CN112968620A - 一种桥臂复用型mmc拓扑子模块降容谐波注入方法 - Google Patents

一种桥臂复用型mmc拓扑子模块降容谐波注入方法 Download PDF

Info

Publication number
CN112968620A
CN112968620A CN202110365938.3A CN202110365938A CN112968620A CN 112968620 A CN112968620 A CN 112968620A CN 202110365938 A CN202110365938 A CN 202110365938A CN 112968620 A CN112968620 A CN 112968620A
Authority
CN
China
Prior art keywords
bridge arm
mmc
topology
multiplexing type
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110365938.3A
Other languages
English (en)
Other versions
CN112968620B (zh
Inventor
樊强
许建中
赵成勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202110365938.3A priority Critical patent/CN112968620B/zh
Publication of CN112968620A publication Critical patent/CN112968620A/zh
Application granted granted Critical
Publication of CN112968620B publication Critical patent/CN112968620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供了一种桥臂复用型MMC拓扑子模块降容的谐波注入方法,属于高电压技术领域。模块化多电平换流器(Modular Multilevel Converter,MMC)由于使用大量的子模块来逼近桥臂电压,导致其体积和占地面积庞大。基于此,从拓扑和控制策略的两个角度出发,提出一种桥臂复用型MMC拓扑子模块降容的谐波注入方法,实现MMC的轻型化。本发明的核心技术方案是:通过在MMC桥臂增加一部分全桥子模块,使其具有一定的过调制输出能力。通过桥臂复用思想,使具有过调制能力的MMC桥臂子模块个数与常规半桥MMC桥臂子模块个数相同,得到桥臂复用型MMC拓扑。基于控制策略层面,提出了一种桥臂二倍频电流注入量的确定方法。基于拓扑和控制策略层面,可大幅度降低桥臂复用型MMC子模块电容容值。

Description

一种桥臂复用型MMC拓扑子模块降容谐波注入方法
技术领域
本发明涉及高电压技术领域,具体涉及一种桥臂复用型MMC拓扑子模块降容谐波注入方法。
背景技术
模块化多电平换流器(Modular Multilevel Converter,MMC)因其具有无换相失败问题、具有黑启动能力、模块化程度高等优点,已成为柔性直流电网的首选换流器拓扑。
目前柔直工程上大多采用半桥型MMC,由于MMC通过使用大量的子模块来逼近桥臂电压,导致其体积和占地面积庞大。子模块中电容的体积在整个子模块中占很大比例。基于此,提出一种桥臂复用型MMC拓扑子模块降容谐波注入方法,可大幅度降低MMC子模块电容容值。实现MMC的轻型化。
发明内容
针对上述背景技术中提到的半桥MMC存在的体积和占地面积大的问题,本发明从拓扑和控制策略的两个角度出发,提出一种桥臂复用型MMC拓扑子模块降容谐波注入方法,可大幅度降低MMC子模块电容容值。
本发明的技术方案的特征包括以下步骤:
步骤1:提出一种桥臂复用型MMC拓扑,基于全桥子模块的负电平输出能力和拓扑复用思想,提出一种在不增加子模块个数的基础上具有一定的过调制输出能力的MMC拓扑模型。
步骤2:基于桥臂复用型MMC拓扑,从桥臂电流有效值角度出发,提出了一种谐波电流注入量幅值的确定方法。通过提高调制比来减少MMC桥臂电流的基频分量,并基于桥臂电流注入前后桥臂电流的有效值不变的原则,确定谐波电流注入幅值。(具体见附录公式(3))
步骤3:基于桥臂复用型MMC拓扑,以谐波注入量的相角为自变量,建立多维度目标函数,兼顾桥臂电流峰值和子模块电容电压纹波幅值,寻优确定最优谐波电流的初相角。
本发明通过三个步骤,能够大幅度降低MMC子模块电容容值。
具体实施方式
下面将对本发明涉及的一种桥臂复用型MMC拓扑子模块降容谐波注入方法作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
本发明所要解决的技术问题通过提出一种桥臂复用型MMC拓扑子模块降容谐波注入方法,实现MMC的轻型化。
本发明采用如下技术方案实现:
步骤1:通过在MMC桥臂上增加全桥子模块,从而提高MMC调制比。具体增加的全桥子模块个数NF具体见公式(1):
Figure BDA0003007408920000021
式1中,m为传统半桥MMC的正常工作时的调制比,m'为增加全桥子模块后系统实际的调制比。mmax为增加全桥子模块后的MMC调制比的峰值。NF为增加的全桥子模块个数,NH为MMC桥臂半桥子模块总数。通过桥臂复用思想,以增加全桥子模块提高调制比前后MMC子模块总数不变为原则,确定复用的半桥子模块个数。
具体桥臂复用型MMC拓扑见附图1所示:图1为桥臂复用型MMC拓扑单相模型及各部分详细拓扑模型,具体图1(a)为桥臂复用型MMC拓扑,其中复用部分中含有NH_R个半桥子模块(具体拓扑见附图1(b)),固定部分含有NF个全桥子模块(具体拓扑见附图1(c))和NH_C个半桥子模块。附加开关拓扑图如图1(d)所示。具体桥臂不同位置和不同类型的子模块个数存在以下关系:NF+NH_C+NH_R/2=N,其中N为常规半桥MMC桥臂子模块个数。附加开关K1和K2在正常工作工况下的通断状态见式2所示:
Figure BDA0003007408920000022
式2中,其中N投入指MMC上桥臂实际投入的子模块个数,N为支撑直流电压的MMC子模块总数。
步骤2:基于桥臂复用型MMC拓扑,从MMC损耗角度出发,提出了一种谐波电流注入量幅值的确定方法。通过提高调制比来减少MMC桥臂电流的基频分量,并基于桥臂电流注入前后桥臂电流的有效值不变的原则,确定谐波电流注入幅值,具体见公式(3):
Figure BDA0003007408920000031
公式(3)中,Idc为MMC直流电流,Is为MMC交流侧基波电流幅值。Is’为提高调制比m后的MMC交流侧基波电流幅值。I2s为拟注入的谐波电流幅值。通过公式(3),可得到桥臂电流二倍频分量的注入幅值为关于MMC交流基波电流幅值的函数。
步骤3:基于桥臂复用型MMC拓扑,以谐波注入量的相角为自变量,建立多维度目标函数,兼顾桥臂电流峰值和子模块电容电压纹波幅值,寻优确定最优谐波电流的初相角,实现MMC子模块电容幅值的大幅度降低。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
附图说明
图1是桥臂复用型MMC拓扑单相模型及各部分详细拓扑模型示意图。

Claims (2)

1.一种桥臂复用型MMC拓扑子模块降容谐波注入方法。其特征在于:通过拓扑复用思想,设计出不增加子模块个数的具有一定的过调制输出能力的桥臂复用型MMC拓扑;并通过控制策略层面,提出了一种桥臂二倍频电流注入量的确定方法。基于拓扑和控制策略层面,可大幅度降低MMC子模块电容容值。具体包括以下步骤:步骤1:通过全桥子模块的负电平输出能力和拓扑复用思想,提出一种具有过调制能力的桥臂复用型MMC拓扑。步骤2:基于桥臂复用型MMC拓扑,从桥臂电流有效值角度出发,提出了一种谐波电流注入量幅值的确定方法。步骤3:基于桥臂复用型MMC拓扑,以谐波注入量的相角为自变量,建立多维度目标函数。寻优确定最优谐波电流的初相角。
2.基于权利要求1中的所述的一种桥臂复用型MMC拓扑子模块降容谐波注入方法,其特征是步骤1,2,3整体作为发明内容,使得能够大幅度降低MMC子模块电容容值,从而实现MMC的轻型化,三个步骤作为有机的不可分割的整体。
CN202110365938.3A 2021-04-06 2021-04-06 一种桥臂复用型mmc拓扑子模块降容谐波注入方法 Active CN112968620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110365938.3A CN112968620B (zh) 2021-04-06 2021-04-06 一种桥臂复用型mmc拓扑子模块降容谐波注入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110365938.3A CN112968620B (zh) 2021-04-06 2021-04-06 一种桥臂复用型mmc拓扑子模块降容谐波注入方法

Publications (2)

Publication Number Publication Date
CN112968620A true CN112968620A (zh) 2021-06-15
CN112968620B CN112968620B (zh) 2022-11-04

Family

ID=76279855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110365938.3A Active CN112968620B (zh) 2021-04-06 2021-04-06 一种桥臂复用型mmc拓扑子模块降容谐波注入方法

Country Status (1)

Country Link
CN (1) CN112968620B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595424A (zh) * 2021-08-10 2021-11-02 东南大学 一种桥臂复用mmc拓扑结构
CN113938037A (zh) * 2021-10-29 2022-01-14 华北电力大学(保定) 模块化多电平换流器、故障穿越方法及电子设备
CN114221564A (zh) * 2021-11-24 2022-03-22 西北工业大学 一种基于桥臂分时复用的混合型mmc拓扑结构装置
CN114826000A (zh) * 2022-05-09 2022-07-29 北京易菲盛景科技有限责任公司 三桥臂多电平变换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135352A1 (zh) * 2014-03-13 2015-09-17 国家电网公司 一种混合模块化多电平换流器的直流故障穿越控制方法
CN108768193A (zh) * 2018-05-03 2018-11-06 浙江大学 一种基于功率解耦的模块化多电平电路
CN110048582A (zh) * 2019-05-23 2019-07-23 华北电力大学 一种谐波耦合注入的mmc子模块电容电压波动抑制方法
CN110165914A (zh) * 2019-06-27 2019-08-23 福州大学 一种模块化多电平换流器子模块电容值在线估计方法
CN112152496A (zh) * 2020-09-18 2020-12-29 华北电力大学(保定) 一种桥臂复用模块化多电平换流器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135352A1 (zh) * 2014-03-13 2015-09-17 国家电网公司 一种混合模块化多电平换流器的直流故障穿越控制方法
CN108768193A (zh) * 2018-05-03 2018-11-06 浙江大学 一种基于功率解耦的模块化多电平电路
CN110048582A (zh) * 2019-05-23 2019-07-23 华北电力大学 一种谐波耦合注入的mmc子模块电容电压波动抑制方法
CN110165914A (zh) * 2019-06-27 2019-08-23 福州大学 一种模块化多电平换流器子模块电容值在线估计方法
CN112152496A (zh) * 2020-09-18 2020-12-29 华北电力大学(保定) 一种桥臂复用模块化多电平换流器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595424A (zh) * 2021-08-10 2021-11-02 东南大学 一种桥臂复用mmc拓扑结构
CN113595424B (zh) * 2021-08-10 2022-11-01 东南大学 一种桥臂复用mmc拓扑结构
CN113938037A (zh) * 2021-10-29 2022-01-14 华北电力大学(保定) 模块化多电平换流器、故障穿越方法及电子设备
CN114221564A (zh) * 2021-11-24 2022-03-22 西北工业大学 一种基于桥臂分时复用的混合型mmc拓扑结构装置
CN114221564B (zh) * 2021-11-24 2024-02-02 西北工业大学 一种基于桥臂分时复用的混合型mmc拓扑结构装置
CN114826000A (zh) * 2022-05-09 2022-07-29 北京易菲盛景科技有限责任公司 三桥臂多电平变换器

Also Published As

Publication number Publication date
CN112968620B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN112968620B (zh) 一种桥臂复用型mmc拓扑子模块降容谐波注入方法
CN113224960B (zh) 全桥型模块化多电平换流器子模块电容电压波动抑制方法
CN104065290A (zh) 模块化多电平换流器电平数倍增方法及启动方法
Palanisamy et al. Maximum Boost Control for 7-level z-source cascaded h-bridge inverter
CN102498656B (zh) 电压源换流器,用于控制电压源换流器的方法和控制装置
CN100401625C (zh) 有源无源混合的单相功率因数校正电路
Joos et al. A high performance current source inverter
CN111900888B (zh) 换流器调制波优化方法、系统及基于其的换流器控制方法
Lyu et al. A modular multilevel dual buck inverter with adjustable discontinuous modulation
Zhao et al. A modified single-phase h-bridge PWM rectifier with power decoupling
CN103259436B (zh) 混合箝位型五电平变流器及其控制方法
CN106505898A (zh) 基于svpwm的z源npc三电平逆变器恒功率并网控制系统
CN109039126B (zh) 一种降低全桥型mmc子模块损耗的控制方法
Vanaja et al. Total harmonic distortion analysis and comparison of diode clamped multilevel Z-source inverter
Sayed et al. Symmetrical high voltage gain half-bridge inverter based double-Y-source networks with reduced voltage stress
Raju et al. Switching-Loss Optimized Modulation Strategy for Multi-Level Matrix Converter
CN112332742A (zh) 一种电机变流控制系统及其控制方法
Xu et al. Two variations of five-level hybrid-clamped converters and their voltage balancing control using three degrees of freedom
Li et al. A mode‐reduction space vector pulse width modulation control method to VIENNA rectifier yet eliminating input current distortions
CN100411273C (zh) 串联补偿升压的单相功率因数校正电路
CN108832828A (zh) 一种三电平npc变流器的调制策略
KR102575277B1 (ko) 6레벨 t-형 능동 중성점 클램핑 인버터
Hassanabad et al. Design and Simulation of Space Vector Pulse Width Modulation Inverter based Transformer-less in small Wind Turbines
Narendrababu et al. Reduced Part Count Multiplexed Five-Level Inverters: Effect of Varied Modulation Index
Fadaeian et al. A Fast Processing Discontinuous Control Strategy for Vienna Rectifier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant