CN112958038A - 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法 - Google Patents

一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法 Download PDF

Info

Publication number
CN112958038A
CN112958038A CN202110171153.2A CN202110171153A CN112958038A CN 112958038 A CN112958038 A CN 112958038A CN 202110171153 A CN202110171153 A CN 202110171153A CN 112958038 A CN112958038 A CN 112958038A
Authority
CN
China
Prior art keywords
core
nano
organic framework
shell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110171153.2A
Other languages
English (en)
Inventor
程劼
王培龙
李博恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Original Assignee
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS filed Critical Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority to CN202110171153.2A priority Critical patent/CN112958038A/zh
Publication of CN112958038A publication Critical patent/CN112958038A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602

Abstract

本发明公开了一种基于纳米粒子/金属有机框架的核‑壳结构纳米材料的制备方法,首先称取6mg的ZrCl4、5mg的配体和1.2g的聚乙烯吡咯烷酮PVP,将其溶于8mL的混合试剂中,再加入300μL甲酸;再加入600μL的氯金酸HAuCl4;将混合溶剂置于120°的烘箱中反应1~4h,从烘箱拿出静止室温,取下层絮状沉淀1ml,于4000rpm下离心4min,弃上清液,洗涤后得到核壳型纳米基底;在洗涤好的核壳型纳米基底中加入含目标物的待测溶液500μL,并涡旋、摇床震荡1~24h;再利用拉曼光谱仪进行光谱测定。该方法制备的核壳型纳米基底可作为SERS分析的增强基底,能实现对目标二噁英等环境内分泌干扰物的高灵敏分析。

Description

一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制 备方法
技术领域
本发明涉及复合材料技术领域,尤其涉及一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法。
背景技术
二噁英等环境内分泌干扰物具有较强的内分泌干扰效应,在自然界中广泛存在。近年来研究发现,二噁英等化合物在食品、农畜产品中的含量极低,赋存形态复杂,严重威胁人民身体健康和饮食安全,对二噁英等化合物的分析属于超痕量范畴,需要极高的灵敏度。近年来,金属有机框架(Metal-Organic Frameworks,MOFs)材料飞速发展。MOFs材料是一种具有三维孔结构的配位聚合物,以金属离子(簇)为中心,有机配体为连接,通过有序组装可制备具有周期性的网状骨架结构。因其具有稳定、有序、和大比表面积的结构特性,MOFs在多相催化、气体吸附、药物释放等研究方面备受青睐,充分利用MOFs材料纳米孔隙可调的技术优势,可实现对目标物的选择性识别和富集。
现有技术对二噁英类化合物的分析主要依靠大型精密仪器设备,如现行的“金标”方法是基于高分辨气相色谱-高分辨磁质谱,该方法具有较高的灵敏度,但所需的设备动辄几百万,非常昂贵;而现有的快速分析技术主要是依靠抗原-抗体识别原理来实现的,但抗体受环境影响较大,容易出现“假阳性”。
发明内容
本发明的目的是提供一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法,该方法制备的核壳型纳米基底可作为SERS分析的增强基底,能实现对目标二噁英类化合物的高灵敏分析。
本发明的目的是通过以下技术方案实现的:
一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法,所述方法包括:
步骤1、首先称取6mg的ZrCl4、5mg的有机配体和1.2g的聚乙烯吡咯烷酮PVP,将其溶于8mL的混合试剂中,再加入300μL甲酸,涡旋1min;其中,所述混合试剂为二甲基甲酰胺DMF和乙醇按体积比5:3混合的溶剂;所述有机配体为:5'-(4-羧苯基)-[1,1':3',1”-三联苯]-3,4”,5-三羧酸;
步骤2、然后再加入600μL的氯金酸HAuCl4,涡旋混合1min;
步骤3、将步骤2处理后的混合溶剂置于120°的烘箱中反应1~4h,从烘箱拿出静止室温,取下层絮状沉淀1ml,于4000rpm下离心4min,弃上清液,再用甲醇1ml洗涤2-3次,于4000rpm下离心处理得到洗涤好的核壳型纳米基底;
步骤4、在洗涤好的核壳型纳米基底中加入含目标物的待测溶液500μL,并涡旋、摇床震荡1~24h;
步骤5、再利用拉曼光谱仪进行光谱测定,以目标化合物的特征拉曼吸收位移进行定性识别和定量计算。
由上述本发明提供的技术方案可以看出,上述方法制备的核壳型纳米基底可作为SERS分析的增强基底,能实现对目标二噁英类化合物的高灵敏分析,分析灵敏度可达ppt水平,可用于水体、食品、农畜水产品中二噁英等环境内分泌干扰物的超灵敏分析。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法流程示意图;
图2为本发明实施例所述利用拉曼光谱仪进行光谱测定的示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法流程示意图,所述方法包括:
步骤1、首先称取6mg的氯化锆ZrCl4、5mg的有机配体和1.2g的聚乙烯吡咯烷酮PVP,将其溶于8mL的混合试剂中,再加入300μL甲酸,涡旋1min;
其中,所述混合试剂为二甲基甲酰胺DMF和乙醇按体积比5:3混合的溶剂;
所述有机配体为:5'-(4-羧苯基)-[1,1':3',1”-三联苯]-3,4”,5-三羧酸。
在核壳型纳米结构的制备中,关键问题有以下几点:一是如何选择分散剂,浓度如何优化;二是如何在金属纳米粒子周围精控壳层结构,实现“一核一壳”的精细结构的精确控制;三是如何控制膜厚度和核大小,实现对二噁英类化合物的高灵敏识别。
在本申请实施例中,所述ZrCl4、有机配体以及甲酸的用量配比为6mg:5mg:300μL(m:m:v),此配比是制备锆基有机框架材料Zr-MOF的比例,在固定它们之间的比例后,可以通过增加或减少用量调控Zr-MOF壳层的厚度,例如当核层AuNP粒径在70nm时,所述ZrCl4、有机配体以及甲酸用量比例提高1/2,则锆基有机框架材料Zr-MOF壳层厚度从原来的2~5nm增加至7~11nm,以此类推。
步骤2、然后再加入600μL的氯金酸HAuCl4,涡旋混合1min;
这里,可以通过改变二甲基甲酰胺DMF和氯金酸HAuCl4的用量来调控核层AuNP的粒径大小,具体来说:
当二甲基甲酰胺DMF和氯金酸HAuCl4的用量分别为5mL和600μL时,核层AuNP的粒径为70±2.5nm;当固定二甲基甲酰胺DMF用量,并减少氯金酸HAuCl4用量为400μL,则核层AuNP的粒径减小至50±3.2nm。
步骤3、将步骤2处理后的混合溶剂置于120°的烘箱中反应1~4h,从烘箱拿出静止室温,取下层絮状沉淀1ml,于4000rpm下离心4min,弃上清液,再用甲醇1ml洗涤2-3次,于4000rpm下离心处理得到洗涤好的核壳型纳米基底;
在该步骤中,具体是通过改变烘箱反应时间,如1~4h来调控Zr-MOF壳层厚度为0~20nm。
步骤4、在洗涤好的核壳型纳米基底中加入含目标物的待测溶液500μL,并涡旋、摇床震荡1~24h;
在步骤4中,所加入的目标物包括:
2,3,7,8-四氯二苯并二噁英,简称2,3,7,8-TCDD;
或者多氯联苯,简称PCB。
在本实施例中,以锆基MOFs材料为壳,贵金属纳米颗粒为核的新型核-壳纳米结构材料,充分利用壳层MOF材料对二噁英的高效吸附,以及核层纳米金属粒子的表面增强拉曼效应,实现对二噁英等环境内分泌干扰物的超灵敏分析检测。
步骤5、再利用拉曼光谱仪进行光谱测定,以目标化合物的特征拉曼吸收位移进行定性识别和定量计算。
如图2所示为本发明实施例所述利用拉曼光谱仪进行光谱测定的示意图,其中图2a为2,3,7,8-TCDD的SERS分析谱图;图2b为PCB的SERS分析谱图。
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
综上所述,本发明实施例所制备的核壳型纳米基底可作为SERS分析的增强基底,能实现对目标二噁英类化合物的高灵敏分析,分析灵敏度可达ppt水平,可用于水体、食品、农畜水产品中二噁英等环境内分泌干扰物的超灵敏分析。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法,其特征在于,所述方法包括:
步骤1、首先称取6mg的ZrCl4、5mg的有机配体和1.2g的聚乙烯吡咯烷酮PVP,将其溶于8mL的混合试剂中,再加入300μL甲酸,涡旋1min;其中,所述混合试剂为二甲基甲酰胺DMF和乙醇按体积比5:3混合的溶剂;所述有机配体为:5'-(4-羧苯基)-[1,1':3',1”-三联苯]-3,4”,5-三羧酸;
步骤2、然后再加入600μL的氯金酸HAuCl4,涡旋混合1min;
步骤3、将步骤2处理后的混合溶剂置于120°的烘箱中反应1~4h,从烘箱拿出静止室温,取下层絮状沉淀1ml,于4000rpm下离心4min,弃上清液,再用甲醇1ml洗涤2-3次,于4000rpm下离心处理得到洗涤好的核壳型纳米基底;
步骤4、在洗涤好的核壳型纳米基底中加入含目标物的待测溶液500μL,并涡旋、摇床震荡1~24h;
步骤5、再利用拉曼光谱仪进行光谱测定,以目标化合物的特征拉曼吸收位移进行定性识别和定量计算。
2.根据权利要求1所述基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法,其特征在于,通过改变二甲基甲酰胺DMF和氯金酸HAuCl4的用量来调控核层AuNP的粒径大小,具体来说:
当二甲基甲酰胺DMF和氯金酸HAuCl4的用量分别为5mL和600μL时,核层AuNP的粒径为70±2.5nm;
当固定二甲基甲酰胺DMF用量,并减少氯金酸HAuCl4用量为400μL,则核层AuNP的粒径减小至50±3.2nm。
3.根据权利要求1所述基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法,其特征在于,
所述ZrCl4、有机配体以及甲酸的用量配比为6mg:5mg:300μL,通过增加或减少用量来调控锆基有机框架材料Zr-MOF壳层的厚度。
4.根据权利要求3所述基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法,其特征在于,
当核层AuNP粒径在70nm时,所述ZrCl4、有机配体以及甲酸用量比例提高1/2,则锆基有机框架材料Zr-MOF壳层厚度从原来的2~5nm增加至7~11nm,以此类推。
5.根据权利要求1所述基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法,其特征在于,在步骤4中,所加入的目标物包括:
2,3,7,8-四氯二苯并二噁英,简称2,3,7,8-TCDD;
或者多氯联苯,简称PCB。
CN202110171153.2A 2021-02-08 2021-02-08 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法 Pending CN112958038A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110171153.2A CN112958038A (zh) 2021-02-08 2021-02-08 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110171153.2A CN112958038A (zh) 2021-02-08 2021-02-08 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN112958038A true CN112958038A (zh) 2021-06-15

Family

ID=76275328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110171153.2A Pending CN112958038A (zh) 2021-02-08 2021-02-08 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN112958038A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624730A (zh) * 2021-08-26 2021-11-09 军事科学院军事医学研究院环境医学与作业医学研究所 贵金属掺杂的金属有机框架复合材料在检测河豚毒素中的应用、河豚毒素的检测方法
CN114699998A (zh) * 2022-04-12 2022-07-05 中国农业科学院农业质量标准与检测技术研究所 一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498694A (zh) * 2015-11-30 2016-04-20 山东省分析测试中心 一种温敏聚合物包裹的金属有机骨架磁性材料及其应用
CN108776128A (zh) * 2018-04-08 2018-11-09 中国农业科学院农业质量标准与检测技术研究所 一种对PCBs高灵敏分析的SERS基底的制备方法
US20190079014A1 (en) * 2016-03-24 2019-03-14 Nanyang Technological University Core-shell plasmonic nanogapped nanostructured material
CN110885451A (zh) * 2019-12-11 2020-03-17 北京工业大学 一种基于三元羧酸配体的In的金属-有机框架材料和制备方法及其应用
CN111499880A (zh) * 2020-05-22 2020-08-07 中国农业科学院农业质量标准与检测技术研究所 一种用于二噁英富集和检测的复合纳米材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498694A (zh) * 2015-11-30 2016-04-20 山东省分析测试中心 一种温敏聚合物包裹的金属有机骨架磁性材料及其应用
US20190079014A1 (en) * 2016-03-24 2019-03-14 Nanyang Technological University Core-shell plasmonic nanogapped nanostructured material
CN108776128A (zh) * 2018-04-08 2018-11-09 中国农业科学院农业质量标准与检测技术研究所 一种对PCBs高灵敏分析的SERS基底的制备方法
CN110885451A (zh) * 2019-12-11 2020-03-17 北京工业大学 一种基于三元羧酸配体的In的金属-有机框架材料和制备方法及其应用
CN111499880A (zh) * 2020-05-22 2020-08-07 中国农业科学院农业质量标准与检测技术研究所 一种用于二噁英富集和检测的复合纳米材料及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BIN WANG ET AL.: ""A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules"", 《NATURE COMMUNICATIONS》 *
BIN WANG ET AL.: ""A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules"", 《NATURE COMMUNICATIONS》, vol. 10, 27 August 2019 (2019-08-27), pages 2 *
LIANGCAN HE ET AL.: ""Core-Shell Noble-Metal@Metal-Organic-Framework Nanoparticles with Highly Selective Sensing Property"", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》, vol. 52, no. 13, 18 February 2013 (2013-02-18), pages 2 - 3 *
王华林: "《基于半导体涉及电荷转移的SERS及其增强机制研究》", 合肥工业大学出版社, pages: 102 *
王培龙: ""农产品质量安全纳米传感应用研究分析与展望"", 《智慧农业(中英文)》 *
王培龙: ""农产品质量安全纳米传感应用研究分析与展望"", 《智慧农业(中英文)》, no. 2, 30 June 2020 (2020-06-30), pages 1 - 10 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624730A (zh) * 2021-08-26 2021-11-09 军事科学院军事医学研究院环境医学与作业医学研究所 贵金属掺杂的金属有机框架复合材料在检测河豚毒素中的应用、河豚毒素的检测方法
CN114699998A (zh) * 2022-04-12 2022-07-05 中国农业科学院农业质量标准与检测技术研究所 一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法

Similar Documents

Publication Publication Date Title
CN107478635B (zh) 一种mof-贵金属复合sers基底及其制备方法
Wang et al. Ultrasmall metal–organic framework Zn-MOF-74 nanodots: size-controlled synthesis and application for highly selective colorimetric sensing of iron (III) in aqueous solution
CN112958038A (zh) 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法
CN106117593B (zh) 一种制备纳米材料@金属有机骨架材料的方法
CN101451270B (zh) 一种大批量制备贵金属纳米线的方法
CN103127890B (zh) 一种拉曼增强活性微球及其制备方法和应用
Goswami et al. Pore-Templated Growth of Catalytically Active Gold Nanoparticles within a Metal–Organic Framework
Fu et al. UiO-66 metal-organic frameworks/gold nanoparticles based substrates for SERS analysis of food samples
CN104655615B (zh) 基于CuS纳米粒子阳离子交换增强化学发光的生物传感器的制备方法
Fu et al. A molecularly imprinted electrochemical sensing platform based on the signal amplification system fabricated with the theoretically optimized monomer for specific determination of formaldehyde
Jiang et al. Co3O4/CoFe2O4 hollow nanocube multifunctional nanozyme with oxygen vacancies for deep-learning-assisted smartphone biosensing and organic pollutant degradation
CN112798571A (zh) 一种sers基底的制备方法、sers基底及其应用
Xue et al. Rapid detection of orange II dyes in water with SERS imprinted sensor based on PDA-modified MOFs@ Ag
Yang et al. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots
Ren et al. Self-assembled zeolitic imidazolate framework-8/Ag nanoparticles composite with well-controlled flower-like architectures for ultrasensitive surface-enhanced Raman scattering detection
Feng et al. Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds
CN114324289A (zh) 一种用于污水中痕量毒品前处理的磁性纳米材料及制备和检测方法
Fu et al. An ultraviolet self-initiated polymerized platform for specific recognition and elimination of caffeic acid based on the molecular imprinting technology
Liao et al. Molecularly imprinted 3D SERS sensor with inorganic frameworks for specific and recyclable SERS sensing application
Chen et al. A novel resonance Rayleigh scattering assay for trace formaldehyde detection based on Ce-MOF probe and acetylacetone reaction
CN109294234A (zh) 一种可重复利用基于石墨烯-贵金属纳米粒子复合物杂化薄膜及其制备方法
CN112552469B (zh) 一种双酚a磁性分子印迹聚合物的制备方法及其在双酚a荧光检测中的应用
CN104722334B (zh) 一种钯鱼精蛋白纳米粒子及其制备方法
CN112920610B (zh) 一种用于高灵敏传感分析纳米杂化材料的制备方法
CN113552111B (zh) 一种磁性Au-MOF材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination