CN113024261B - 一种制备高纯AlON陶瓷粉体及其热压烧结的方法 - Google Patents
一种制备高纯AlON陶瓷粉体及其热压烧结的方法 Download PDFInfo
- Publication number
- CN113024261B CN113024261B CN202110463362.4A CN202110463362A CN113024261B CN 113024261 B CN113024261 B CN 113024261B CN 202110463362 A CN202110463362 A CN 202110463362A CN 113024261 B CN113024261 B CN 113024261B
- Authority
- CN
- China
- Prior art keywords
- powder
- hot
- pressing
- temperature
- nitrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种制备高纯AlON陶瓷粉体及其热压烧结的方法,属于陶瓷粉体制备技术领域。工艺过程为:(1)称取水溶性铝盐、有机燃料、水溶性有机物、以及金属硝酸盐,随后倒入适量去离子水,搅拌使化合物完全溶解;(2)将混合溶液200‑600℃的温度下发生燃烧反应后得到Al2O3和C的混合物;(3)将前驱物于1200‑1700℃的氮气气氛中反应0.1‑10小时,得到Al2O3和AlN的混合粉体;(4)将烧制后的粉体在空气中500‑900℃下除碳0.1‑10小时;(5)将除碳后的粉体压倒入石墨模具中,并加压;(6)将石墨模具放入放真空热压炉中在惰性气氛下,1700‑1950℃,加压10‑60MPa,保温1‑20h;(7)烧制后的陶瓷在空气中700‑1300℃,煅烧0.1‑10小时来除碳(8)烧结后的透明陶瓷透光率可达83%,晶粒尺寸在100‑250μm之间,维氏硬度高达17.5GPa。
Description
技术领域
本发明属于陶瓷粉体制备技术领域,涉及一种制备高纯AlON陶瓷粉体及其热压烧结的方法。
背景技术
透明氮氧化铝(AlON)陶瓷材料在可见光至中红外波段具有优异的透光性,理论透光率高达85%。除良好的光学性能外,还具有良好的物理、化学性能,具有强度高、硬度大、耐腐蚀、耐高温等一系列优异性能。因此在国防领域具有重要的应用前景,可用作导弹窗口和头罩材料、天线罩、坦克观测窗等。
AlON透明陶瓷可借助传统的陶瓷工艺进行制备,主要包括高温制粉、生坯成型以及生坯的烧结致密。性能优异的粉体有利于高透光性的AlON陶瓷的制备,常用的粉体制备方法有高温固相反应和碳热还原氮化法。与高温固相法方法相比,碳热还原氮化法由于其成本低廉而具有广阔的商业前景。然而,该方法需要过度球磨以使前体均匀,并且需要在高温下长期保温以获得纯相AlON。烧制后的粉体还需经过长时间的球磨、烘干、过筛等工艺,进一步增加了AlON粉体的生产成本。
溶液燃烧合成(SCS)是制备氧化物材料的一种常用的湿化学方法。它本质上是在金属硝酸盐和燃料的均匀水溶液,在加热过程中快速发生氧化还原反应,有利于合成均匀的产物。SCS具有自放热的优点,并且释放的热量可以维持反应。另外,反应时间短,效率高,并且大量的气体迅速释放,因此获得的产物具有大的比表面积和高的反应活性。选用燃烧合成制备的前驱体可在低温下实现快速氮化,得到Al2O3和AlN的混合粉体,氮化后的粉体借助热压烧结可快速制备AlON透明陶瓷。该方法工艺简单,经济高效,用该方法快速制备AlON透明陶瓷还未见报道。
发明内容
有鉴于此,本发明提出一种制备高纯AlON陶瓷粉体及其热压烧结的方法。通过溶液燃烧合成制备碳含量可控的前驱体,在配制的溶液中提前加入金属硝酸盐,制得的前驱体低温氮化后得到Al2O3和AlN的混合粉体,该粉体通过热压烧结快速制备AlON透明陶瓷。
一种制备高纯AlON陶瓷粉体及其热压烧结的方法,其特征在于,通过溶液燃烧合成制备碳含量可控的前驱体,粉体烧制后通过热压烧结快速制备AlON透明陶瓷,具体步骤如下:
a.称取水溶性铝盐、有机燃料、水溶性有机物以及金属硝酸盐,随后倒入适量去离子水,搅拌使化合物完全溶解;
b.将步骤a中的混合溶液加热,并不断搅拌至粘稠浆料,随后停止搅拌,继续加热过程中凝胶受热并不断膨胀,放出大量气体,燃烧反应后得到主要成分为Al2O3和C的前驱体;
c.将步骤b中得到前驱体在石墨炉中,氮气氛围下氮化;
d.将步骤c中得到氮化后的粉体在空气中除碳;
e.将步骤d中除碳后的粉体倒入石墨模具中并压制;
f.将步骤e中的石墨模具放入真空热压炉中,在惰性气氛下进行加压烧结;
g.将步骤f中烧制后的陶瓷在空气中煅烧来除去残余碳。
进一步地,步骤a中所述水溶性铝盐、有机燃料、水溶性有机物以及金属硝酸盐的物质的量比为1:(0.2-1.5):(0.1-1):(1*10-6-0.01)。
进一步地,所述水溶性铝盐为硝酸铝、氯化铝、硫酸铝中的一种或多种,有机燃料为尿素、甘氨酸、柠檬酸的一种或多种,水溶性有机物为可溶性淀粉、柠檬酸、蔗糖、麦芽糖、葡萄糖中的一种或多种,金属硝酸盐为硝酸镁、硝酸镧、硝酸锰、硝酸钇、硝酸钙的一种或多种。
进一步地,步骤b中所述加热温度为200-600℃,燃烧所得Al2O3和C的混合物的含碳量在4.0-7.0wt%。
进一步地,步骤c中所述加热温度为1200-1700℃,保温0.1-10h,烧制所得Al2O3和AlN的混合粉体,粒径在0.1-10μm之间,可直接干压成型。
进一步地,步骤d中所述的除碳温度为500-900℃,保温0.1-10小时。
进一步地,步骤e中所述的粉体干压压力为5-70MPa,保压1-30min。
进一步地,步骤f中所述的烧结温度为1700-1950℃,加压10-60MPa,保温1-20h。
进一步地,步骤g中所述的除碳温度为700-1300℃,保温时间0.1-10小时。
进一步地,步骤g中所述的烧结后的陶瓷透光率可达83%,晶粒尺寸在100-250μm之间,维氏硬度高达17.5GPa。
本发明的技术有以下的优势:
(1)通过溶液燃烧合成制备碳含量可控的前驱体,在配制的溶液中提前加入金属硝酸盐,制得的前驱体低温氮化后得到Al2O3和AlN的混合粉体,该粉体通过热压烧结快速制备AlON透明陶瓷。
(2)在配制溶液的过程加入添加剂,可使添加剂在前驱体均匀分布;
(3)较常规的混粉、干燥工艺,燃烧合成法可实现前驱体的快速制备,极大的提高了生产效率;
(4)燃烧合成法生产的前驱体可实现Al2O3和C的均匀混合,且接触紧密,粉体粒径小,极大的提高了粉体活性,可在低温下实现快速氮化;
(5)燃烧合成具有自放热的优点,释放的热量可以维持反应。且反应时间短,效率高,可迅速释放出大量的气体,因此获得的粉体比表面积大、反应活性高。
(6)烧制后所得的Al2O3和AlN混合粉体粒径小,有利于后期的烧结致密化;
(7)提前加入的添加剂在Al2O3和AlN混合粉体中均匀分布,在热压烧结过程中,可实现快速致密化,极大的提高AlON透明陶瓷的制备效率。
(8)烧结后的陶瓷透光率可达83%,晶粒尺寸在100-250μm之间,维氏硬度高达17.5GPa
综上所述,本发明提供的一种制备高纯AlON陶瓷粉体及其热压烧结的方法,工艺简单,成本较低,更加适于实用,且具有产业上的利用价值。其具有上述诸多的优点及实用价值,并在同类制备方法中未见有类似的设计公开发表或使用而确属创新,其在制备方法上或功能上皆有较大的改进,在技术上有较大的进步,诚为一新颖、进步、实用的新设计。
附图说明
图1本发明实例1前驱体氮化后的XRD图谱,
图2本发明实例1制备AlON粉体的TEM图谱,
图3本发明实例1制备AlON块体的XRD图谱。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合较佳实施例,对依据本发明提出的一种制备高纯AlON陶瓷粉体及其热压烧结的方法其具体实施方式、步骤、特征详细说明如后。
实施例1
称取硝酸铝1mol,葡萄糖0.55mol,尿素0.9mol,硝酸钇0.4mmol,硝酸镧0.1mmol,随后加入适量去离子水并搅拌溶解。将混合溶液加热,并不断搅拌,在加热过程中放出大量气体,凝胶不断膨胀发生燃烧反应,燃烧后得到Al2O3和C的混合物,将得到的Al2O3和C的混合物粉碎并过200目筛网,将过筛后的前驱体在1500℃下通氮气保温30min得到Al2O3和AlN的混合产物。将烧制得到的粉体在空气中900℃下除碳2小时。在圆柱形的石墨模具里垫入碳纸,并喷上氮化硼,随后将除碳后的粉体倒入石墨模具中,并在30MPa的压力下保压5min。将压好的石墨模具放入真空热压炉中,在1900℃氮气氛围下,加压45MPa,保温10小时。烧制后的陶瓷可在空气中900℃,保温2小时来除去残留的碳。得到的陶瓷透光率83%,平均晶粒尺寸为200μm,维氏硬度17.5GPa的AlON透明陶瓷。
实施例2
称取硝酸铝1mol,葡萄糖0.42mol,尿素1.1mol,硝酸钙0.6mmol,硝酸镧0.1mmol,随后加入适量去离子水并搅拌溶解。将混合溶液加热,并不断搅拌,在加热过程中放出大量气体,凝胶不断膨胀发生燃烧反应,燃烧后得到Al2O3和C的混合物。将得到的Al2O3和C的混合物粉碎并过200目筛网,将过筛后的前驱体在1450℃下通氮气保温1小时得到Al2O3和AlN的混合产物,将烧制得到的粉体在空气中850℃下除碳3小时。在圆柱形的石墨模具里垫入碳纸,并喷上氮化硼,随后将除碳后的粉体倒入石墨模具中,并在30MPa的压力下保压5min。将压好的石墨模具放入真空热压炉中,在1880℃氮气氛围下,加压50MPa,保温5小时。烧制后的陶瓷可在空气中1000℃,保温2小时来除去残留的碳。得到的陶瓷透光率81%,平均晶粒尺寸为180μm,维氏硬度16.9GPa的AlON透明陶瓷。
实施例3
称取硫酸铝1mol,葡萄糖0.38mol,尿素1.35mol,硝酸镁0.8mmol,硝酸钇0.3mmol,随后加入适量去离子水并搅拌溶解。将混合溶液加热,并不断搅拌,在加热过程中放出大量气体,凝胶不断膨胀发生燃烧反应,燃烧后得到Al2O3和C的混合物。将得到的Al2O3和C的混合物粉碎并过200目筛网,将过筛后的前驱体在1400℃下通氮气保温2小时得到Al2O3和AlN的混合产物,将烧制得到的粉体在空气中900℃下除碳5小时。将除碳后的粉体倒入圆柱形的石墨模具中,并在30MPa的压力下保压5min。在圆柱形的石墨模具里垫入碳纸,并喷上氮化硼,随后将除碳后的粉体倒入石墨模具中,并在20MPa的压力下保压5min。将压好的石墨模具放入真空热压炉中,在1900℃氮气氛围下,加压40MPa,保温15小时。烧制后的陶瓷可在空气中900℃,保温2小时来除去残留的碳。得到的陶瓷透光率82%,平均晶粒尺寸为220μm,维氏硬度17.1GPa的AlON透明陶瓷。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容做出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (7)
1.一种制备高纯AlON陶瓷粉体热压烧结的方法,其特征在于,通过溶液燃烧合成制备碳含量可控的前驱体,粉体烧制后通过热压烧结快速制备AlON透明陶瓷,具体步骤如下:
a. 称取水溶性铝盐、有机燃料、水溶性有机物以及金属硝酸盐,随后倒入适量去离子水,搅拌使化合物完全溶解;所述水溶性铝盐、有机燃料、水溶性有机物以及金属硝酸盐的物质的量比为1:(0.2-1.5):(0.1-1):(1*10-6-0.01);
b. 将步骤a中的混合溶液加热,并不断搅拌至粘稠浆料,随后停止搅拌,继续加热过程中凝胶受热并不断膨胀,放出大量气体,燃烧反应后得到主要成分为Al2O3和C的前驱体;所述加热温度为200-600℃,燃烧所得Al2O3和C的混合物的含碳量在4.0-7.0 wt%;
c. 将步骤b中得到前驱体在石墨炉中,氮气氛围下氮化;
d. 将步骤c中得到氮化后的粉体在空气中除碳;
e. 将步骤d中除碳后的粉体倒入石墨模具中并压制;
f. 将步骤e中的石墨模具放入真空热压炉中,在惰性气氛下进行加压烧结;
g. 将步骤f中烧制后的陶瓷在空气中煅烧来除去残余碳;
步骤g中所述的烧结后的陶瓷透光率可达83%,晶粒尺寸在100-250μm之间,维氏硬度高达17.5 GPa。
2.根据权利要求1所述的一种制备高纯AlON陶瓷粉体热压烧结的方法,其特征在于:所述水溶性铝盐为硝酸铝、氯化铝、硫酸铝中的一种或多种,有机燃料为尿素、甘氨酸、柠檬酸的一种或多种,水溶性有机物为可溶性淀粉、柠檬酸、蔗糖、麦芽糖、葡萄糖中的一种或多种,金属硝酸盐为硝酸镁、硝酸镧、硝酸锰、硝酸钇、硝酸钙的一种或多种。
3.根据权利要求1所述的一种制备高纯AlON陶瓷粉体热压烧结的方法,其特征在于:步骤c中所述氮化时温度为1200-1700℃,保温0.1-10h,烧制所得Al2O3和AlN的混合粉体,粒径在0.1-10μm之间,可直接干压成型。
4.根据权利要求1所述的一种制备高纯AlON陶瓷粉体热压烧结的方法,其特征在于:步骤d中所述的除碳温度为500-900℃,保温0.1-10小时。
5.根据权利要求1所述的一种制备高纯AlON陶瓷粉体热压烧结的方法,其特征在于:步骤e中所述的粉体干压压力为5-70 MPa,保压1-30 min。
6.根据权利要求1所述的一种制备高纯AlON陶瓷粉体热压烧结的方法,其特征在于:步骤f中所述的烧结温度为1700-1950℃,加压10-60MPa,保温1-20h。
7.根据权利要求1所述的一种制备高纯AlON陶瓷粉体热压烧结的方法,其特征在于:步骤g中所述的除碳温度为700-1300℃,保温时间0.1-10小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110463362.4A CN113024261B (zh) | 2021-04-23 | 2021-04-23 | 一种制备高纯AlON陶瓷粉体及其热压烧结的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110463362.4A CN113024261B (zh) | 2021-04-23 | 2021-04-23 | 一种制备高纯AlON陶瓷粉体及其热压烧结的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113024261A CN113024261A (zh) | 2021-06-25 |
CN113024261B true CN113024261B (zh) | 2022-05-31 |
Family
ID=76454869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110463362.4A Active CN113024261B (zh) | 2021-04-23 | 2021-04-23 | 一种制备高纯AlON陶瓷粉体及其热压烧结的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113024261B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0241514A1 (en) * | 1985-09-20 | 1987-10-21 | Ceramatec, Inc. | Dense ceramics containing a solid solution and method for making the same |
US4719187A (en) * | 1985-10-10 | 1988-01-12 | Corning Glass Works | Dense sintered bodies of nitride materials |
CN101531520A (zh) * | 2009-04-10 | 2009-09-16 | 武汉理工大学 | 一种基于碳热还原氮化制备γ-AlON陶瓷粉末的方法 |
CN101698610A (zh) * | 2009-11-04 | 2010-04-28 | 中国科学院上海硅酸盐研究所 | 高纯β-Sialon陶瓷粉体的制备方法 |
CN101928145A (zh) * | 2010-06-01 | 2010-12-29 | 上海玻璃钢研究院有限公司 | 一种超细、高纯γ-AlON透明陶瓷粉末的制备方法 |
CN103755350A (zh) * | 2014-01-24 | 2014-04-30 | 大连海事大学 | 一种γ-AlON透明陶瓷粉体的制备方法 |
CN110511036A (zh) * | 2019-07-25 | 2019-11-29 | 东莞材料基因高等理工研究院 | 一种亚微米级氮氧化铝陶瓷粉体及其制备方法 |
-
2021
- 2021-04-23 CN CN202110463362.4A patent/CN113024261B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0241514A1 (en) * | 1985-09-20 | 1987-10-21 | Ceramatec, Inc. | Dense ceramics containing a solid solution and method for making the same |
