaN器件与所述石墨烯器件的栅极。
6.根据权利要求1所述的制备方法,其特征在于,形成所述第一Al2O3层的步骤包括:
先通入臭氧进行表面清洁,且形成Ga-O薄膜氧化物;
通入Al气源,并持续通入臭氧,以制备所述第一Al2O3层。
7.根据权利要求1所述的制备方法,其特征在于,形成所述第二Al2O3层的步骤包括:
先通入臭氧进行预处理,以钝化所述石墨烯层表面的缺陷;
再通入Al气源,并持续通入臭氧,以制备所述第二Al2O3层。
8.根据权利要求1所述的制备方法,其特征在于:去除位于所述GaN器件区中的所述第一Al2O3层的方法包括BOE湿法刻蚀。
9.一种石墨烯器件与GaN器件异质集成结构,其特征在于,所述异质集成结构包括:
外延叠层,所述外延叠层包括自下而上堆叠设置的GaN沟道层及AlGaN势垒层;
石墨烯器件,所述石墨烯器件位于所述外延叠层上,包括,
第一Al2O3层,所述第一Al2O3层位于所述外延叠层上;
第一石墨烯层,所述第一石墨烯层位于所述第一Al2O3层上,且覆盖所述第一Al2O3层;
GaN器件,所述GaN器件位于所述外延叠层上,包括,
第二石墨烯层,所述第二石墨烯层位于所述外延叠层上,且覆盖所述外延叠层;以及
第二Al2O3层,所述第二Al2O3层覆盖所述第一石墨烯层、第二石墨烯层及显露的所述第一Al2O3层的侧壁;
分别对应于所述GaN器件与所述石墨烯器件的源极及漏极,且所述源极及漏极贯穿所述第二Al2O3层;
分别对应于所述GaN器件与所述石墨烯器件的栅极,且所述栅极位于所述第二Al2O3层上。
10.根据权利要求9所述的异质集成结构,其特征在于:所述第一Al2O3层的厚度为50nm~1μm;所述GaN器件与所述石墨烯器件在水平方向上通过所述第一Al2O3层隔离;所述第二Al2O3层的厚度为10nm~100nm;所述GaN器件与所述石墨烯器件在垂直方向上通过所述第二Al2O3层隔离;所述第一石墨烯层包括1~10层原子层;所述第二石墨烯层包括1~10层原子层。
CN202110269233.1A 2021-03-12 2021-03-12 石墨烯器件与GaN器件异质集成结构及制备方法 Active CN113035783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110269233.1A CN113035783B (zh) 2021-03-12 2021-03-12 石墨烯器件与GaN器件异质集成结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110269233.1A CN113035783B (zh) 2021-03-12 2021-03-12 石墨烯器件与GaN器件异质集成结构及制备方法

Publications (2)

Publication Number Publication Date
CN113035783A true CN113035783A (zh) 2021-06-25
CN113035783B CN113035783B (zh) 2022-07-22

Family

ID=76469995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110269233.1A Active CN113035783B (zh) 2021-03-12 2021-03-12 石墨烯器件与GaN器件异质集成结构及制备方法

Country Status (1)

Country Link
CN (1) CN113035783B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663015A (zh) * 2022-10-19 2023-01-31 上海新微半导体有限公司 一种半导体器件结构及其制备方法
TWI826172B (zh) * 2022-12-08 2023-12-11 台亞半導體股份有限公司 高電子遷移率電晶體

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120319169A1 (en) * 2011-06-20 2012-12-20 Imec Cmos compatible method for manufacturing a hemt device and the hemt device thereof
US20140091392A1 (en) * 2011-06-10 2014-04-03 Sumitomo Chemical Company, Limited Semiconductor device, semiconductor wafer, method for producing semiconductor wafer, and method for producing semiconductor device
US20140141580A1 (en) * 2009-06-25 2014-05-22 Francis J. Kub Transistor with enhanced channel charge inducing material layer and threshold voltage control
US20160163704A1 (en) * 2014-12-04 2016-06-09 Jaehoon Lee Semiconductor device having heterogeneous structure and method forming the same
CN111599857A (zh) * 2020-05-29 2020-08-28 浙江大学 二维材料器件与GaN器件异质集成结构及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141580A1 (en) * 2009-06-25 2014-05-22 Francis J. Kub Transistor with enhanced channel charge inducing material layer and threshold voltage control
US20140091392A1 (en) * 2011-06-10 2014-04-03 Sumitomo Chemical Company, Limited Semiconductor device, semiconductor wafer, method for producing semiconductor wafer, and method for producing semiconductor device
US20120319169A1 (en) * 2011-06-20 2012-12-20 Imec Cmos compatible method for manufacturing a hemt device and the hemt device thereof
US20160163704A1 (en) * 2014-12-04 2016-06-09 Jaehoon Lee Semiconductor device having heterogeneous structure and method forming the same
CN111599857A (zh) * 2020-05-29 2020-08-28 浙江大学 二维材料器件与GaN器件异质集成结构及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663015A (zh) * 2022-10-19 2023-01-31 上海新微半导体有限公司 一种半导体器件结构及其制备方法
CN115663015B (zh) * 2022-10-19 2023-12-15 上海新微半导体有限公司 一种半导体器件结构及其制备方法
TWI826172B (zh) * 2022-12-08 2023-12-11 台亞半導體股份有限公司 高電子遷移率電晶體

Also Published As

Publication number Publication date
CN113035783B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN112490286B (zh) 半导体装置及其制作方法
US11929429B2 (en) Nitride-based semiconductor device and method for manufacturing the same
US11855174B2 (en) High electron mobility transistor having conductive plate on passivation layer and method for forming the same
CN113035783B (zh) 石墨烯器件与GaN器件异质集成结构及制备方法
US12119342B2 (en) Resistor and resistor-transistor-logic circuit with GaN structure and method of manufacturing the same
CN114127951A (zh) 氮化物基半导体装置以及制造其的方法
CN115831877A (zh) 基于异质集成的氧化镓cascade结构及制备方法
CN113035935B (zh) GaN器件及制备方法
CN114078965B (zh) 高电子迁移率晶体管及其制作方法
CN111599857B (zh) 二维材料器件与GaN器件异质集成结构及制备方法
US20200273976A1 (en) Semiconductor devices and methods for forming the same
US20240222423A1 (en) GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME
CN113793805B (zh) GaN基HEMT器件及其制备方法
CN113130297A (zh) 硅-氮化镓复合衬底、复合器件及制备方法
CN113053749B (zh) GaN器件及制备方法
CN113053748B (zh) GaN器件及制备方法
CN113035934B (zh) GaN基HEMT器件及其制备方法
TWI849920B (zh) 高電子遷移率電晶體及其製造方法
CN113284949B (zh) 氮化镓基器件及其制造方法
CN113889412B (zh) 欧姆接触GaN器件及其制备方法
US12132043B2 (en) Resistor and resistor-transistor-logic circuit with GaN structure and method of manufacturing the same
CN115663015B (zh) 一种半导体器件结构及其制备方法
US20240178285A1 (en) High electron mobility transistor and fabrication method thereof
CN111446289B (zh) 基于石墨烯覆盖层的氮化镓器件结构及其制备方法
US20230065509A1 (en) Group iii-v ic with different sheet resistance 2-deg resistors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant