CN112977870A - 一种飞机部件装配闭角区铆接斜铆卡设计方法 - Google Patents

一种飞机部件装配闭角区铆接斜铆卡设计方法 Download PDF

Info

Publication number
CN112977870A
CN112977870A CN202110550618.5A CN202110550618A CN112977870A CN 112977870 A CN112977870 A CN 112977870A CN 202110550618 A CN202110550618 A CN 202110550618A CN 112977870 A CN112977870 A CN 112977870A
Authority
CN
China
Prior art keywords
riveting
clamp
riveting clamp
rivet
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110550618.5A
Other languages
English (en)
Other versions
CN112977870B (zh
Inventor
龙安林
卢大伟
陈昶
杨博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202110550618.5A priority Critical patent/CN112977870B/zh
Publication of CN112977870A publication Critical patent/CN112977870A/zh
Application granted granted Critical
Publication of CN112977870B publication Critical patent/CN112977870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Insertion Pins And Rivets (AREA)
  • Connection Of Plates (AREA)

Abstract

本发明公开了一种飞机部件装配闭角区铆接斜铆卡设计方法,属于飞机部件装配工具设计技术领域,通过构建飞机闭角区的几何模型,对斜铆卡进行宏观力学分析,选取斜铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ作为自变量,研究气源锤击功设为W,铆卡质量设为m,作用时间设为t与自变量的关系,在自变量的定义域范围内,最后确定自变量的取值,作为斜铆卡设计的参考尺寸,有效解决斜铆卡由于设计不足造成的疲劳断裂隐患的问题,保证装配质量,提升装配效率,降低装配成本。

Description

一种飞机部件装配闭角区铆接斜铆卡设计方法
技术领域
本发明涉及飞机部件装配工具设计技术领域,具体涉及一种飞机部件装配闭角区铆接斜铆卡设计方法。
背景技术
飞机部件装配以机体结构为研究对象,将骨架零件和外覆件连接成具备飞机气动外形的部段件。在飞机装配机械连接技术中,铆接以其操作简单、连接可靠、检查方便、排故容易、能够适应比较复杂和不够开敞的空间结构等特点被广泛采用。飞机结构中空间开敞性较差的典型区域是结构的闭角区(特指结构上两相邻边之间的夹角小于90°的区域)。受到空间结构的干涉限制,铆枪无法垂直于结构表面施铆,只能适应闭角区的角度变化,斜向施铆。此时,常规铆卡不再适用,需要设计特殊的斜铆卡以适应闭角区的铆接工作。
现有的斜铆卡仅仅是在常规铆卡的基础上按照闭角区的角度对铆卡进行斜截处理,没有从载荷的角度对铆卡的进行受力分析和结构设计。事实上,与常规铆卡不同,斜铆卡除受到轴向铆接压缩应力的作用外,还会承受在斜面径向载荷作用下产生的弯曲循环应力,在弯曲循环拉应力的作用下,斜铆卡很容易发生疲劳断裂。斜铆卡断裂后直接影响铆钉的成形质量,崩出的铆卡将结构零件的表层划伤,影响表面质量,情况严重将导致零件甚至部件报废,既耽误装配进度,又增加制造成本。
而现有技术中,没有提供一种较好的斜铆卡的设计方法,可以避免疲劳断裂或者尽量减小这种应力对斜铆卡的影响的技术方案。
发明内容
本发明的目的在于提供一种飞机部件装配闭角区铆接斜铆卡设计方法,可以有效解决斜铆卡由于设计不足造成的疲劳断裂隐患的问题,保证装配质量,提升装配效率,降低装配成本。
本发明通过下述技术方案实现:
一种飞机部件装配闭角区铆接斜铆卡设计方法,包括以下步骤:
A. 根据飞机闭角区的结构特征,构建几何模型,所述几何模型中的几何图元包括隔框、蒙皮、铆钉、斜铆卡以及铆枪,并选取几何图元中的相关物理特征作为自变量,所述自变量包括斜铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ
B.根据步骤A中的几何模型的结构特征、结合斜铆卡使用时的可操作性以及操作工作台界面的摩擦系数,确定斜铆卡的各物理特征变量的取值范围为:
Figure 304040DEST_PATH_IMAGE001
C.对斜铆卡进行受力分析,得到斜铆卡所受合应力σ随各自变量的变化特征,可判断斜铆卡的失效危险点在其根部处圆角区的位置,再对斜铆卡失效危险点进行应力分析,结合装配施铆情况,将气源锤击功设为W,铆卡质量设为m,作用时间设为t,所述作用时间t在实际操作过程中可视为常数,得出斜铆卡所受合应力随各自变量的变化满足以下关系:
Figure 95278DEST_PATH_IMAGE002
D.再根据步骤C中,斜铆卡所受合应力随各自变量的增减性特点,得到斜铆卡所受合应力σ≤0时,对应的自变量(α、l、d、r、μ)的值,可根据施铆环境微调自变量(α、l、d、r、μ)的值,得到微调后的自变量(α 3 、l 3 、d 3 、r 3 、μ 3 ),使微调后的自变量(α 3 、l 3 、d 3 、r 3 、μ 3 )满足σ 3 ≤0,且在步骤B的给出的自变量定义域范围内。
进一步地,所述步骤D中,可根据斜铆卡所受合应力随各自变量的增减性特点,可求得斜铆卡所受合应力最小时对应的自变量值为(α 0 l 0 d 0 r 0 μ 0 ),可根据施铆环境微调自变量(α 0 l 0 d 0 r 0 μ 0 ),使微调后的自变量(α 0 ′、l 0 ′、d 0 ′、r 0 ′、μ 0 ′)满足σ min≤0,且在步骤B的给出的自变量定义域范围内。
进一步地,所述步骤C中,得出斜铆卡所受合应力随各自变量的变化特点包括以下步骤:
A1. 对斜铆卡进行宏观受力分析,根据铆卡承受的载荷,建立数学模型,F f 为斜铆卡端面的摩擦力、F n 为斜铆卡端面的正压力,F 1 、F 2 为斜铆卡承受的轴向分力,F 3 、F 4 为斜铆卡承受的径向分力,满足以下关系:
Figure 908513DEST_PATH_IMAGE003
B1. 根据铆卡的宏观受力形式、应力集中效应以及实际失效形式,判断斜铆卡的失效危险点在其根部处圆角区的位置,再对斜铆卡失效危险点进行应力分析,所述F 1 、F 2 产生压缩应力分别为σ 1 、σ 2 ,所述F 3 、F 4 产生弯曲应力分别为σ 3 、σ 4,满足以下关系:
Figure 875332DEST_PATH_IMAGE004
C1. 将步骤B1的应力σ 1 、σ 2 、σ 3 、σ 4 进行叠加,得出斜铆卡失效危险点合应力σ与斜铆卡物理特征之间的关系满足:σ=fα,l,d,r,μ)=σ 1+σ 2+σ 3+σ 4
D1. 考虑实际的装配施铆情况,F n 设为端面的等效正压力,由气源的功率决定,W设为气源锤击功,铆卡质量设为m,作用时间设为t,所述作用时间t在实际操作过程中可视为常数,等效正压力F n 的关系满足:
Figure 240455DEST_PATH_IMAGE005
E1. 结合步骤B1与步骤D1,得出斜铆卡失效危险点与铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ满足以下关系:
Figure 659935DEST_PATH_IMAGE006
进一步地,所述步骤A1中,对斜铆卡进行受力分析建立数学模型时,将斜铆卡施铆过程视为一个准静态加载过程,根据铆卡承受的载荷,不考虑惯性力作用。
本发明与现有技术相比,具有以下优点及有益效果:
一、本发明中,提供了一种飞机部件装配闭角区铆接斜铆卡设计方法,为科学合理地设计斜铆卡提供指导思路,从设计源头防止斜铆卡疲劳断裂失效以及由此造成的次生损失。
二、本发明中,本方法首先对飞机结构中的闭角空间铆接进行建模,几何模型中的几何图元包括飞机闭角结构、铆钉、铆枪以及斜铆卡。然后根据斜铆卡的受力形式和失效形式,合理并巧妙的选取与斜铆卡相关的铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ的物理特征进行研究、分析,判断斜铆卡失效危险点,推导出危险点处应力状态随斜铆卡物理特性的变化关系。最后,给出最佳应力状态对应的斜铆卡物理特征,作为实际生产的控制依据。
三、本发明中,本方法可以有效解决斜铆卡由于设计不足造成的疲劳断裂隐患的问题,保证装配质量,提升装配效率,降低装配成本,在航空制造领域具有较为广阔的应用推广前景。
四、本发明中,根据本方法设计的斜铆卡,单个的斜铆卡能完成4000个以上铆钉的铆接,且不会产生疲劳断裂,最后因为斜铆卡端面磨损严重而停止使用,较之前的斜铆卡,仅能完成800个闭角区铆钉的铆接后就必须更换,斜铆卡使用寿命明显增长,降低成本。
五、本发明中,采用本技术方案中的设计方法,可尽可能的避免斜铆卡因疲劳断裂而失效,减少对产品的损伤,降低故障率,缩短装配周期,从而降低设备成本。
附图说明
图1为飞机闭角区的典型结构的几何模型。
图2是斜铆卡物理特征参数展示与力学分析模型。
图3是实施例2所提出的斜铆卡设计方法流程图。
其中,1、隔框;2、蒙皮;3、铆枪;4、斜铆卡;5、铆钉。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例以本公司中的某机型的飞机为研究对象,现需对飞机结构中空间开敞性较差的闭角区(一般将结构上两相邻边之间的夹角小于90°的区域称为闭角区)进行施铆操作,需先设计符合该施铆环境的斜铆卡。
本实施例提出一种飞机部件装配闭角区铆接斜铆卡设计方法,属于飞机部件装配工具设计技术领域,具体包括以下步骤:
A. 根据该飞机闭角区的结构特征,构建几何模型,所述几何模型中的几何图元包括隔框、蒙皮、铆钉、斜铆卡以及铆枪,参照图1,并选取几何图元中的相关物理特征作为自变量,所述自变量包括斜铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ
B.根据步骤A中的几何模型的结构特征、结合斜铆卡使用时的可操作性以及操作工作台界面的摩擦系数,确定斜铆卡的各物理特征变量的取值范围为:
Figure 368871DEST_PATH_IMAGE007
C.对斜铆卡进行受力分析,参考图2,得到斜铆卡所受合应力σ随各自变量的变化特征,可判断斜铆卡的失效危险点在其根部处圆角区的位置,再对斜铆卡失效危险点进行应力分析,结合装配施铆情况,将气源锤击功设为W,斜铆卡质量设为m,作用时间设为t,所述气源锤击功W、斜铆卡质量m以及作用时间t在实际操作过程中均可控,可视为常数,以下表1中的常用参数数值为例:
表1:
Figure 314830DEST_PATH_IMAGE008
代入关系式:
Figure 726220DEST_PATH_IMAGE009
D.再根据步骤C中,斜铆卡所受合应力随各自变量的增减性特点,所述自变量在步骤B的取值范围内时,求得斜铆卡所受合应力最小时对应的自变量值为(α 0 ,l 0 ,d 0 ,r 0 ,μ 0 )=(80º,15,15,4,0.3),此时斜铆卡所受合应力:
Figure 757630DEST_PATH_IMAGE010
此时σ=-5.35MPa,为负值,根据疲劳力学基础理论,金属材料在循环压应力的作用下不会萌生疲劳初始裂纹以及发生内部缺陷扩展现象,可有效提高材料的服役性能。
本发明所提供的方法可以有效解决斜铆卡由于设计不足造成的疲劳断裂隐患,保证装配质量,提升装配效率,降低装配成本,在航空制造领域具有较为广阔的应用推广前景。
本实施例中,求得的斜铆卡所受合应力σ min对应的自变量值为(α 0 l 0 d 0 r 0 μ 0 )是较优的设计数值,且σ min也为负值,为较为理想的设计方案。设计人也可以根据施铆现场环境,对求得的自变量进行调整,也满足更多的施铆环境,但需注意的是,微调后的自变量值(α 0 ′、l 0 ′、d 0 ′、r 0 ′、μ 0 ′)需满足σ min≤0,且在步骤B的给出的自变量定义域范围:
Figure 381510DEST_PATH_IMAGE011
之内。
实施例2
本实施例在实施例1的基础上,对斜铆卡进一步进行研究,详细说明本技术方案的设计过程,为斜铆卡的设计、制造的尺寸提供依据,也未该技术的进一步研究提供一定依据,也为该类工具的制造提供一种新的设计方案供参考。
一种飞机部件装配闭角区铆接斜铆卡设计方法,属于飞机部件装配工具设计技术领域,参照图3,具体包括以下步骤:
(1)、根据飞机闭角区的结构特征,构建几何模型,所述几何模型中的几何图元包括隔框、蒙皮、铆钉、斜铆卡以及铆枪,并选取几何图元中的相关物理特征作为自变量,所述自变量包括斜铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ
(2)、根据步骤A中的几何模型的结构特征、结合斜铆卡使用时的可操作性以及操作工作台界面的摩擦系数,确定斜铆卡的各物理特征变量的取值范围为,一般可根据操作经验得到:
Figure 447555DEST_PATH_IMAGE012
(3)、对斜铆卡进行宏观受力分析,斜铆卡施铆过程是一个准静态加载过程,根据铆卡承受的载荷,在不考虑惯性力的情况下建立数学模型,F f 为斜铆卡端面的摩擦力、F n 为斜铆卡端面的正压力,F 1 是斜铆卡承受F n 的轴向分力、F 2 为斜铆卡承受的摩擦力F f 的轴向分力,F 3 是斜铆卡承受F n 的径向分力、F 4 为斜铆卡承受的摩擦力F f 的径向分力,满足以下关系:
Figure 124786DEST_PATH_IMAGE013
(4)、根据铆卡的宏观受力形式、应力集中效应以及实际失效形式,判断斜铆卡的失效危险点在其根部处圆角区的位置,再对斜铆卡失效危险点进行应力分析,所述F 1 、F 2 产生压缩应力分别为σ 1 、σ 2 ,所述F 3 、F 4 产生弯曲应力分别为σ 3 、σ 4,满足以下关系:
Figure 518858DEST_PATH_IMAGE014
(5)、采用应力叠加原理,将步骤(4)中的应力σ 1σ 2σ 3σ 4进行求和,得出斜铆卡失效危险点合应力σ与斜铆卡物理特征之间的关系满足:σ=fα,l,d,r,μ)=(-σ 1)+(-σ 2)+σ 3+(-σ 4),即:
Figure 71062DEST_PATH_IMAGE015
(6)、考虑实际的装配施铆情况,F n 为斜铆卡端面的正压力,由气源的功率决定,W设为气源锤击功,斜铆卡质量设为m,作用时间设为t,所述作用时间t在实际操作过程中可视为常数,等效正压力F n 的关系满足:
Figure 726034DEST_PATH_IMAGE016
(7)、结合步骤(4)与步骤(5),得出斜铆卡失效危险点与铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及斜铆卡端面的摩擦系数μ满足以下关系:
Figure 479227DEST_PATH_IMAGE017
(8)、再在步骤(2)给出的自变量定义域内求步骤(7)中得到的多元函数关系式的偏导数,判断合应力随各物理特征参数的增减变化趋势及对应的权重:
Figure 485229DEST_PATH_IMAGE018
并在步骤(2)给出的自变量定义域内求解合应力σ的最小值,σ的最小值即为斜铆卡物理特征的最优解,即输出对应的物理特征值(α 0 ,l 0 ,d 0 ,r 0 ,μ 0 )作为斜铆卡设计、制造的尺寸依据。
以施铆过程中常用的气源锤击功W=3J,斜铆卡质量m=0.05Kg,作用时间t=0.001s为例,代入相应数据,对应的自变量值为σ min=(α 0 ,l 0 ,d 0 ,r 0 ,μ 0 )=(80º,15,15,4,0.3),即该斜铆卡在该施铆环境下,该斜铆卡可设计成的倾斜角度80º,斜铆卡中心长度15mm,斜铆卡直径15mm,斜铆卡根部圆角半径5mm,以及铆卡端面的设计成摩擦系数为0.3的金属材料端面。
(9)验证:将步骤(8)得到的σ min对应的自变量值代入步骤(7),可知该斜铆卡失效危险点的合应力为:
Figure 982069DEST_PATH_IMAGE019
可见,应力为负值,根据疲劳力学基础理论,金属材料在循环压应力的作用下不会萌生疲劳初始裂纹以及发生内部缺陷扩展现象,可有效提高材料的服役性能。采用本设计方法设计的斜铆卡,能完成4000个以上铆钉的铆接,且不会产生疲劳断裂,最后是因为斜铆卡端面磨损严重而停止使用。
对比例1
本对比例是根据现有常用的斜铆卡,梳理物理特征参数及其对应的铆接常数值如下表2所示。
表2:
Figure 261522DEST_PATH_IMAGE020
根据实施例2中步骤(7)中斜铆卡失效危险点处合应力的计算方法,得出σ的值为:
Figure 920036DEST_PATH_IMAGE022
可见,该应力为正值,循环作用于危险点处,将造成斜铆卡的疲劳断裂,一般单个这样的铆卡能完成800个闭角区铆钉的铆接,就必须更换此铆卡。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (4)

1.一种飞机部件装配闭角区铆接斜铆卡设计方法,其特征在于,包括以下步骤:
A. 根据飞机闭角区的结构特征,构建几何模型,所述几何模型中的几何图元包括隔框、蒙皮、铆钉、斜铆卡以及铆枪,并选取几何图元中的相关物理特征作为自变量,所述自变量包括斜铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ
B.根据步骤A中的几何模型的结构特征、结合斜铆卡使用时的可操作性以及操作工作台界面的摩擦系数,确定斜铆卡的各物理特征变量的取值范围为:
Figure DEST_PATH_IMAGE001
C.对斜铆卡进行受力分析,得到斜铆卡所受合应力σ随各自变量的变化特征,可判断斜铆卡的失效危险点在其根部处圆角区的位置,再对斜铆卡失效危险点进行应力分析,结合装配施铆情况,将气源锤击功设为W,铆卡质量设为m,作用时间设为t,所述作用时间t在实际操作过程中可视为常数,得出斜铆卡所受合应力随各自变量的变化满足以下关系:
Figure 368756DEST_PATH_IMAGE002
D.再根据步骤C中,斜铆卡所受合应力随各自变量的增减性特点,得到斜铆卡所受合应力σ≤0时,对应的自变量(α、l、d、r、μ)的值,可根据施铆环境微调自变量(α、l、d、r、μ)的值,得到微调后的自变量(α 3 、l 3 、d 3 、r 3 、μ 3 ),使微调后的自变量(α 3 、l 3 、d 3 、r 3 、μ 3 )满足σ 3 ≤0,且在步骤B的给出的自变量定义域范围内。
2.根据权利要求1所述的一种飞机部件装配闭角区铆接斜铆卡设计方法,其特征在于:所述步骤D中,可根据斜铆卡所受合应力随各自变量的增减性特点,可求得斜铆卡所受合应力最小时对应的自变量值为(α 0 l 0 d 0 r 0 μ 0 ),可根据施铆环境微调自变量(α 0 l 0 d 0 r 0 μ 0 ),使微调后的自变量(α 0 ′、l 0 ′、d 0 ′、r 0 ′、μ 0 ′)满足σ min≤0,且在步骤B的给出的自变量定义域范围内。
3.根据权利要求2所述的一种飞机部件装配闭角区铆接斜铆卡设计方法,其特征在于,所述步骤C中,得出斜铆卡所受合应力随各自变量的变化特点包括以下步骤:
A1. 对斜铆卡进行宏观受力分析,根据铆卡承受的载荷,建立数学模型,F f 为斜铆卡端面的摩擦力、F n 为斜铆卡端面的正压力,F 1 是斜铆卡承受F n 的轴向分力、F 2 为斜铆卡承受的摩擦力F f 的轴向分力,F 3 是斜铆卡承受F n 的径向分力、F 4 为斜铆卡承受的摩擦力F f 的径向分力,满足以下关系:
Figure DEST_PATH_IMAGE003
B1. 根据铆卡的宏观受力形式、应力集中效应以及实际失效形式,判断斜铆卡的失效危险点在其根部处圆角区的位置,再对斜铆卡失效危险点进行应力分析,所述F 1 、F 2 产生压缩应力分别为σ 1 、σ 2 ,所述F 3 、F 4 产生弯曲应力分别为σ 3 、σ 4,满足以下关系:
Figure 771049DEST_PATH_IMAGE004
C1. 将步骤B1的应力σ 1 、σ 2 、σ 3 、σ 4 进行叠加,得出斜铆卡失效危险点合应力σ与斜铆卡物理特征之间的关系满足:σ=fα,l,d,r,μ)=(-σ 1)+(-σ 2)+σ 3+(-σ 4);
D1. 考虑实际的装配施铆情况,F n 为斜铆卡端面的正压力,由气源的功率决定,W设为气源锤击功,铆卡质量设为m,作用时间设为t,所述作用时间t在实际操作过程中可视为常数,等效正压力F n 的关系满足:
Figure DEST_PATH_IMAGE005
E1. 结合步骤B1与步骤D1,得出斜铆卡失效危险点与斜铆卡倾斜角度α,斜铆卡中心长度l,斜铆卡直径d,斜铆卡根部圆角半径r以及铆卡端面的摩擦系数μ满足以下关系:
Figure 222890DEST_PATH_IMAGE006
4.根据权利要求3所述的一种飞机部件装配闭角区铆接斜铆卡设计方法,其特征在于:所述步骤A1中,对斜铆卡进行受力分析建立数学模型时,将斜铆卡施铆过程视为一个准静态加载过程,根据铆卡承受的载荷,不考虑惯性力作用。
CN202110550618.5A 2021-05-20 2021-05-20 一种飞机部件装配闭角区铆接斜铆卡设计方法 Active CN112977870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110550618.5A CN112977870B (zh) 2021-05-20 2021-05-20 一种飞机部件装配闭角区铆接斜铆卡设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110550618.5A CN112977870B (zh) 2021-05-20 2021-05-20 一种飞机部件装配闭角区铆接斜铆卡设计方法