US4719187A (en) * | 1985-10-10 | 1988-01-12 | Corning Glass Works | Dense sintered bodies of nitride materials |
CN101531520A (zh) * | 2009-04-10 | 2009-09-16 | 武汉理工大学 | 一种基于碳热还原氮化制备γ-AlON陶瓷粉末的方法 |
CN101698610A (zh) * | 2009-11-04 | 2010-04-28 | 中国科学院上海硅酸盐研究所 | 高纯β-Sialon陶瓷粉体的制备方法 |
CN101928145A (zh) * | 2010-06-01 | 2010-12-29 | 上海玻璃钢研究院有限公司 | 一种超细、高纯γ-AlON透明陶瓷粉末的制备方法 |
CN103755350A (zh) * | 2014-01-24 | 2014-04-30 | 大连海事大学 | 一种γ-AlON透明陶瓷粉体的制备方法 |
CN110511036A (zh) * | 2019-07-25 | 2019-11-29 | 东莞材料基因高等理工研究院 | 一种亚微米级氮氧化铝陶瓷粉体及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113024261A (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113185301B (zh) | 一种AlON透明陶瓷的快速制备方法 | |
CN105541341A (zh) | 一种添加复合助剂制备高致密度氮化硅陶瓷的方法 | |
CN114538931B (zh) | 一种高性能AlON透明陶瓷及其低温快速制备方法 | |
CN102276260B (zh) | 常压低温烧结β-氮化硅陶瓷的方法 | |
CN114455952B (zh) | 一种AlON粉体及其直接氮化法高气压合成方法和应用 | |
CN105778903B (zh) | 一种制备硅铝基氮化物或氮氧化物荧光粉体的方法 | |
CN112250442B (zh) | 一种高强韧无粘结相纳米晶硬质合金的制备方法 | |
CN107867863B (zh) | 氮氧化铝陶瓷粉体及其制备方法 | |
CN115321971A (zh) | 一种利用粉煤灰制备堇青石陶瓷的方法 | |
CN104045349A (zh) | 一种纳米氧化铝增强氮氧化铝陶瓷及其制备方法 | |
CN113024261B (zh) | 一种制备高纯AlON陶瓷粉体及其热压烧结的方法 | |
CN115838290A (zh) | 一种无压液相烧结碳化硅陶瓷及其制备方法 | |
CN111115592A (zh) | 一种纳米氮化硅粉体的制备方法 | |
CN109400176A (zh) | 一种高性能氮化硅陶瓷及其制备方法和应用 | |
CN113135759B (zh) | 一种溶液燃烧合成法制备高纯高透光性的AlON陶瓷的方法 | |
CN109053192B (zh) | 一种MgAlON透明陶瓷粉体的制备方法 | |
CN115196969B (zh) | 一种高红外透过率MgAlON透明陶瓷的固相反应快速无压烧结方法 | |
CN114538913B (zh) | 一种高烧结活性纯相纳米MgAl2O4粉体及其制备方法和应用 | |
CN113788677B (zh) | 一种倍半稀土硫化物高熵陶瓷材料及其制备方法和应用 | |
CN112500182B (zh) | 一种原位合成莫来石晶须陶瓷材料的制备方法 | |
CN113526947A (zh) | 利用圭亚那矾土制备高纯均质矾土熟料的方法及其产品 | |
CN1422827A (zh) | 一种氮化物/氧化铝基复合陶瓷材料及其制备工艺 | |
CN113788466B (zh) | 一种θ/α复相纳米Al2O3碳热还原氮化制备纯相γ-AlON粉体的方法 | |
CN100400468C (zh) | α-塞隆复合陶瓷材料及其制备方法 | |
US6197247B1 (en) | Molybdenum disilicide composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |