CN112980871A - 一种提高水稻耐盐性的分子育种方法 - Google Patents

一种提高水稻耐盐性的分子育种方法 Download PDF

Info

Publication number
CN112980871A
CN112980871A CN202011621839.9A CN202011621839A CN112980871A CN 112980871 A CN112980871 A CN 112980871A CN 202011621839 A CN202011621839 A CN 202011621839A CN 112980871 A CN112980871 A CN 112980871A
Authority
CN
China
Prior art keywords
dst
target
rice
salt tolerance
transgenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011621839.9A
Other languages
English (en)
Inventor
段美娟
盛夏冰
袁定阳
汪雪峰
谭炎宁
孙志忠
余东
郑铖
袁贵龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Agricultural University
Hunan Hybrid Rice Research Center
Original Assignee
Hunan Agricultural University
Hunan Hybrid Rice Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Agricultural University, Hunan Hybrid Rice Research Center filed Critical Hunan Agricultural University
Priority to CN202011621839.9A priority Critical patent/CN112980871A/zh
Publication of CN112980871A publication Critical patent/CN112980871A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于水稻生物技术育种领域,具体涉及一种利用基因编辑,尤其是CRISPR/Cas9基因编辑技术靶向修饰DST提高水稻耐盐性的分子育种方法。实现了水稻耐盐性状的定向改良,且可筛选获得不含有转基因成分的改良品种,规避了转基因可能带来的安全风险。

Description

一种提高水稻耐盐性的分子育种方法
技术领域
本发明属于水稻生物技术育种领域,具体涉及一种利用基因编辑,尤其是CRISPR/Cas9基因编辑技术靶向修饰DST 提高水稻耐盐性的分子育种方法。
背景技术
水稻(Oryza sativa L.) 作为我国重要的粮食作物,以稻米为食的人口占全国人口的一半以上(刘利成等,2016,中国农学通报)。但当前,人口迅速增长与耕地面积逐年减少、粮食增长日趋缓慢的矛盾已逐渐危机我国的粮食安全;其中土壤盐渍化是导致耕地面积减少的主要因素之一(Zhu,2001,Trends Plant Sci.)。据统计,中国目前约有1×108 hm2盐(碱)地,其中有0.2×108 hm2可改造为农田(http://www.gov.cn/xinwen/2018-02/23/content_5268221.htm#1),其面积相当于2017年水稻种植面积的60%(彭既明, 2019,中国稻米),综合开发利用的潜力巨大。因此,提高水稻耐盐性对充分利用盐渍化土地进行水稻生产、释放水稻生产力及对进一步提高稻谷产量、保障我国粮食安全均具有重要的现实意义。
传统提高水稻耐盐性的育种方法为利用耐盐突变体与受体水稻品种多次杂交和回交,并结合后代农艺性状观察和耐盐鉴定进行多代筛选,存在突变体稀少、周期长、效率低等不足,且无论回交多少代都会渗入与靶标基因连锁的其他基因,改变遗传背景,影响受体水稻品种的农艺性状。
CRISPR/Cas9技术作为最新一代基因编辑技术具有定向、简单、高效、分离后代可剔除转基因成分等优势。在水稻遗传改良育种中,该技术已成功实现了对抗性、品质和育性等相关功能基因的定点编辑,以改良相关农艺性状。锌指转录因子DST 与活性氧相关基因启动子中的DBS元件直接结合,通过调节这些基因的表达,影响活性氧的积累,从而调节气孔的开度,最终影响水稻的耐盐性,是水稻耐盐中的负调节因子。
发明内容
为克服传统耐盐改良育种方法的不足,本发明的目的在于提供一种利用CRISPR/Cas9技术靶向突变水稻锌指转录因子DST 定向、高效提高水稻耐盐性的分子育种方法。本发明具有方向性强、育种周期短、遗传背景改变小等特点,并可规避转基因可能带来的风险。
DST编码一个未知的C2H2型锌指转录因子,参与调节植物体内过氧化物的含量,进而影响植物对盐胁迫的敏感性。研究表明,DST作为抗逆性的负调控因子,当其功能缺失时可直接下调过氧化氢代谢相关基因(如过氧化物酶基因)的表达,使清除过氧化氢的能力下降从而增加过氧化氢在保卫细胞中的累积,促使叶片气孔关闭,减少了干旱胁迫下水分的流失和盐胁迫下Na+进入植株体内,最终提高水稻的耐盐性。
本发明提供一种基于基因编辑靶向突变DST 提高水稻耐盐性的分子育种方法。优选地,其采用CRISPR/Cas9技术,且在DST或Os03g0786400或LOC_Os03g57240编码区CDS以及DST起始密码子ATG前1-2kb的范围内选择合适靶点。
进一步地,所述预期靶点序列为3个,具体如下:
SEQ ID NO.1所示的Target-DST-T7:GAGTTTGGGCATGTCAGTAGAGG,
SEQ ID NO.2所示的Target-DST-T21:CGCGTCGCACAGCTCGAGCGTGG,
SEQ ID NO.3所示的Target-DST-T19:AGCGCCGACGGCAGCGGCAACGG。
将所述预期靶点序列构建pCRISPR/Cas9表达载体,导入受体水稻品种的愈伤组织中,获得转基因阳性再生植株;筛选获得预期靶点靶向突变的突变单株。具体用核苷酸序列如SEQ ID NO.10和SEQ ID NO.11所示的引物扩增转基因植株的基因组DNA,扩增产物纯化后测序;将测序结果与野生型序列比对,分析转基因植株是否在预期靶点区域发生突变,并分析突变类型、突变靶点基因型,获得T0代突变单株。
进一步地,本发明还包括利用所述突变单株加代种植后筛选获得不含转基因成分的纯合突变单株;进一步还包括利用所述不含转基因成分的纯合突变株系经耐盐鉴定及加代、回交,筛选获得耐盐性显著提高且株叶形态与受体水稻品种一致的株系作为耐盐改良系。
其中,针对所述靶点的双链片段中的一条链具有以下结构:5’-(N)X-NGG-3’, N表示A,T,C 和G 中的任意一个,X为19或20且以A或G开头,并且靶标序列NGG上游的12bp应在水稻基因组中有较好的特异性。
对于不含转基因成分的纯合突变单株的种子,继续播种成苗,并于三叶一心期时,置于浓度为0.8%的氯化钠水溶液胁迫处理7d后进行耐盐性评价,筛选获得耐盐性显著提高的耐盐改良系。
更具体地,本发明所提供的技术方案是:一种基于CRISPR/Cas9技术靶向突变DST 提高水稻耐盐性的分子育种方法,其包括如下步骤:
(1)根据CRISPR/Cas9系统靶点设计要求,在DST或Os03g0786400或LOC_Os03g57240编码区CDS以及DST起始密码子ATG前1-2kb的范围内选择合适靶点;
(2)将合成的预期靶点序列分别连接至pYLgRNA-U3、pYLgRNA-U6a和pYLgRNA-U6b载体;
(3)将上述含有预期靶点序列的pYLgRNA-U3、pYLgRNA-U6a、pYLgRNA-U6b载体通过“Golden gate cloning”法重组至pCRISPR/Cas9表达载体中;
(4)将所获得的pCRISPR/Cas9重组表达载体导入受体水稻品种的愈伤组织中,获得转基因阳性再生植株;
(5)利用上述转基因阳性再生植株筛选获得预期靶点靶向突变的突变单株;
(6)利用上述突变单株加代种植后筛选获得不含转基因成分的纯合突变单株;
(7)利用上述不含转基因成分的纯合突变株系经耐盐鉴定及加代、回交,筛选获得耐盐性显著提高且株叶形态与受体水稻品种一致的株系作为耐盐改良系
本发明方法中,其中,步骤(1)中所述靶点双链片段中的一条链具有以下结构:5’-(N)X-NGG-3’, N 表示A,T,C 和G 中的任意一个,较好的靶点序列X为19或20且以A或G开头,并且靶标序列NGG上游的12bp应在水稻基因组中有较好的特异性。
上述方案中,步骤(2)具体步骤为:根据预先设计选择的靶点序列,先分别合成带有粘性末端的寡链靶点引物,将两条互补配对的寡链靶点引物90℃变性后移至室温冷却完成退火形成双链靶点片段,将退火后的3个双链靶点片段分别连接到经酶切后的pYLgRNA-U3、pYLgRNA-U6a和pYLgRNA-U6b载体上并利用PCR扩增含有预期靶点的gDNA表达盒片段。
上述方案中,步骤(3)具体步骤为:将PCR扩增后的3个gDNA表达盒片段同时重组到含Cas9 表达盒的pCRISPR/Cas9表达载体上。
上述方案中,步骤(4)具体步骤为:将含预期靶点的pCRISPR/Cas9重组表达载体转化受体水稻愈伤组织,经筛选、分化、生根和炼苗后,种植于温室;通过潮霉素基因分子检测鉴定获得转基因阳性再生水稻植株。
上述方案中,步骤(5)具体步骤为:选择上述转基因阳性再生水稻植株的DNA,用核苷酸序列如SEQ ID NO.10和SEQ ID NO.11所示的引物扩增上述DNA,扩增产物纯化后送公司测序。测序结果与野生型序列比对,分析转基因植株是否在预期靶点区域发生突变,并分析突变类型、突变靶点基因型,获得T0代突变单株。
上述方案中,步骤(6)具体步骤为:收获T0代突变单株的种子,继续种植T1代分离群体,通过潮霉素分子检测、靶点扩增测序分析筛选获得预期靶标位点突变基因型纯合且不带转基因成分的T1代突变单株。
上述方案中,步骤(7)具体步骤为:收获T1代不含转基因成分、纯合突变单株的种子,继续播种成苗为T2代,于三叶一心期时,置于浓度为0.8%的氯化钠水溶液胁迫处理7d后进行耐盐性评价,筛选获得耐盐性显著提高的耐盐改良系。
与现有技术相比,本发明具有以下有益效果: 1. 传统提高水稻品种耐盐性的方法多为利用耐盐突变体与受体水稻品种多
次杂交和回交,筛选综合农艺性状与受体水稻品种基本保持不变、耐盐性显著提高且稳定遗传的后代改良株系。该方法存在突变体稀缺、选育工作量大、材料稳定周期长、连锁累赘等不足。而本发明利用CRISPR/Cas9技术,靶向突变受体水稻品种DST 定向筛选获得耐盐性显著提高的水稻新品种的方法,一般只需2-3代即可完成对受体水稻品种耐盐性的定向改良,大大提高了改良工作效率,加快了育种的进程,节省了时间、劳力和土地成本。
2. 传统改良方法无论回交、自交多少代都会或多或少的渗入与目的基因紧密连锁的其他基因,导致受体水稻品种遗传背景的改变甚至带入某些不良性状。本发明利用CRISPR/Cas9技术,靶向突变受体品种DST 获得耐盐性显著提高的水稻新品种的方法,则不会改变受体水稻品种的其他遗传背景。
3. 本发明利用CRISPR/Cas9技术,靶向突变DST 获得耐盐性显著提高的水稻新品种的方法,实现了水稻耐盐性状的定向改良,且可筛选获得不含有转基因成分的改良品种,此方法一方面规避了转基因可能带来的安全风险,另一方面与物理诱变、化学诱变等方法相比该方法的方向性强、突变效率更高,并且由于是靶向突变,更有基因组DNA损伤小的优势。
附图说明
图1 是本发明实施例中所获得的DST-DZ5的T1代单株潮霉素分子检测结果,其中1-12为DST-DZ5-1至12 T1代单株,N表示阴性对照,P表示阳性对照。
图2 是本发明实施例中所获得的DST-DZ5-4和DST-DZ9-12的T2代株系和中花11野生型(WT)对照品种苗期耐盐鉴定表型观察结果。
图3是本发明实施例中所获得的DST-DZ5-4BC和DST-DZ9-12BC的回交世代株系和中花11野生型(WT)对照品种苗期耐盐鉴定地上部分幼苗中Na+含量测量和K+/ Na+含量比统计分析结果;*表示在0.05水平上显著性差异。
具体实施方式
下面通过具体实施方式的详细描述来进一步阐明本发明,但并不是对本发明的限制,仅仅作示例说明。
本发明利用CRISPR/Cas9技术靶向修饰水稻锌指转录因子DST提高水稻(本实施例中为粳稻品种中花11)耐盐性的分子育种方法,其包括如下步骤:
(1)根据日本晴DST 参考序列和CRISPR/Cas9技术靶点选择要求,本发明在DST 的以及DST起始密码子ATG前第1204至1223位及DST CDS区第484至503位、第844至863位(ATG中A为第1位),设计选择3个靶点。
Target-DST-T7(SEQ ID NO.1):GAGTTTGGGCATGTCAGTAGAGG
Target-DST-T21(SEQ ID NO.2):CGCGTCGCACAGCTCGAGCGTGG
Target-DST-T19(SEQ ID NO.3):AGCGCCGACGGCAGCGGCAACGG
(2)构建分别含有Target-DST-1、Target-DST-2、Target-DST-3三靶点的pYLgRNA-U3、pYLgRNA-U6a、pYLgRNA-U6b载体:首先分别合成带有粘性末端的寡链靶点引物
Target-DST-T19F:ggcAGCGCCGACGGCAGCAACAA,
Target-DST-T19R:aaacTTGTTGCTGCCGTCGGCGC;
Target-DST-T21F:gccGCGCGTCGCACAGCTCGAGCG,
Target-DST-T21R:aaacCGCTCGAGCTGTGCGACGCG;
Target-DST-T7F:gttGAGTTTGGGCATGTCAGTAG,
Target-DST-T7R:aaacCTACTGACATGCCCAAACT。
将三对寡链靶点引物90℃变性后冷却至室温完成退火,再将退火后的3个双链靶点片段分别接连到pYLgRNA-U3、pYLgRNA-U6a、pYLgRNA-U6b载体上,并利用PCR分别扩增含有Target-DST-19、Target-DST-21、Target-DST-7靶点的gDNA表达盒。
(3)构建含Target-DST-T19、Target-DST-T21、Target-DST-T7靶点片段的pCRISPR/Cas9载体:利用上述经PCR扩增得到的含有Target-DST-T19、Target-DST-T21、Target-DST-T7靶点的gDNA表达盒片段同时连接到含Cas9 蛋白的pCRISPR/Cas9表达载体上。
(4)转基因植株获得:利用上述含Target-DST-T19、Target-DST-T21、Target-DST-T7靶点的pCRISPR/Cas9表达载体转化至农杆菌感受态EHA105中,并通过农杆菌介导遗传转化至中花11愈伤组织中,经筛选、分化、生根和炼苗后,种植于温室。通过潮霉素基因(hpt)分子检测引物hpt-F:GACAGCGTCTCCGACCTGAT、hpt-R:CATCGCCTCGCTCCAGTCAAT和靶点检测引物Dst-T7-2F:CTTGGCTGTTTTACCAGA 、Dst-T7-2R:GTGCGCAATAATTTCTGG和Dst-CDS1-3F:CTGACCCCAACCCCAAAC、Dst-CDS1-3R:ACGCAGGCAGCAAGAAGA,鉴定筛选T0代转基因阳性突变植株。
(5)不含转基因成分单株获得:选择上述T0代转基因阳性突变植株自交加代繁殖,选取T1代分离群体中单株进行分子检测潮霉素基因(hpt)。结果参见图1(以DST-DZ5-1至12T1代单株为例),筛选不含hpt T1代单株即不含转基因成分T1代单株。
(6)不含转基因成分的DST纯合突变植株及获得:用引物Dst-T7-2F 、Dst-T7-2R和Dst-CDS1-3F、Dst-CDS1-3R,分别以上述不含转基因成分T1代单株DNA样品为模板进行PCR扩增,得到含Target-DST-7和Target-DST-21、Target-DST-19的扩增产物经纯化后送公司测序,测序结果与未转化的野生型对照株Target-DST-7、Target-DST-21、Target-DST-19序列比较,分析突变情况,具体参见:
WT T7:GAGTTTGGGCATGTCAGTAGAGG
DST-DZ5-4 T7:GAGTTTGGGCATGTCA-TAGAGG
DST-DZ9-12 T7:GAGTTTGGGCATGTCA-TAGAGG
DST-DZ10-5 T7:GAGTTTGGGCATGTC--TAGAGG
DST-DZ11-7 T7:GAGTTTGGGCATGTCA-TAGAGG
DST-DZ12-9 T7:GAGTTTGGGCATGTC--TAGAGG
WT T21: CGCGTCGCACAGCTCGAGCGTGG
DST-DZ5-4 T21:GCGCGTCGCACAGCTCGAGCGTGG
DST-DZ9-12 T21:---------------------------------------------------
DST-DZ10-5 T21:GCGCGTCGCACAGCTCGAAGCGTGG
DST-DZ11-7 T21:GCGCGTCGCACAGCTCGAAGCGTGG
DST-DZ12-9 T21:GCGCGTCGCACAGCTCGAGCGTGG
WT T19:AGCGCCGACGGCAGCGGCAACGG
DST-DZ5-4 T19:AGCGCCGACGGCAGCA-CAACGG
DST-DZ9-12 T19:AGCGCCGACGGCAGCAAACAACGG
DST-DZ10-5 T19:AGCGCCGACGGCAGCAAACAACGG
DST-DZ11-7 T19:AGCGCCGACGGCAGCAAACAACGG
DST-DZ12-9 T19:AGCGCCGACGGCAGCAATCAACGG
其中,WT为中花11野生型对照株系,DST-DZ5-4,-DZ9-12,-DZ10-5,-DZ11-7,-DZ12-9为不同的T1代不含转基因成分的DST纯合突变单株,T7、T21、T19为 Target-DST-T7、Target-DST-T21、Target-DST-T19预期靶点;相对于WT序列,序列中“-”代表碱基缺失,“”代表插入的碱基,有碱基的缺失和插入说明靶向修饰成功。
(7)耐盐改良株系的获得:将上述不含转基因成分的DST 纯合突变单株及时收种并继续播种成苗(T2代),于水稻苗三叶一心期时,置于浓度为0.8%的氯化钠水溶液连续胁迫处理7d后进行观察,恢复生长7d后再进行观察,结果参见图2;筛选获得耐盐性显著提高的突变株系DST-DZ5-4和DST-DZ9-12,并以中花11为轮回亲本(作母本),对其回交两代并同时进行Target-DST-T7、Target-DST-T21、Target-DST-T19靶点分析和耐盐鉴定,选择株叶形态与母本一致且耐盐性显著提高的稳定突变株系DST-DZ5-4BC、DST-DZ9-12BC作为耐盐改良株系。
(8)耐盐改良株系耐盐性状鉴定:将以上耐盐改良株系DST-DZ5-4BC、DST-DZ9-12BC及中花11野生型对照正常发芽播种,于水稻苗三叶一心期时,放入浓度为0.8%的氯化钠水溶液胁迫连续处理10d,每天观察两组幼苗生长情况并于第10d用清水将幼苗清洗,再吸干表面水分,每组各取10株分别测其根长、株高,同时每组各取5g地上部分组织,测定其K+、Na+含量和计算K+/Na+比。结果参见图3、表1(表1是本发明实施例中所获得的DST-DZ5-4BC和DST-DZ9-12BC的回交世代株系和中花11野生型(WT)对照品种苗期耐盐鉴定表型性状测量统计结果。)。
表1 盐胁迫对水稻长势的影响
Figure 43286DEST_PATH_IMAGE002
结果显示,0.8%氯化钠胁迫条件下,与对照中花11相比耐盐改良株系DST-DZ5-4BC、DST-DZ9-12BC的生长势明显增强,而其地上部分的组织中K+/Na+含量比值显著增加。
综上,DST-DZ5-4BC、DST-DZ9-12BC为选育获得的强耐盐改良系新品种。
<110>湖南农业大学;湖南杂交水稻研究中心
<120>一种提高水稻耐盐性的分子育种方法
<160> 3
<210> 1
<211> 23
<212> DNA
<400> 1
GAGTTTGGGCATGTCAGTAGAGG
<210> 2
<211> 23
<212> DNA
<400> 2
CGCGTCGCACAGCTCGAGCGTGG
<210> 3
<211> 23
<212> DNA
<400> 3
AGCGCCGACGGCAGCGGCAACGG

Claims (8)

1.一种基于基因编辑靶向突变DST 提高水稻耐盐性的分子育种方法。
2.如权利要求1所述的方法,其特征在于,其采用CRISPR/Cas9技术,且在DST或Os03g0786400或LOC_Os03g57240编码区CDS以及DST起始密码子ATG前1-2kb的范围内选择合适靶点。
3.如权利要求2所述的方法,其特征在于,所述预期靶点序列为3个,具体如下:
SEQ ID NO.1所示的Target-DST-T7:GAGTTTGGGCATGTCAGTAGAGG,
SEQ ID NO.2所示的Target-DST-T21:CGCGTCGCACAGCTCGAGCGTGG,
SEQ ID NO.3所示的Target-DST-T19:AGCGCCGACGGCAGCGGCAACGG。
4.如权利要求2或3所述的方法,其特征在于,将所述预期靶点序列构建pCRISPR/Cas9表达载体,导入受体水稻品种的愈伤组织中,获得转基因阳性再生植株;筛选获得预期靶点靶向突变的突变单株。
5.如权利要求4所述的方法,其特征在于,还包括利用所述突变单株加代种植后筛选获得不含转基因成分的纯合突变单株;进一步还包括利用所述不含转基因成分的纯合突变株系经耐盐鉴定及加代、回交,筛选获得耐盐性显著提高且株叶形态与受体水稻品种一致的株系作为耐盐改良系。
6.如权利要求2或3所述的方法,其特征在于,针对所述靶点的双链片段中的一条链具有以下结构:5’-(N)X-NGG-3’, N 表示A,T,C 和G 中的任意一个,X为19或20且以A或G开头,并且靶标序列NGG上游的12bp应在水稻基因组中有较好的特异性。
7.如权利要求4所述的方法,其特征在于,用核苷酸序列如SEQ ID NO.10和SEQ IDNO.11所示的引物扩增转基因植株的基因组DNA,扩增产物纯化后测序;将测序结果与野生型序列比对,分析转基因植株是否在预期靶点区域发生突变,并分析突变类型、突变靶点基因型,获得T0代突变单株。
8.如权利要求5所述的方法,其特征在于,对于不含转基因成分的纯合突变单株的种子,继续播种成苗,并于三叶一心期时,置于浓度为0.8%的氯化钠水溶液胁迫处理7d后进行耐盐性评价,筛选获得耐盐性显著提高的耐盐改良系。
CN202011621839.9A 2020-12-31 2020-12-31 一种提高水稻耐盐性的分子育种方法 Pending CN112980871A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011621839.9A CN112980871A (zh) 2020-12-31 2020-12-31 一种提高水稻耐盐性的分子育种方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011621839.9A CN112980871A (zh) 2020-12-31 2020-12-31 一种提高水稻耐盐性的分子育种方法

Publications (1)

Publication Number Publication Date
CN112980871A true CN112980871A (zh) 2021-06-18

Family

ID=76345179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011621839.9A Pending CN112980871A (zh) 2020-12-31 2020-12-31 一种提高水稻耐盐性的分子育种方法

Country Status (1)

Country Link
CN (1) CN112980871A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724667A (zh) * 2004-12-31 2006-01-25 南京农业大学 一种水稻锌指蛋白基因及其编码的蛋白质
CN101182520A (zh) * 2007-11-14 2008-05-21 南京农业大学 一个水稻锌指蛋白基因及其耐逆性基因工程应用
CN101875689A (zh) * 2009-04-08 2010-11-03 中国科学院上海生命科学研究院 水稻锌指蛋白转录因子新基因及抗旱耐盐应用
CN111988988A (zh) * 2018-04-18 2020-11-24 先锋国际良种公司 鉴定、选择和产生抗白叶枯病水稻的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724667A (zh) * 2004-12-31 2006-01-25 南京农业大学 一种水稻锌指蛋白基因及其编码的蛋白质
CN101182520A (zh) * 2007-11-14 2008-05-21 南京农业大学 一个水稻锌指蛋白基因及其耐逆性基因工程应用
CN101875689A (zh) * 2009-04-08 2010-11-03 中国科学院上海生命科学研究院 水稻锌指蛋白转录因子新基因及抗旱耐盐应用
US20120102588A1 (en) * 2009-04-08 2012-04-26 Shanghai Institutes For Biological Sciences, Cas Rice zinc finger protein transcription factor dst and use thereof for regulating drought and salt tolerance
CN111988988A (zh) * 2018-04-18 2020-11-24 先锋国际良种公司 鉴定、选择和产生抗白叶枯病水稻的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
SHUYU LI等: "Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression", 《PNAS》 *
SHUYU LI等: "Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression", 《PNAS》, vol. 110, no. 8, 19 February 2013 (2013-02-19), pages 3167 - 3172 *
XIN-YUAN HUANG等: "A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control", 《GENES & DEVELOPMENT》 *
XIN-YUAN HUANG等: "A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control", 《GENES & DEVELOPMENT》, vol. 23, 31 December 2009 (2009-12-31), pages 1805 - 1817 *
胡雪娇等: "利用CRISPR/Cas9系统定向编辑水稻SD1基因", 《中国水稻科学》, vol. 32, no. 3, pages 219 - 225 *
金寿林等: "高原耐瘠杂交粳稻滇杂35的选育与应用研究", 《种子》, vol. 183, no. 3, pages 90 - 91 *

Similar Documents

Publication Publication Date Title
CN112899247B (zh) 雄性不育基因ZmTKPR1及其在创制玉米雄性不育系中的应用
CN112961231A (zh) 雄性不育基因ZmbHLH122及其在创制玉米雄性不育系中的应用
CN109234288B (zh) 油菜BnA9-2基因在提高油菜角果抗裂性中的应用
CN108503700B (zh) 水稻粒型蛋白及其编码基因与应用
CN112680461B (zh) 雄性不育基因ZmPHD11及其在创制玉米雄性不育系中的应用
CN113005128A (zh) 雄性不育基因ZmMYB84及其在创制玉米雄性不育系中的应用
CN112501180A (zh) 调控稻米镉积累的基因OsABCG42及其编码蛋白与应用
CN109207509B (zh) 一种定向、高效培育耐盐水稻品种的育种方法
CN110923231B (zh) 一种果实高固形物含量的番茄材料的创制方法
CN112980871A (zh) 一种提高水稻耐盐性的分子育种方法
CN111518181B (zh) 提高水稻产量的方法及其所用蛋白质
CN112680458B (zh) 雄性不育基因ZmMYB33及其在创制玉米雄性不育系中的应用
CN116445497B (zh) 甘蓝BoDMP9基因及其在母本单倍体诱导中的应用
CN114958866B (zh) 调控大豆分枝数的基因及其用途
CN117247967B (zh) 雄性不育基因ZmPKSA及其在创制玉米雄性不育系中的应用
CN114516906B (zh) 玉米与菌根真菌共生相关蛋白及其编码基因与应用
CN114672492B (zh) 一种调控水稻株型的基因及其应用
CN110229801B (zh) 一种控制水稻叶片衰老的基因及其编码的蛋白质
WO2021193865A1 (ja) 温度感受性雄性不稔植物の製造方法
WO2023145948A1 (ja) 短葯形質を有するムギ、及びその製造方法
CN117701588A (zh) 一种能调控花椰菜发育的BobFLC3基因及其应用
Zhong et al. Mutation of GmDMP genes triggers haploid induction in soybean
CN117487842A (zh) 雄性不育基因ZmGMS2及其在创制玉米雄性不育系中的应用
CN115925844A (zh) CsLNG基因在调控黄瓜果实形状中的应用
CN118222613A (zh) 一种水稻复杂性状的定向改良方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210618

RJ01 Rejection of invention patent application after publication