Publications (2)

Publication Number Publication Date
CN112977870A true CN112977870A (zh) 2021-06-18
CN112977870B CN112977870B (zh) 2021-09-03

Family

ID=76337026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110550618.5A Active CN112977870B (zh) 2021-05-20 2021-05-20 一种飞机部件装配闭角区铆接斜铆卡设计方法

Country Status (1)

Country Link
CN (1) CN112977870B (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006044829A2 (en) * 2004-10-15 2006-04-27 Hassenzahl Robert D Rivet tool for steel studs
CN2874605Y (zh) * 2005-08-10 2007-02-28 全汉企业股份有限公司 机壳与隔板的固定构造
JP2007216313A (ja) * 2006-02-14 2007-08-30 Univ Of Ryukyus 亀裂進展抑制方法
JP2007222885A (ja) * 2006-02-22 2007-09-06 Nippon Pop Rivets & Fasteners Ltd リベットを用いた複数の部材の連結方法及び装置
ES2286451T3 (es) * 2002-04-05 2007-12-01 Huck International, Inc. Fiador de tipo engarce con ranuras de bloqueo y crestas optimizadas, y metodo para diseñarlo.
US20100065534A1 (en) * 2004-12-07 2010-03-18 Airbus Deutschland Gmbh Airplane wing, method for manufacturing an airplane wing and use of a welding process for welding a wing spar
CN202362204U (zh) * 2011-12-02 2012-08-01 成都飞机工业(集团)有限责任公司 抽钉疲劳试验装置
CN103455671A (zh) * 2013-08-27 2013-12-18 西北工业大学 电磁铆接接头疲劳寿命预测方法
US20140327213A1 (en) * 2013-03-13 2014-11-06 Rolls-Royce North American Technologies, Inc. Retention pin and method of forming
US20150196951A1 (en) * 2014-01-14 2015-07-16 Lisi Aerospace Rivet for blind fasteners, associated setting tool and method for setting such a rivet
US20150219521A1 (en) * 2008-03-10 2015-08-06 Henrob Limited Die condition detection
US20160325982A1 (en) * 2010-06-25 2016-11-10 International Business Machines Corporation Planar cavity mems and related structures, methods of manufacture and design structures
RU183999U1 (ru) * 2018-04-18 2018-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ) Адаптер в виде конической оболочки вращения из композиционных материалов
FR3067268A1 (fr) * 2017-06-09 2018-12-14 Eris Outil de pose d’une fixation aveugle, procede de pose et fixation aveugle adaptee
US20190017283A1 (en) * 2015-05-05 2019-01-17 West Virginia University Durable, fire resistant, energy absorbing and cost-effective strengthening systems for structural joints and members
CN109500346A (zh) * 2019-01-09 2019-03-22 成都飞机工业(集团)有限责任公司 一种托板螺母铆接辅助装置
WO2019170997A1 (fr) * 2018-03-05 2019-09-12 Cybermeca Machine et procede de rivetage
US20200164424A1 (en) * 2015-12-14 2020-05-28 GM Global Technology Operations LLC Systems and methods for joining components by riveting
CN112149258A (zh) * 2020-10-20 2020-12-29 南京航空航天大学 一种电流辅助铆接的装置及损伤预测方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2286451T3 (es) * 2002-04-05 2007-12-01 Huck International, Inc. Fiador de tipo engarce con ranuras de bloqueo y crestas optimizadas, y metodo para diseñarlo.
WO2006044829A2 (en) * 2004-10-15 2006-04-27 Hassenzahl Robert D Rivet tool for steel studs
US20100065534A1 (en) * 2004-12-07 2010-03-18 Airbus Deutschland Gmbh Airplane wing, method for manufacturing an airplane wing and use of a welding process for welding a wing spar
CN2874605Y (zh) * 2005-08-10 2007-02-28 全汉企业股份有限公司 机壳与隔板的固定构造
JP2007216313A (ja) * 2006-02-14 2007-08-30 Univ Of Ryukyus 亀裂進展抑制方法
JP2007222885A (ja) * 2006-02-22 2007-09-06 Nippon Pop Rivets & Fasteners Ltd リベットを用いた複数の部材の連結方法及び装置
US20150219521A1 (en) * 2008-03-10 2015-08-06 Henrob Limited Die condition detection
US20160325982A1 (en) * 2010-06-25 2016-11-10 International Business Machines Corporation Planar cavity mems and related structures, methods of manufacture and design structures
CN202362204U (zh) * 2011-12-02 2012-08-01 成都飞机工业(集团)有限责任公司 抽钉疲劳试验装置
US20140327213A1 (en) * 2013-03-13 2014-11-06 Rolls-Royce North American Technologies, Inc. Retention pin and method of forming
CN103455671A (zh) * 2013-08-27 2013-12-18 西北工业大学 电磁铆接接头疲劳寿命预测方法
US20150196951A1 (en) * 2014-01-14 2015-07-16 Lisi Aerospace Rivet for blind fasteners, associated setting tool and method for setting such a rivet
US20190017283A1 (en) * 2015-05-05 2019-01-17 West Virginia University Durable, fire resistant, energy absorbing and cost-effective strengthening systems for structural joints and members
US20200164424A1 (en) * 2015-12-14 2020-05-28 GM Global Technology Operations LLC Systems and methods for joining components by riveting
FR3067268A1 (fr) * 2017-06-09 2018-12-14 Eris Outil de pose d’une fixation aveugle, procede de pose et fixation aveugle adaptee
WO2019170997A1 (fr) * 2018-03-05 2019-09-12 Cybermeca Machine et procede de rivetage
RU183999U1 (ru) * 2018-04-18 2018-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ) Адаптер в виде конической оболочки вращения из композиционных материалов
CN109500346A (zh) * 2019-01-09 2019-03-22 成都飞机工业(集团)有限责任公司 一种托板螺母铆接辅助装置
CN112149258A (zh) * 2020-10-20 2020-12-29 南京航空航天大学 一种电流辅助铆接的装置及损伤预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曾超: "航空铆接压力成形钉头材料流动及尺寸研究", 《锻压技术》 *
航空大壁板装配连接局部变形数值建模与仿真分析: "康永刚等", 《航空制造技术》 *

Also Published As

Publication number Publication date
CN112977870B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN103752651B (zh) 焊接整体壁板激光冲击校形方法
US4428213A (en) Duplex peening and smoothing process
EP3029270B1 (en) Engine airfoils and methods for reducing airfoil flutter
CN106897484B (zh) 一种高温合金高效低应力磨削工艺参数的获得方法
CN105436839B (zh) 航空发动机钛合金宽弦空心风扇叶片的制造方法
CN109697312B (zh) 一种考虑bvid冲击损伤影响的复合材料开口分析方法
Zeng et al. Influence of initial fit tolerance and squeeze force on the residual stress in a riveted lap joint
CN109684724B (zh) 一种客车多材料车身粘铆复合钢骨架结构分析方法
CN113283022A (zh) 航空发动机结构低循环疲劳模拟件设计方法
CN112977870B (zh) 一种飞机部件装配闭角区铆接斜铆卡设计方法
CN107662350B (zh) 一种航空用新型混杂复合材料铆接方法及装置
US7970555B2 (en) Method for developing a repair process to correct a deformed gas turbine engine component
CN111238804B (zh) 航空发动机转子的超转破裂试验的试验件构型方法
Phillips Fatigue improvement by sleeve cold working
GB2527018A (en) Shot peening deformation process for assembling two parts of a turbomachine
US11655713B2 (en) Integrally repaired bladed rotor
WO2016103316A1 (ja) 熱間据込み鍛造用の素材形状
CN114065423B (zh) 快速评估航空发动机风扇叶片颤振的方法
CN113722861B (zh) 一种复合材料螺栓连接结构的强度和失效模式的预测方法
CN114840944A (zh) 一种基于损伤控制参量一致的裂纹萌生模拟件设计方法
Lepadatu et al. Lifetime multiple response optimization of metal extrusion die
CN109798161B (zh) 一种基于能量平衡的液压胀接装配式凸轮轴连接强度的预测方法
Maia et al. Preliminary Design of Axial Flow Turbine for a Small Jet Engine
He et al. Finite element analysis of self-pierce riveted joints
Linghu et al. Shape optimization of passenger vehicle wheel on fatigue failure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant