CN112960673A - 原位合成法制备4h碳化硅电子材料的工艺 - Google Patents

原位合成法制备4h碳化硅电子材料的工艺 Download PDF

Info

Publication number
CN112960673A
CN112960673A CN202110296851.5A CN202110296851A CN112960673A CN 112960673 A CN112960673 A CN 112960673A CN 202110296851 A CN202110296851 A CN 202110296851A CN 112960673 A CN112960673 A CN 112960673A
Authority
CN
China
Prior art keywords
silicon carbide
equal
preparing
temperature
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110296851.5A
Other languages
English (en)
Other versions
CN112960673B (zh
Inventor
杨东平
杨洋
王力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Xingshi Supply Chain Management Co ltd
Original Assignee
Henan Xingshi Supply Chain Management Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Xingshi Supply Chain Management Co ltd filed Critical Henan Xingshi Supply Chain Management Co ltd
Priority to CN202110296851.5A priority Critical patent/CN112960673B/zh
Publication of CN112960673A publication Critical patent/CN112960673A/zh
Application granted granted Critical
Publication of CN112960673B publication Critical patent/CN112960673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种原位合成法制备4H碳化硅电子材料的工艺,包括①选取化学纯度≥99.9%,粒度≤5μm的4H碳化硅高温提纯,经研磨得到碳化硅种料;选取化学纯度≥99.99%,粒度≤1μm的碳粉,以及化学纯度≥99.99%,粒度≤1μm的二氧化硅为原料②按照碳粉、二氧化硅、碳化硅种料=(40‑43):(51‑56):(3‑5) 的重量比进行混配③在氮气保护条件下,使混配料进行高温反应,得到4H碳化硅粗品④粉碎、筛分,得到化学纯度≥99.99%,中值粒径为0‑1mm的碳化硅筛分料⑤将筛分料送入高温蒸汽气流粉碎分级系统进行粉碎、筛分,得到化学纯度≥99.99%,球形度≥0.98,中值粒径为200‑250nm的碳化硅成品,其中碳化硅成品中的结构晶型为4H‑SiC含量≥99.99%。本发明投资低收益大,绿色环保,能够实现工业化生产。

Description

原位合成法制备4H碳化硅电子材料的工艺
技术领域
本发明涉及碳化硅制备技术领域,尤其是涉及一种原位合成法制备4H碳化硅电子材料的工艺。
背景技术
随着新能源汽车的发展,动力电池和储能电池已成为国家重点支持产业,大功率晶闸管零部件的市场需求量日益增大。4H-SIC的带隙比6H-SIC更宽,电子迁移率更大,是碳化硅结构晶型中最适宜作电力电子功率器件的材料,已成为第三代半导体的首选原料。据报道,目前在实验室进行的气相沉积法4H碳化硅制备工艺,168小时仅能生产出十几公斤高纯4H碳化硅,成本极高,不适合工业化大规模生产。
发明内容
为了实现4H碳化硅电子材料的规模化生产,本发明提供一种原位合成法制备4H碳化硅电子材料的工艺,具体可采取如下技术方案:
本发明所述的原位合成法制备4H碳化硅电子材料的工艺,包括如下步骤:
第一步,选取化学纯度≥99.9%,粒度≤5μm的4H碳化硅,在第一高温管式炉中进行提纯,再经球磨机粉碎,得到化学纯度≥99.99%,粒度≤1μm的碳化硅种料;同时,选取化学纯度≥99.99%,粒度≤1μm的碳粉,以及化学纯度≥99.99%,粒度≤1μm的二氧化硅为原料;
第二步,按照碳粉、二氧化硅、碳化硅种料= (40-43):(51-56):(3-5) 的重量比进行混配,在真空搅拌机中混合搅拌60分钟,得到混配料;
第三步,将步骤二得到的混配料密封放入第二高温管式炉的石墨坩埚中,在氮气保护条件下,按照升温曲线升至1900℃-2000℃后保温72小时进行高温反应,再经过48小时降温至20℃,得到4H碳化硅粗品;
第四步,将步骤三得到的4H碳化硅粗品进行粉碎、筛分,得到化学纯度≥99.99%,中值粒径为0-1mm的碳化硅筛分料;
第五步,将步骤四得到的筛分料送入高温蒸汽气流粉碎分级系统进行粉碎、筛分,得到化学纯度≥99.99%,球形度≥0.98,中值粒径为200-250nm的碳化硅成品,其中碳化硅成品中的结构晶型为4H-SiC含量≥99.99%。
所述第一步中将4H碳化硅密封放入第一高温管式炉的石墨坩埚中,在氮气保护条件下,1700℃保温22小时进行高温提纯,得到碳化硅种料。
所述第二高温管式炉的石墨坩埚内径70mm,外径90mm,长度600mm,两端采用端盖密封。
所述第三步中第二高温管式炉的升温曲线为:500℃以下,以100℃/h的速率升温;500-1500℃之间,以120-150℃/h的速率升温,并在达到1500℃时恒温1h,再继续升温;1500-2000℃之间,以60-70℃/h的速率升温。
所述第四步中采用带有碳化物锤头的锤破机粉碎4H碳化硅粗品。
所述第五步中的高温蒸汽气流粉碎分级系统包括依次相连的气流粉碎机、分离轮、旋风分离器、陶瓷膜式粉尘收集器。
所述气流粉碎机的送料速度为5-8kg/h,气流粉碎机的粉碎室内设置有重量比为3:2的φ1mm和φ0.5mm无压烧结碳化硅介质球,且通入气流粉碎机粉碎室的气源为185℃、0.5-0.7兆帕水蒸汽经过喷嘴形成的超音速气流。
所述分离轮的进口与气流粉碎机的出口相连通,且分离轮的出口包括第一出口和第二出口,所述第一出口与所述旋风分离器相连通,所述第二出口经管道返回至气流粉碎机的粉碎室。
所述旋风分离器包括串联设置的第一旋风分离器和第二旋风分离器,所述第一旋风分离器的进口与分离轮的第一出口相连通,所述第二旋风分离器的出口与所述陶瓷膜式粉尘收集器的进口相连通,且第一旋风分离器、第二旋风分离器和陶瓷膜式粉尘收集器的壳体内壁上均设置有热交换盘管。
所述第五步得到的碳化硅成品在负压环境下送至真空包装机中进行包装。
本发明提供的原位合成法制备4H碳化硅电子材料的工艺,设备投资规模小,原料价廉易得,工艺路线短,生产过程中对环境无任何污染,突破了试验室小量实验性生产的局限性,能够实现批量化、规模化的工业化生产,大幅降低了生产成本,投资低收益大,绿色环保,能够充分满足市场需求。
具体实施方式
下面通过具体实施例对本发明作详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述实施例。
实施例1:
本发明所述的原位合成法制备4H碳化硅电子材料的工艺,包括如下步骤:
第一步,选取化学纯度≥99.9%,粒度≤5μm的4H碳化硅,将其放入第一高温管式炉的石墨坩埚中,在氮气保护条件下,1700℃保温22小时进行高温提纯,之后再经行星球磨机粉碎,得到化学纯度≥99.99%,粒度≤1μm的碳化硅种料。
同时,选取化学纯度≥99.99%,粒度≤1μm的碳粉,以及化学纯度≥99.99%,粒度≤1μm的二氧化硅为原料。
第二步,按照碳粉、二氧化硅、碳化硅种料= 40:51:3 的重量比进行混配,在SXJ-50型真空搅拌机中混合搅拌60分钟,得到混配料。
第三步,将步骤二得到的混配料密封放入第二高温管式炉的石墨坩埚中,在氮气保护条件下,按照升温曲线升至1900℃-2000℃后保温72小时进行高温反应,再经过48小时降温至20℃,得到4H碳化硅粗品;上述碳化硅种料作为催化剂使用。
上述第二高温管式炉的石墨坩埚内径70mm,外径90mm,长度600mm,两端采用端盖密封;进行高温反应时,第二高温管式炉采用以下升温曲线:500℃以下,以100℃/h的速率升温;500-1500℃之间,以120-150℃/h的速率升温,并在达到1500℃时恒温1h,再继续升温;1500-2000℃之间,以60-70℃/h的速率升温。
第四步,采用带有碳化物锤头的锤破机将步骤三得到的4H碳化硅粗品进行粉碎,再经滤网筛分,得到化学纯度≥99.99%,中值粒径为0-1mm的碳化硅筛分料。
第五步,将步骤四得到的筛分料送入高温蒸汽气流粉碎分级系统进行粉碎、筛分,得到球形度≥0.98,中值粒径为200-250nm的碳化硅成品。经过X射线衍射仪检测,该碳化硅成品的化学纯度为99.992%,其中结构晶型为4H-SiC含量为99.993%。
上述碳化硅成品需要在负压环境下送至真空包装机中进行包装。
上述高温蒸汽气流粉碎分级系统包括气流粉碎机、分离轮、第一旋风分离器、第二旋风分离器和陶瓷膜式粉尘收集器。其中,气流粉碎机的粉碎室包括蒸汽进口和筛分料进口,其出口与分离轮进口相连通;分离轮具有第一出口和第二出口,第一出口与第一旋风分离器相连通,第二出口通过返料管与气流粉碎机的粉碎室相连通;第一旋风分离器和第二旋风分离器用于收集碳化硅成品粉料,两者串联设置,且第二旋风分离器的气流出口与陶瓷膜式粉尘收集器的进口相连通,陶瓷膜式粉尘收集器也设置有碳化硅成品粉料收集口,且陶瓷膜式粉尘收集器的尾气在引风机作用下通过烟囱排空。此外,第一旋风分离器、第二旋风分离器和陶瓷膜式粉尘收集器的壳体内壁上均安装有用于热能回收的热交换盘管。
上述气流粉碎机的粉碎室内放置有φ1mm和φ0.5mm无压烧结碳化硅介质球,两者的重量比为3:2,通入气流粉碎机粉碎室的气源为185℃、0.5-0.7兆帕水蒸汽,其经过两对对置的喷嘴形成的超音速气流,而筛分料的送料速度则为5-8kg/h。当高温蒸汽通过喷嘴形成超音速气流进入粉碎室后,会带动筛分料及介质球发生相互碰撞,介质球快速研磨物料,将物料快速粉碎,高压蒸汽能够加速物流研磨速度,去除粉碎过程中的静电,破除气溶胶现象、克服粉碎后物流的团聚现象,去除其它杂质,提高生产效率,为后续的除尘工序减轻压力。
实施例2:
除了在第二步中,按照碳粉、二氧化硅、碳化硅种料= 43:56:5的重量比进行混配,其余步骤同实施例1。
最终得到的球形度≥0.98,中值粒径为200-250nm的碳化硅成品,经过X射线衍射仪检测,其化学纯度为99.993%,其中结构晶型为4H-SiC含量为99.997%。
实施例3:
除了在第二步中,按照碳粉、二氧化硅、碳化硅种料= 42:53:4的重量比进行混配,其余步骤同实施例1。
最终得到的球形度≥0.98,中值粒径为200-250nm的碳化硅成品,经过X射线衍射仪检测,其化学纯度为99.992%,其中结构晶型为4H-SiC含量为99.995%。
实施例4:
除了在第二步中,按照碳粉、二氧化硅、碳化硅种料= 40:53:5的重量比进行混配,其余步骤同实施例1。
最终得到的球形度≥0.98,中值粒径为200-250nm的碳化硅成品,经过X射线衍射仪检测,其化学纯度为99.995%,其中结构晶型为4H-SiC含量为99.998%。
实施例5:
除了在第二步中,按照碳粉、二氧化硅、碳化硅种料= 42:51:3的重量比进行混配,其余步骤同实施例1。
最终得到的球形度≥0.98,中值粒径为200-250nm的碳化硅成品,经过X射线衍射仪检测,其化学纯度为99.997%,其中结构晶型为4H-SiC含量为99.996%。
需要说明的是,在本发明的描述中,诸如“前”、“后”、“左”、“右”、“垂直”、“水平”、“内”、“外”等指示的方位或位置关系的术语,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

Claims (10)

1.一种原位合成法制备4H碳化硅电子材料的工艺,其特征在于:包括如下步骤:
第一步,选取化学纯度≥99.9%,粒度≤5μm的4H碳化硅,在第一高温管式炉中进行提纯,再经球磨机粉碎,得到化学纯度≥99.99%,粒度≤1μm的碳化硅种料;同时,选取化学纯度≥99.99%,粒度≤1μm的碳粉,以及化学纯度≥99.99%,粒度≤1μm的二氧化硅为原料;
第二步,按照碳粉、二氧化硅、碳化硅种料= (40-43):(51-56):(3-5)的重量比进行混配,在真空搅拌机中混合搅拌60分钟,得到混配料;
第三步,将步骤二得到的混配料密封放入第二高温管式炉的石墨坩埚中,在氮气保护条件下,按照升温曲线升至1900℃-2000℃后保温72小时进行高温反应,再经过48小时降温至20℃,得到4H碳化硅粗品;
第四步,将步骤三得到的4H碳化硅粗品进行粉碎、筛分,得到化学纯度≥99.99%,中值粒径为0-1mm的碳化硅筛分料;
第五步,将步骤四得到的筛分料送入高温蒸汽气流粉碎分级系统进行粉碎、筛分,得到化学纯度≥99.99%,球形度≥0.98,中值粒径为200-250nm的碳化硅成品,其中碳化硅成品中的结构晶型为4H-SiC含量≥99.99%。
2.根据权利要求1所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述第一步中将4H碳化硅密封放入第一高温管式炉的石墨坩埚中,在氮气保护条件下,1700℃保温22小时进行高温提纯,得到碳化硅种料。
3.根据权利要求1所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述第二高温管式炉的石墨坩埚内径70mm,外径90mm,长度600mm,两端采用端盖密封。
4.根据权利要求1所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述第三步中第二高温管式炉的升温曲线为:500℃以下,以100℃/h的速率升温;500-1500℃之间,以120-150℃/h的速率升温,并在达到1500℃时恒温1h,再继续升温;1500-2000℃之间,以60-70℃/h的速率升温。
5.根据权利要求1所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述第四步中采用带有碳化物锤头的锤破机粉碎4H碳化硅粗品。
6.根据权利要求1所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述第五步中的高温蒸汽气流粉碎分级系统包括依次相连的气流粉碎机、分离轮、旋风分离器、陶瓷膜式粉尘收集器。
7.根据权利要求6所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述气流粉碎机的送料速度为5-8kg/h,气流粉碎机的粉碎室内设置有重量比为3:2的φ1mm和φ0.5mm无压烧结碳化硅介质球,且通入气流粉碎机粉碎室的气源为185℃、0.5-0.7兆帕水蒸汽经过喷嘴形成的超音速气流。
8.根据权利要求6所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述分离轮的进口与气流粉碎机的出口相连通,且分离轮的出口包括第一出口和第二出口,所述第一出口与所述旋风分离器相连通,所述第二出口经管道返回至气流粉碎机的粉碎室。
9.根据权利要求8所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述旋风分离器包括串联设置的第一旋风分离器和第二旋风分离器,所述第一旋风分离器的进口与分离轮的第一出口相连通,所述第二旋风分离器的出口与所述陶瓷膜式粉尘收集器的进口相连通,且第一旋风分离器、第二旋风分离器和陶瓷膜式粉尘收集器的壳体内壁上均设置有热交换盘管。
10.根据权利要求1所述的原位合成法制备4H碳化硅电子材料的工艺,其特征在于:所述第五步得到的碳化硅成品在负压环境下送至真空包装机中进行包装。
CN202110296851.5A 2021-03-19 2021-03-19 原位合成法制备4h碳化硅电子材料的工艺 Active CN112960673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110296851.5A CN112960673B (zh) 2021-03-19 2021-03-19 原位合成法制备4h碳化硅电子材料的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110296851.5A CN112960673B (zh) 2021-03-19 2021-03-19 原位合成法制备4h碳化硅电子材料的工艺

Publications (2)

Publication Number Publication Date
CN112960673A true CN112960673A (zh) 2021-06-15
CN112960673B CN112960673B (zh) 2023-07-04

Family

ID=76279403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110296851.5A Active CN112960673B (zh) 2021-03-19 2021-03-19 原位合成法制备4h碳化硅电子材料的工艺

Country Status (1)

Country Link
CN (1) CN112960673B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010497A (zh) * 2022-03-22 2022-09-06 南通三责精密陶瓷有限公司 一种高纯碳化硅陶瓷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015169A1 (en) * 1998-07-13 2001-08-23 Harald Kuhn Method for growing SiC single crystals
CN101254912A (zh) * 2008-04-07 2008-09-03 河南醒狮高新技术股份有限公司 原位合成高纯绿色6H-SiC用碳基材料
CN103508454A (zh) * 2012-06-19 2014-01-15 上海硅酸盐研究所中试基地 一种高纯碳化硅原料的制备方法
KR20150142245A (ko) * 2014-06-11 2015-12-22 엘지이노텍 주식회사 탄화규소 분말, 이의 제조방법 및 탄화규소 단결정
CN110016718A (zh) * 2019-04-19 2019-07-16 天通凯成半导体材料有限公司 一种用于生长高质量碳化硅晶体原料提纯的处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015169A1 (en) * 1998-07-13 2001-08-23 Harald Kuhn Method for growing SiC single crystals
CN101254912A (zh) * 2008-04-07 2008-09-03 河南醒狮高新技术股份有限公司 原位合成高纯绿色6H-SiC用碳基材料
CN103508454A (zh) * 2012-06-19 2014-01-15 上海硅酸盐研究所中试基地 一种高纯碳化硅原料的制备方法
KR20150142245A (ko) * 2014-06-11 2015-12-22 엘지이노텍 주식회사 탄화규소 분말, 이의 제조방법 및 탄화규소 단결정
CN110016718A (zh) * 2019-04-19 2019-07-16 天通凯成半导体材料有限公司 一种用于生长高质量碳化硅晶体原料提纯的处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010497A (zh) * 2022-03-22 2022-09-06 南通三责精密陶瓷有限公司 一种高纯碳化硅陶瓷的制备方法

Also Published As

Publication number Publication date
CN112960673B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
JP2005314225A (ja) 水素化ホウ素化合物の製造方法
CN112158845A (zh) 一种pvt法中碳化硅粉源的回收方法
CN101734630A (zh) 一种高纯碲化镉的制备方法
CN111057850B (zh) 一种真空热还原法制备高纯金属锂的方法
CN105236363A (zh) 一种制备微米纳米级球形氮化硅粉的方法
CN103553002A (zh) 一种以回收硅片切割锯屑制备高纯α相氮化硅粉体的方法
CN112960673B (zh) 原位合成法制备4h碳化硅电子材料的工艺
WO2021135399A1 (zh) 一种气态共冷凝法生产镁锂合金的方法
CN104150911A (zh) 一种微波辅助低温快速合成纳米氮化硅-碳化硅复合粉体的方法
CA1200072A (en) Method for synthesizing amorphous silicon nitride
CN101181997A (zh) 一种金属硅材料的制备方法
CN114835130A (zh) 一种高纯度石英的生产方法
KR101636923B1 (ko) 실리카를 이용한 실리콘의 제조방법 및 그 방법으로 제조된 실리콘
CN214299303U (zh) 同时生产多尺寸多晶硅和多种类硅基气体的系统
CN114920248A (zh) 一种四氟化硅的合成方法
CN115432675B (zh) 一种撞击流耦合流化床制备高质量氮化硅粉体的方法
CN101229916B (zh) 以聚四氟乙烯为添加剂燃烧合成氮化硅粉体的方法
CN112645337A (zh) 一种六氯乙硅烷的制备方法
JP2014047117A (ja) 酸化リチウムの製造方法
CN206188392U (zh) 一种碳纳米管提纯系统
CN115432677B (zh) 一种撞击流耦合流化床制备高质量氮化硅粉体的系统及方法
CN115432674B (zh) 一种多级流化床制备高质量氮化硅粉体的方法
CN110055435A (zh) 硒铜合金的制备方法
KR102509020B1 (ko) 태양광 폐패널로부터 회수된 실리콘을 이용한 상압소결용 탄화규소분말 및 이의 제조방법
CN113735096B (zh) 一种艾奇逊炉芯石墨粉制备超高纯碳粉的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant