CN112980875B - SlCXE11基因在调控番茄叶型上的应用 - Google Patents

SlCXE11基因在调控番茄叶型上的应用 Download PDF

Info

Publication number
CN112980875B
CN112980875B CN202110165858.3A CN202110165858A CN112980875B CN 112980875 B CN112980875 B CN 112980875B CN 202110165858 A CN202110165858 A CN 202110165858A CN 112980875 B CN112980875 B CN 112980875B
Authority
CN
China
Prior art keywords
slcxe11
gene
tomato
seq
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110165858.3A
Other languages
English (en)
Other versions
CN112980875A (zh
Inventor
郑伟
王涛涛
叶志彪
孙文慧
罗丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Chuwei Biotechnology Co ltd
Original Assignee
Wuhan Chuwei Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Chuwei Biotechnology Co ltd filed Critical Wuhan Chuwei Biotechnology Co ltd
Priority to CN202110165858.3A priority Critical patent/CN112980875B/zh
Publication of CN112980875A publication Critical patent/CN112980875A/zh
Application granted granted Critical
Publication of CN112980875B publication Critical patent/CN112980875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01001Carboxylesterase (3.1.1.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及SlCXE11基因在调控番茄叶型上的应用。本发明利用反向遗传技术构造了SlCXE11基因重组表达载体,使目的基因产生被共抑制,使其表达量下降,进而使番茄叶片的叶缘缺刻减少,为后续研究打下基础。

Description

SlCXE11基因在调控番茄叶型上的应用
技术领域
本发明属于植物基因工程领域,具体涉及SlCXE11基因在调控番茄叶型上的应用。
背景技术
植物的叶片不仅是光合作用的重要场所,也是植物感受光、温、水等环境变化的重要器官。叶缘缺刻是植物对环境的一种适应性表现,调节着叶面温度和水分流失,影响叶对光的捕获和对强风等恶劣环境的抵御,在生产上有重要作用(Kidner and Umbreen,2010;Vogel,2009)。叶缘缺刻对干旱、高温等逆境胁迫表现出较强的适应性,例如叶缘分布的深裂比无裂刻的叶可减少热传递的距离,能更有效的通过对流散热,抵御高温对也叶面的灼伤(Vogel,2009)。叶片形态的改变,能调整叶片的透光性,从而改变植株的光合效率,进一步影响植物的产量及其他农艺性状(Semchenko and Zobel,2007)。
叶边缘形态建成是叶缘基经过特定部位产生小叶、裂刻等精细修饰的过程(Dengler et al.,2001)。关于叶边缘的发育调控机制,在拟南芥、烟草、番茄、碎米荠、豌豆等模式植物中已有大量研究报道,相关机制很复杂,由基因、激素、非编码microRNA等协同作用,很多基因已经被克隆、鉴定。其中,主要有KNOX家族(Hay and Tsiantis,2010)、TCP类、SPL类、JAG类等转录因子以及miR164、miR319、miR156等小RNA(Daniel H.et al.,2014;Palatnik et al.,2003;Rubio-Somoza et al.,2014)。细胞分裂素(Cytokinin,CK)、生长素(Auxin)、赤霉素(Gibberellin,GA)在植物叶片发育中也发挥重要作用,这3个激素可以通过各自独立的、激素与激素、激素与转录因子间的相互作用调控叶缘裂刻和复叶发育(Bilsborough et al.,2011;Fleishon et al.,2011;Shani et al.,2010)。
羧酸酯酶(carboxylesterase,CXE)是一类广泛存在于动植物及微生物中具有α是一折叠结构域的水解酶,可催化酯类和酰胺类化合物的水解(Marshall et al.,2003)。植物的CXE是一个超基因家族,在已报道的植物CXE研究中,其家族成员受乙烯、病菌等因素的诱导,在除草剂活性物质激活、植物激素信号物质代谢以及生物胁迫等过程中发挥重要的生物学功能(Hatfield et al.,2016)。然而,植物中CXE家族成员众多且在不同植物组织中表达水平不同,表明不同的CXE在植物组织中的生物学功能不尽相同(Nomura-T et al.,2015,Abdel-Daim et al.,2017)。迄今为止,未有植物CXE家族成员在调控植物株型或植物叶片方面的相关报道及应用。
反向遗传学技术是随着分子生物学技术发展而建立起来的一门技术,包括RNA干扰技术、基因沉默技术、基因体外转录技术等,是DNA重组技术应用范围的扩展与延伸。在植物育种方面亦可以快速鉴别基因功能,为后续基因改造提供基础。共抑制(cosuppression)现象最早是在1990年,Napoli和Van der Krol等在研究矮牵牛花查尔酮基因时发现的,是指在植物基因工程研究中,有时外源转化基因和植物中同源的内源基因的表达均被抑制了的现象。共抑制产生不仅同内、外源基因间编码区的同源性有关,同时具有基因的剂量依赖性。
因此,基于调控植物功能性基因发生共抑制现象的复杂性,对于某个特定性状采用何种手段才能通过共抑制实现反向调控仍是未知数。
发明内容
为解决上述至少一种技术问题,本发明提供SlCXE11基因在调控番茄叶型上的应用。
具体技术方案如下:
SlCXE11基因在调控番茄叶型上的应用。
与现有技术相比,本发明利用反向遗传技术确认了SlCXE11基因调控在番茄叶型中的作用,为后续对番茄叶型的改造打下理论基础。
进一步,所述SlCXE11基因调控番茄的叶片的叶缘,其序列如SEQ ID NO.1所示。
采取上述进一步技术方案的有益效果在于:利用SlCXE11基因可以调节番茄叶片的叶缘缺刻,使番茄能更好的适应环境。
SlCXE11基因重组表达载体,其不同之处在于,所述SlCXE11基因重组表达载体包括所述SlCXE11基因的ORF的核苷酸序列及含35S启动子的骨架载体,所述SlCXE11基因的ORF的核苷酸序列序列如SEQ ID NO.8所示。
与现有技术相比,本发明的有益效果相比,提供了SlCXE11基因重组表达载体,使目的基因产生被共抑制,使其表达量下降,进而使番茄叶片的叶缘缺刻减少,为后续研究打下基础。
进一步,所述骨架载体为pHellsgate8载体。
一种构建上述SlCXE11基因重组表达载体的方法,其不同之处在于,包括以下步骤:
步骤S1:用扩增引物以番茄cDNA为模板进行扩增,得到连接片段;
步骤S2:将所述连接片段与线性化的骨架载体连接后转入大肠杆菌,经过抽提质粒后得到所述重组载体;
其中,所述扩增引物的上游引物包括XhoI酶切位点,下游引物包括XbaI酶切位点。
进一步,所述扩增引物的序列如SEQ ID NO.2~SEQ ID NO.3所示。
与现有技术相比,本发明的有益效果在于:通过上述方法可构建以35S驱动的SlCXE11基因重组表达载体。
一种利用反向遗传法研究SlCXE11基因的方法,其不同之处在于,所述利用反向遗传法研究SlCXE11基因的方法包括以下步骤:
步骤A1:构建35S驱动的SlCXE11基因重组表达载体;
步骤A2:将步骤A1所述的载体转入农杆菌后浸染外植体,经筛选培养后得到转基因幼苗;
步骤A3:将所述转基因幼苗种植进行田间表型观察,并测试SlCXE11基因的表达情况。
进一步,所述步骤A3中,采用qPCR方法以Q-actin作为内参检测SlCXE11基因的表达情况,具体操作如下:
将转基因番茄的cDNA作qPCR反应的模板利用引物扩增,qPCR所用正向引物如SEQID NO.4所示,反向引物为SEQ ID NO.5所示;
以Q-actin作为内参进行相对定量,正向引物SEQ ID NO.6所示,反向引物为SEQID NO.7所示;
定量分析扩增产物。
与现有技术相比,本发明的有益效果在于:采用反向遗传法,往番茄植株转入SlCXE11基因重组表达载体,确认SlCXE11基因在调控番茄叶型中的应用,为后续SlCXE11基因的改造打下理论基础。
一种上述SlCXE11基因重组表达载体的生物材料。
进一步,所述生物材料包括:
包括所述SlCXE11基因重组表达载体的重组微生物;
包括所述SlCXE11基因重组表达载体的转基因植物细胞系;
包括所述SlCXE11基因重组表达载体的转基因植物组织;
包括所述SlCXE11基因重组表达载体的转基因植物器官。
进一步,所述植物为番茄。
附图说明
图1为重组载体琼脂糖凝胶进行条带检测结果图;
图2为载体构建流程图;
图3为转基因植株PCR检测图;
图4为转基因株系的表型观察结果图;
图5为SlCXE11基因的表达情况检测图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例中,涉及番茄种质来源记载在Lin,T.,Zhu,G.,Zhang,J.et al.(2014).Genomic analyses provide insights into the history of tomato breeding.NatGenet 46,1220–1226中,具体如下:
实施例1 SlCXE11基因的表达
Figure BDA0002937837180000051
1.35S驱动的SlCXE11表达载体的构建
使用Primer 5软件设计SlCXE11基因全长引物,序列如SEQ ID NO.1所示,将设计好的引物通过NCBI(https://www.ncbi.nlm.nih.gov/)网站进行BLAST,确保所设计引物的特异性,然后在设计好的引物前直接加上XhoI和XbaI酶切位点的同源重组臂:正向引物为p35S::SlCXE11-Fw:
5'CATTTGGAGAGGACACGCTCGAGGGTGTTTTCATCATTTTAGC 3',见SEQ ID NO.2;反向引物为p35S::SlCXE11-Rv:5'TCTCATTAAAGCAGGACTCTAGAAATCCCAGGTATCGTTCG 3',见SEQ IDNO.3。设计好的引物以番茄TS91(中国农业科学院农业基因组研究所黄三文提供)的cDNA为模板,使用Phanta酶扩增体系在PCR仪反应获得目的基因。Phanta酶扩增体系及PCR程序分别见表1和表2。扩增所得产物经1%琼脂糖凝胶检测,割取1500bp左右的DNA片段,用回收试剂盒(OMEGA,具体步骤见说明书)进行纯化,测定回收产物浓度,目的基因片段准备完毕。
表1 Phanta酶扩增体系
Figure BDA0002937837180000061
表2 PCR反应程序
Figure BDA0002937837180000062
用XhoI和XbaI双酶切pHellsgate8(市售)载体,酶切体系为:50μL体系,包括XbaI1μL,XhoI 1μL,10×CutSmart 5μL,pHellsgate8载体10μL,ddH2O 33μL,反应条件37℃3h。酶切结束后经1.0%琼脂糖胶检测,回收pHellsgate8载体骨架大片段。将回收的目的基因片段与pHellsgate8的载体大片段使用同源重组酶进行同源重组,37℃连接30min。
连接产物按照标准热激方法热激转入大肠杆菌DH5α,50mg/L Spec抗性的LB平板上筛选单克隆37℃培养10h,挑取单克隆加入含有50mg/L Spec抗性LB液体培养基在37℃,200r/min,复苏3-5h。以菌液为模板,用35S的正向引物(引物序列为:5'TTCGCAAGACCCTTCCTCTA3')和基因的反向引物p35S::SlCXE11-Rv通过PCR检测单克隆阳性。使用1%的琼脂糖凝胶进行条带检测,检测结果见图1,图1中M泳道代表Marker,泳道1~6为测试样品,结果显示,检测的菌液样品中,测试样品出现大小为1000bp~1500bp标志性条带。选取条带大小正确的3个菌液进行测序。测序结果正确的菌液使用50mg/L Spec抗性LB液体培养基摇菌,抽提质粒。载体构建流程见图2。
对获得的重组质粒利用电转化仪在1800V的电压下转化农杆菌GV3101,用含Spec50mg/L,Rif 100mg/L的LB固体平板筛选2-3d,挑取单克隆,28℃、150r/min振荡培养12-18h,取1μL菌液作为模板,用35S和p35S::SlCXE11-Rv引物进行PCR检测,通过1%琼脂糖凝胶检测确认为阳性后,加入50%甘油保存于-80℃的冰箱里,用于下一步的遗传转化。
2.农杆菌介导的遗传转化
种子消毒:成熟的TS100种子(中国农业科学院农业基因组研究所黄三文提供)首先用水浸泡几小时,然后用50%的84消毒液消毒15min(可置于摇床),再用75%的酒精消毒1min(不能超过一分钟,否则影响种子发芽率),最后再用灭菌的蒸馏水洗两遍。接种于1/2MS(pH=5.8)培养基中,放置于恒温25℃,光照强度为1800lx,16h光/8h暗的光周期条件下进行培养6-8d。
外植体的制备:番茄遗传转化所用的外植体为刚刚展开的子叶。切取无菌苗的子叶,放置于KCMS培养基上暗培养1d(放置于培养间中)。
与农杆菌共培养:收集农杆菌菌体,用农杆菌悬浮液侵染外植体4min。然后再将外植体放回到KC培养基上,黑暗中共培养2d。注意:农杆菌悬浮液的OD600调到0.5左右;放回到KC培养基之前将多余的农杆菌悬浮液用灭菌滤纸吸干。
筛选:将子叶转移到筛选培养基中诱导其分化,两周后继代一次。待有绿芽的愈伤组织形成以后将其转移至筛选培养基中继续培养,两周后继代一次。
生根:从筛选培养基中选择带有生长点的芽,切掉愈伤组织,插入到生根培养基中,诱导其生根。
生根后的转基因幼苗先转移到栽培基质中放置于绿化间中培养两周,最后再将其栽培到温室中,上述培养基的具体配方见表3所示。
表3番茄遗传转化培养基配方
Figure BDA0002937837180000081
注:以上培养基中除农杆悬浮液外均含有琼脂7.4g/L,补充蒸馏水至1L,调培养基的pH至5.8。按照常规方法灭菌。
3.SlCXE11转基因植株的表达量分析及转基因植株的表型分析
通过农杆菌介导的遗传转化法,最终得到了T0代转基因植株19株。对获得的转基因株系用引物35S和p35S::SlCXE11-Rv进行PCR阳性检测后证明表达载体已导入番茄基因组中,检测结果见图3,图3中M泳道代表Marker,泳道1~21为测试样品,结果显示,检测的植株样品中,若为阳性转基因株系,出现大小为1000bp~1500bp标志性条带。观察田间表型发现,阳性转基因番茄植株小叶明显变小,且叶缘缺刻减少或消失,新叶不能正常舒展,卷曲严重,对转基因株系的表型观察结果见图4,图中,p35S::SICXE11-10-4-CS,p35S::SICXE11-8-1-CS,p35S::SICXE11-8-7-CS,p35S::SICXE11-18-1-CS均为转基因植株,WT为未经处理的野生植株。
为了分析转基因植株中SlCXE11的表达情况采用qPCR方法进行检测。qPCR所用引物是按照SlCXE11基因的序列号Solyc03g005100,通过The qPrimerDB database(https://biodb.swu.edu.cn/qprimerdb/)查找的qPCR引物:
Q-SlCXE11-Fw:5'TGTATAACGAACGATACCTGGG 3',见SEQ ID NO.4;Q-SlCXE11-Rv:5'AGGAGAGGAACATCGTCAATAC 3',见SEQ ID NO.5。
以Q-actin作为内参进行相对定量,引物为:Q-actin-Fw:5'GTCCTCTTCCAGCCATCCAT 3',见SEQ ID NO.6;Q-actin-Rv:5'ACCACTGAGCACAATGTTACCG 3',见SEQ ID NO.7。提取RNA方法参照Invitrogen公司TRIzol试剂盒使用说明书。使用试剂盒进行反转录,将得到cDNA浓度调整为80-100ng/使用作qPCR反应的模板。按照SYBR GreenPCR master体系配置反应液。qPCR的分析利用罗氏荧光定量PCR仪LightCycler 480Real-time PCR测定其相对表达量。反应程序为预变性在95℃5min,95℃变性5s,58℃复性15s,72℃延伸20s,循环次数40。反应产物由LightCycler 480Real-time PCR检测系统进行定量分析。
利用qPCR检测了部分转基因植株中SlCXE11基因的表达情况,结果如图5所示,表明与对照材料(WT)相比,转基因株系p35S::SICXE11-10-4-CS,p35S::SICXE11-8-1-CS,p35S::SICXE11-8-7-CS及p35S::SICXE11-18-1-CS中目的基因表达量显著低于对照,表明该基因表达被共抑制,即抑制SlCXE11的表达能影响番茄叶片形态。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 武汉楚为生物科技有限公司
<120> SlCXE11基因在调控番茄叶型上的应用
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1853
<212> DNA
<213> 番茄(tomato)
<400> 1
atcattgggg gaaaagaaaa agaaaaactt agaacagaaa aagaaattaa aaattggatc 60
tttttctcca attgaatcaa gaaatctcta atacctttcc cttaatcaca atccatcttc 120
ttaatcctta aaccctaaac tatctcttca tttcaatgta atacaatggt gttttcatca 180
ttttagctat acaaatttgc ttctttcttg atttttggtg tgtttttgaa gggaaatgcc 240
aagcgtggct gtgaaattat acagtgtttt cttcaaattt atgttaaagc atcggttgca 300
gaaccgaatt caaatcgatg acaccataaa tgggtcacag cattttggtg taacatctcg 360
acccaatgaa gaatccattg ctgcttccaa tcctttattc actgatggtg ttgcaaccaa 420
agatttacat atagatccag ggacttctgt ttctattagg atctttctcc ctgaaacttg 480
tttgggttct catgaatctg atctgaaatc gaaatcgagg attagggtgt ctggatctga 540
ctcgaatcag gggcttttac gtcgaaatag ctatgggaat cagacacatg ttcagaagaa 600
tgggtttaat cataggagaa gtagtcttgg ttctgttgct gatgagctta gtttgaaatc 660
tgaaaatggg gtttatagag ggtattctcc tgttactgga aaaaaatgta ggaagttgcc 720
ggtaatgttg caatttcatg gtggggggtt tgtgagtgga agtaatgatt caactgcgaa 780
tgatttgttt tgtagaagga tagctaagct ctgtgatgtt attgttttag ctgttggata 840
caggttagca cctgaggatc ggtatccagc tgcatttgag gatggattga aggtgctgca 900
ttggctggcg aaacaggtta atttagctga atgtagtaag tcggttggga gcagacgtgg 960
tggagggacg gatttgaaga aatctgatac gtatgggcat atagctgatg cgtttggagc 1020
atcgttggtg gagccttggt tggctgctca tggggatcca tcaaggtgtg ttctcctagg 1080
agtgagttgt ggggggaata tagctgatta tgtggctcgg aaagctgtag aggcaggtaa 1140
gcttttggat ccagtgaaag tggtggcgca ggttttgatg tatccttttt tcattggaag 1200
tgttccaaca ccttcggaga ttaagctagc aaattcgtat ttctatgaca agaccttgtg 1260
tactcttgcg tggaagttat ttttacctga aggggagttt gacttggatc atgctgctgc 1320
taaccctctg acccctggaa gaggacctcc gctaaaacgg atgcccccaa cattgacagt 1380
gatagcagag catgactgga tgagagaccg tgcgattgct tattcagagg agctacggaa 1440
ggtaaacgtt gatgctcctg ttctggagta caaggatgca gttcatgagt ttgcaactct 1500
tgacatgctt cttaagaccc ctcaagctca ggcttgtgct gaggacattg ccatctgggt 1560
taagaagtat atttcgcttc gaggtcatga gttctcctat tgaatgaacc acatagattg 1620
gttggtcctg tatagcagca tgtataacga acgatacctg ggatttgaag ttctggctct 1680
gaaatttcag gcctattctt ttttcctctt gtgtaatata gatgactttg ccggaaaata 1740
gaaattagtt ataacgagtt taaatttgat atccttgttg tattgacgat gttcctctcc 1800
tctttatttt tcttcttctt ccagacaact atgtgcacaa gaaattttct gtc 1853
<210> 2
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
catttggaga ggacacgctc gagggtgttt tcatcatttt agc 43
<210> 3
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tctcattaaa gcaggactct agaaatccca ggtatcgttc g 41
<210> 4
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
tgtataacga acgatacctg gg 22
<210> 5
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
aggagaggaa catcgtcaat ac 22
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gtcctcttcc agccatccat 20
<210> 7
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
accactgagc acaatgttac cg 22
<210> 8
<211> 1368
<212> DNA
<213> 番茄(Tomato)
<400> 8
atgccaagcg tggctgtgaa attatacagt gttttcttca aatttatgtt aaagcatcgg 60
ttgcagaacc gaattcaaat cgatgacacc ataaatgggt cacagcattt tggtgtaaca 120
tctcgaccca atgaagaatc cattgctgct tccaatcctt tattcactga tggtgttgca 180
accaaagatt tacatataga tccagggact tctgtttcta ttaggatctt tctccctgaa 240
acttgtttgg gttctcatga atctgatctg aaatcgaaat cgaggattag ggtgtctgga 300
tctgactcga atcaggggct tttacgtcga aatagctatg ggaatcagac acatgttcag 360
aagaatgggt ttaatcatag gagaagtagt cttggttctg ttgctgatga gcttagtttg 420
aaatctgaaa atggggttta tagagggtat tctcctgtta ctggaaaaaa atgtaggaag 480
ttgccggtaa tgttgcaatt tcatggtggg gggtttgtga gtggaagtaa tgattcaact 540
gcgaatgatt tgttttgtag aaggatagct aagctctgtg atgttattgt tttagctgtt 600
ggatacaggt tagcacctga ggatcggtat ccagctgcat ttgaggatgg attgaaggtg 660
ctgcattggc tggcgaaaca ggttaattta gctgaatgta gtaagtcggt tgggagcaga 720
cgtggtggag ggacggattt gaagaaatct gatacgtatg ggcatatagc tgatgcgttt 780
ggagcatcgt tggtggagcc ttggttggct gctcatgggg atccatcaag gtgtgttctc 840
ctaggagtga gttgtggggg gaatatagct gattatgtgg ctcggaaagc tgtagaggca 900
ggtaagcttt tggatccagt gaaagtggtg gcgcaggttt tgatgtatcc ttttttcatt 960
ggaagtgttc caacaccttc ggagattaag ctagcaaatt cgtatttcta tgacaagacc 1020
ttgtgtactc ttgcgtggaa gttattttta cctgaagggg agtttgactt ggatcatgct 1080
gctgctaacc ctctgacccc tggaagagga cctccgctaa aacggatgcc cccaacattg 1140
acagtgatag cagagcatga ctggatgaga gaccgtgcga ttgcttattc agaggagcta 1200
cggaaggtaa acgttgatgc tcctgttctg gagtacaagg atgcagttca tgagtttgca 1260
actcttgaca tgcttcttaa gacccctcaa gctcaggctt gtgctgagga cattgccatc 1320
tgggttaaga agtatatttc gcttcgaggt catgagttct cctattga 1368

Claims (6)

1.SlCXE11基因在调控番茄叶型上的应用,其特征在于,所述SlCXE11基因调控番茄的叶片的叶缘,其序列如SEQ ID NO.1所示。
2.根据权利要求1所述的应用,其特征在于,通过构建SlCXE11基因重组表达载体,转入农杆菌,侵染番茄外植体,培养,获得转基因番茄,所述SlCXE11基因表达载体包括所述SlCXE11基因的ORF的核苷酸序列及含35S启动子的骨架载体,所述SlCXE11基因的ORF的核苷酸序列如SEQ ID NO.8所示。
3.根据权利要求2所述的应用,其特征在于,所述骨架载体为pHellsgate8载体。
4.根据权利要求2所述的应用,其特征在于,所述SlCXE11基因重组表达载体构建的方法,包括以下步骤:
步骤S1:用扩增引物以番茄cDNA为模板进行扩增,得到连接片段;
步骤S2:将所述连接片段与线性化的骨架载体连接后转入大肠杆菌,经过抽提质粒后得到所述SlCXE11基因重组表达载体。
5.根据权利要求4所述的应用,其特征在于,所述扩增引物的序列如SEQ ID NO.2~SEQID NO.3所示。
6.根据权利要求2所述的应用,其特征在于,还包括采用qPCR方法以Q-actin作为内参进行SlCXE11基因的相对定量的步骤:将转基因番茄的cDNA作qPCR反应的模板利用引物扩增,qPCR所用正向引物如SEQ ID NO.4所示,反向引物为SEQ ID NO.5所示;Q-actin扩增的正向引物SEQ ID NO.6所示,反向引物为SEQ ID NO.7所示;定量分析扩增产物。
CN202110165858.3A 2021-02-07 2021-02-07 SlCXE11基因在调控番茄叶型上的应用 Active CN112980875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110165858.3A CN112980875B (zh) 2021-02-07 2021-02-07 SlCXE11基因在调控番茄叶型上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110165858.3A CN112980875B (zh) 2021-02-07 2021-02-07 SlCXE11基因在调控番茄叶型上的应用

Publications (2)

Publication Number Publication Date
CN112980875A CN112980875A (zh) 2021-06-18
CN112980875B true CN112980875B (zh) 2022-06-14

Family

ID=76348630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110165858.3A Active CN112980875B (zh) 2021-02-07 2021-02-07 SlCXE11基因在调控番茄叶型上的应用

Country Status (1)

Country Link
CN (1) CN112980875B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195185A (zh) * 2020-10-06 2021-01-08 华中农业大学 一种番茄叶型调控基因及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080235824A1 (en) * 2006-12-17 2008-09-25 Gabriel Dean W Use of Esterase Genes as Selectable Markers for Transforming Plant Cells
WO2009099580A2 (en) * 2008-02-05 2009-08-13 Monsanto Technology, Llc Isolated novel nucleic acid and protein molecules from soy and methods of using those molecules to generate transgenic plants with enhanced agronomic traits

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195185A (zh) * 2020-10-06 2021-01-08 华中农业大学 一种番茄叶型调控基因及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Predicted:Solanum lycopersicum probable carboxylesterase 11(LOC101252659),mRNA;Solanaceae Genomics Project;《NCBI GeneBank》;20180808;第1-2页 *
SlSP5G3基因对‘Micro-Tom’番茄开花和产量的影响;许达为;《西北农业学报》;20190417;第28卷(第04期);第578-585页 *
Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis;Jinhua Li等;《Journal of Experimental Botany》;20121117;第63卷(第18期);第6407–6420页 *
低温胁迫对番茄幼苗叶片中脯氨酸降解酶的活性及其基因表达量的影响;任晓平;《中国农学通报》;20120405;第28卷(第10期);第132-135页 *

Also Published As

Publication number Publication date
CN112980875A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Chetty et al. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom
Yang et al. Large-scale production of enhancer trapping lines for rice functional genomics
Pan et al. Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection
WO2020221029A1 (zh) 玉米类受体激酶基因ZmRLK7及其应用
Kajikawa et al. Establishment of bispyribac selection protocols for Agrobacterium tumefaciens-and Agrobacterium rhizogenes-mediated transformation of the oil seed plant Jatropha curcas L.
CN106701778A (zh) 一种利用水稻snb基因来增加穗粒数和降低株高的方法
CN108795943B (zh) 一种植物特异表达启动子POssalt2及其应用
CN109609516A (zh) 一个抗病基因在水稻抗稻曲病改良中的应用
CN106811471A (zh) 水稻spl7基因在调控株型中的应用
CN112980875B (zh) SlCXE11基因在调控番茄叶型上的应用
CN104774826B (zh) 一种组蛋白脱乙酰化酶及其编码基因和应用
CN114134159A (zh) 水稻基因OsWOX3B在调控根系形态中的应用
CN107267508B (zh) 一种植物茉莉酸甲酯诱导表达启动子PosMeJ1及其应用
Kadri et al. WUSCHEL Overexpression Promotes Callogenesis and Somatic Embryogenesis in Medicago truncatula Gaertn. Plants 2021, 10, 715
CN110904109A (zh) 控制水稻种子萌发的miR1866基因、过表达载体、gRNA表达载体、制备方法及其应用
Thangadurai et al. Transformation techniques and molecular analysis of transgenic rice
CN104962563A (zh) 白桦BpMYB106基因、其氨基酸序列及应用
CN118406698B (zh) ZmWIND1基因在提高玉米遗传转化效率中的应用
NL2030997B1 (en) Zea mays receptor-like kinase 7 (zmrlk7) gene related to kernel and plant type development of maize and use thereof
CN115960952B (zh) 过表达玉米ZmHB53基因的表达载体和构建方法及其在提高植物耐旱性中的应用
CN117660451B (zh) 一种紫花苜蓿根尖特异启动子及其应用
CN117802151B (zh) 水稻根结线虫感病基因OsThil在调控水稻对根结线虫的抗性方面的应用
CN107226849B (zh) 水稻gw5基因在培育粒型改变的转基因植物中的应用
CN117051006A (zh) 一种正向调控白菜抽薹开花的基因及其应用
CN105950620B (zh) 一种全面下调棉花番茄红素环化酶基因的表达载体及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Application of SlCXE11 gene in regulating tomato leaf type

Granted publication date: 20220614

Pledgee: Guanggu Branch of Wuhan Rural Commercial Bank Co.,Ltd.

Pledgor: Wuhan Chuwei Biotechnology Co.,Ltd.

Registration number: Y2024980032191

PE01 Entry into force of the registration of the contract for pledge of patent right